

v Assume you have a Mouse object named “mouse” that is able to

climb steps using the message:

mouse.step (); // Note: NO argument

v Write a code fragment to get the mouse to climb 5 steps

Loops

v Loops are used to make code more succinct by eliminating repeated

lines of code.

v Write a code fragment that displays the numbers between 1 and 11

inclusive. Assume an OutputBox object named outBox has been
declared, created, and sent the message outBox.show();

v These are examples of “count-controlled” loops. They must have

steps to initialize, test, and increment (i.e., increase or decrease the
counter).

v Write a code fragment to have a Mouse object named “mouse” climb
to the next landing in a set of stairs. Assume the Mouse class has an
instance method named atLanding() that returns a boolean value
of true or false.

v How would your code change if you wanted the mouse to climb to

the next Nth landing?

The while Statement

v Allows a program to execute a statement repeatedly while a condition

is true

v Syntax: while (<condition>) {
 <loop body>
 }

while : a Java reserved word
<condition>: some boolean expression
<loop body>: 0, 1, or more Java statements

v Using curly braces {} is optional if only one statement is contained

within the loop body. However, one should ALWAYS use curly
braces regardless of the number of statements contained within the
body (i.e., use “Defensive Programming”).

v Control-Flow Diagram:

v As long as the <condition> evaluates to true, the <loop
body> will continue to be executed.

false

true

CONDITION
(boolean

expression)

Loop Body
(0, 1, or more Statements)

The do...while Statement

v Allows a loop’s condition to be tested AFTER it’s loop body is
executed

v Suitable when you want the loop body to execute at least once

v Syntax: do {
 <loop body>

 } while (<condition>);

do: a Java reserved word
<condition>: some boolean expression
<loop body>: 0, 1, or more Java statements

v Using curly braces {} is optional if only one statement is contained

within the loop body. However, one should ALWAYS use curly
braces regardless of the number of statements contained within the
body (i.e., use “Defensive Programming”).

v Control-Flow Diagram:

v The <loop body> will be executed at least once. Then, as long as
the <condition> evaluates to true, the <loop body> will
continue to be executed.

v A semi-colon ALWAYS terminates a do...while statement

false

true

CONDITION
(boolean

expression)

Loop Body
(0, 1, or more Statements)

The for Statement

v Syntax: for (<initialization>; <condition>;
<increment>)

{
 <loop body>
 }

for: a Java reserved word
<loop body>: 0, 1, or more Java statements
<initialization> (optional):

• an assignment statement (with or without declaration)
• the variable assigned a value is called the “control variable”
• example: int i = 0

count = 0 (count must be already
declared)

<condition> (optional): some boolean expression
<increment> (optional):

• some arithmetic expression that increases or decreases a
variable

• example i++ j-- i += 2

v Control-Flow Diagram:

false

true

CONDITION
(boolean

expression)

Loop Body
(0, 1, or more Statements)

Increment

Initialization
(Assignment Statement)

The for Statement...continued

v Using curly braces {} is optional if only one statement is contained

within the loop body. However, one should ALWAYS use curly
braces regardless of the number of statements contained within the
body (i.e., use “Defensive Programming”).

v As long as the <condition> evaluates to true, the <loop
body> will continue to be executed.

v Examples:

for (int i = 0; i < array.length; i++) {
/*Do Something to each cell of array */

}

FoodCenterCollection fcc = tank.getFoodCenters ();

for (FoodCenter fc = fcc.nextFoodCenter();

fcc.hasMoreFoodCenters();
fc = fcc.nextFoodCenter()) {

 if (fc.getPosition().equals (fish1.getPostion()) {
 fish1.eat();
 }
}

v Syntactically legal for loops:

for (; ;) {/* Do Something */} // An infinite loop

for (int i = 0; ;) { break;} // Nothing more than

// an assignment

int c = 0;
for (; c <= 10; c++) { outBox.printLine (c); }

The for Statement...continued

v Nested for loops: for loops can be nested within one another

for (int i = 1; i <= 4; i++) {

 for (int j = 1; j <= 3; j++) {

 outBox.print (“#”);

 }

outBox.skipLine ();

}

Rewrite the following for loop as a while loop:

int start = inBox.getInteger (“Start”);
int stop = inBox.getInteger (“Stop”);
int total = 0;

for (int count = start; count <= stop; count++)
{
 total += count;
}

outBox.printLine (“The total is: “ + total);

Loops...continued

v Infinite Loops: When the condition never evaluates to false

 int product = 0;
 while (product < 100) {
 product *= 10;
 }

 int count = 1;
 while (count != 10) {
 count += 2;
 }
 // while loop eventually terminates due

// to an overflow error

 double count = 0.0;
 while (count < 1.0) {
 count += 0.3333333;
 }

v Off-By-One Errors: When the loop repeats exactly one time more or

less than the number of times it should repeat

 int count = 1;
 while (count < 10) {
 count++;
 }

To have the loop repeat N times:

 counter = 0;
 while (counter < N) {}

counter = 1;
while (counter <= N) {}

OR

v Pre-Test vs. Post-Test Loops

Pre-Test (e.g., while, for): Test condition THEN execute loop body
Post-Test (e.g., do…while): Execute loop body THEN test condition

v Priming

Setting a variable to some value prior to the loop in order to ensure
that the loop will be executed.

int n = 1, total = 0;
while (n != 0) {
 n = inBox.getInteger ();
 total += n;
}

v Count-Controlled Loops

Use of a counter in order to repeat a loop a precise number of times.

int count = 0, total = 0;
while (count <= 5) {
 total += count;
 count++;
}

v Sentinel Controlled Loops

Use a variable in order to repeat a loop until that variable reaches
some set of “sentinel” values.

 /* See Priming for example */

v Flag Controlled Loops

Use a boolean variable (i.e., “flag”) in order to repeat a loop until the
variable becomes false. The flag is set to true or false based on one or
more conditions.

The following code sums the first 11 positive odd numbers entered by
a user. The loop can end early if a number less than zero is entered.

boolean done =false;
int sum = 0, count = 0, num;

do {
 num = inBox.getInteger ();
 if (num % 2 == 0) { done = true; }
 else if (num < 0) { done = true; }
 else if (num == 0) { /* Do Nothing */ }
 else {
 sum += num;
 count++;
 if (count == 11) { done = true; }
 }
} while (!done);

class ResponseBox

v Defined as an instantiable class in the javabook package

v Requires an owner frame window (like a MainWindow object)

v Objects of the class provide up to three buttons (i.e., choices) that the

user can select

v By default, there are two buttons: “yes” and “no”

v Can be used effectively with control statements to ask a user to repeat

v Example Code:

MainWindow mw = new MainWindow ();
ResponseBox rb = new ResponseBox (mw);

choice = rb.prompt (“Start Loop?”);

while (choice == ResponseBox.YES) {
 // code to do something
 choice = rb.prompt (“Continue Loop?”);
}

v To have >2 buttons, include an extra argument when creating a new
ResponseBox object with ‘new’

ResponseBox threeButtonBox = new ResponseBox (mw, 3);

Write code to create a ResponseBox with three buttons labeled ONE,
TWO, THREE. Using this ResponseBox, write code that displays a
message indicating which button was clicked by the user.

MainWindow mw = new MainWindow ();
OutputBox outBox = new OutputBox (mw);
ResponseBox threeButtonBox = new ResponseBox (mw, 3);

threeButtonBox.setLabel (ResponseBox.BUTTON1, “ONE”);
threeButtonBox.setLabel (ResponseBox.BUTTON2, “TWO”);
threeButtonBox.setLabel (ResponseBox.BUTTON3, “THREE”);

int choice = threeButtonBox.prompt (“Click A Button”);

switch (choice) {

case ResponseBox.BUTTON1: outBox.print (“Button 1”);
 break;

case ResponseBox.BUTTON2: outBox.print (“Button 2”);
 break;

case ResponseBox.BUTTON3: outBox.print (“Button 3”);
 break;

}

class Format

v Defined as a NON-instantiable class in the javabook package

v Can be used effectively with OutputBox objects to give the output
certain formatting

v Example Code:

MainWindow mw = new MainWindow ();
OutputBox out = new OutputBox (mw);

int num1 = 6;
int num2 = 88;

out.printLine (“UNFORMATTED”);
out.printLine (“-----------”);

out.printLine (“num1: “ + num1);
out.printLine (“num2: “ + num2);

out.skipLine ();

out.printLine (“FORMATTED”);
out.printLine (“---------”);

out.printLine (“num1: “ + Format.rightAlign (3,
num1));
out.printLine (“num2: “ + Format.rightAlign (3,
num2));

