
Page 1

e data
uces a
omes
or C

to a
mples

irst,
s
TRAN,

guage
hird,
ourth,

cre-

nd why
g lan-
eces-

cedure

effi-
sy to
rams
ow it
ow-

a com-
rapidly

fre-
tood,
take
xam-
 Chapter 21

SAL -- Simple Abstract Language

A programming language provides a method for the programmer to describe precisely th
structures and the algorithms to be performed on those data structures. This chapter introd
powerful assembly language, SAL, that allows the creation of useful programs. Its power c
from allowing a high level of abstraction. It is similar to high-level languages such as Pascal
in the amount of work that is accomplished with individual instructions. Its syntax is similar
traditional assembly language. The capabilities of SAL are demonstrated by comparing exa
in Pascal and in SAL.

Any programming language must provide ways of specifying four types of operations. F
the language must provide a way to specify thetype of a variable. This implies the range of value
the variable can be assigned and the ways it can be used. Some languages, such as FOR
allow implicit declaration depending on the name chosen for the variable. Second, the lan
must have a way of specifying arithmetic operations such as addition and multiplication. T
the language must provide control structures that allow looping and conditional execution. F
a programming language must provide a way to communicate with the user of the program
ated in the programming language.

This chapter discusses aspects of assembly language programming, such as when a
assembly language code is written. It then focuses on the details of the SAL programmin
guage. Most programming examples are given in both Pascal and in SAL. Each of the four n
sary operation types are discussed in turn. At the end of the chapter is a description of a pro
call and return mechanism, followed by a complete program.

2.1 On Assembly and Compilation

A goal of programming language design is to provide an environment to maximize the
ciency of the programmer. The structure of the programming language should make it ea
write programs correctly and quickly. The programming language should also foster prog
that make it easy for a programmer unfamiliar with a program to read and understand h
works for the purpose of modifying it. In addition to assisting in the programming process, h
ever, a programming language should be designed so that it can be executed efficiently on
puter. Programs should make the best possible use of the hardware so that they execute as
as possible, using as few resources as possible.

Unfortunately, these two goals — programmer efficiency and hardware efficiency — are
quently incompatible. Often, an unsophisticated algorithm is easily written and easily unders
but slow to execute. A more obscure algorithm might use resources more efficiently or
advantage of certain features of the computer that make the algorithm run efficiently. For e
ple, a program that uses a temporary variable calledtemp to save many different intermediate

1. Copyright 1997, Oxford University Press. Use by permission only.
Contact Peter Gordon: pcg@oup-usa.org
REVISED September 7, 1999

Page 2

e the
bles
suffice
most

d and

f a fast
f trans-
at were
uage

te lim-
not.

. A pro-

code
reasons
nology
embly
te. In

r. The
ssem-
code

guage
re fea-

red in a
st par-

that is
l con-
mple
on for
son
.
they

le to
ways to
imple-

lt to
results may be difficult to understand. If the variable isoverloadedby using it to take on the
value of different variables during the course of a single program, it may be difficult to analyz
program or identify a programming error. It is more easily understood when different varia
are given independent variable names. Yet declaring numerous variables when one would
wastes of computing resources. Memory space is not used efficiently much of the time since
of the variables are not defined. CPU resources are not used efficiently if this data is loade
stored many times.

Why Write Assembly Language Programs?

Years ago, hardware efficiency was extracted at the expense of the programmer’s time. I
program was needed, then it was written in assembly language. Compilers were capable o
lating programs from high-level languages, but generated assembly language programs th
relatively inefficient. Programmers often found it necessary to optimize the assembly lang
code created by the compiler for two reasons. The first is that memory space was often qui
ited. A programmer could write code that fit in the available space where a compiler could
The second reason that assembly code was written was to achieve acceptable performance
grammer could write code that executed faster than the code generated by compilers.

This is no longer the case. Compilers have improved to the point that they can generate
comparable, or better than the code most programmers can generate. There are two main
why the use of compiler-generated code has become common. Advances in compiler tech
have greatly improved the quality of the assembly language code generated. Writing in ass
language may result in little or no improvement over the best code a compiler can genera
many cases it is hard to find ways to improve the code generated by a high quality compile
second reason is that there is little benefit derived by improving the execution speed of the a
bly language. Many computers today execute so rapidly that it is not necessary to optimize
at the assembly language level.

It has become increasingly rare that programmers find it necessary to write assembly lan
code. However, there are several special reasons why it might be necessary. First, there a
tures of the computer that can be accessed with assembly language that are not well captu
high-level language. Programs that must use those features may need to be written, at lea
tially, in assembly language. Critical parts of an operating system are an example of code
often written in assembly language for this reason. Second, some programs have critica
straints, for example, a program that must fit in a very small amount of memory. Another exa
is a program that must execute in a highly predictable amount of time. Sometimes the reas
writing in assembly language is simply the unavailability of a good compiler. This last rea
should become increasingly rare as compiler technology becomes more widely established

Compiler writers must understand how to write programs in assembly language before
can write compilers. For a compiler to produce efficient code, a compiler writer must be ab
assess the costs and benefits of various code implementations. There are often several
implement the same code, and the best way often depends on details that are specific to the
mentation of the targeted computer. These details vary from machine to machine.

Where SAL Fits In

SAL is similar to the intermediate language that a compiler might generate. It is not difficu
REVISED September 7, 1999

Page 3

into
of

s typi-
of the
code.
diate
hen the
t
of the
nslated

is not
mbler

heless,
d into

ecla-
how
alues
be set

ration
using

fol-

hereas
-
teger
translate high-level language code into SAL, and it is straightforward to translate SAL code
MAL (or even TAL) code. SAL therefore provides a good starting point for the introduction
computer architecture for a programmer who knows a high level language.

In general, this book presents the simplest, most obvious sequence of instructions. As i
cal of modern high-level languages, ease of understanding is emphasized over efficiency
program. This is consistent with the way compilers generate efficient assembly language
Using a more-or-less direct translation, a compiler initially creates a program in an interme
language that is often an abstraction of the assembly language of the targeted computer. T
compiler invokes a program, known as anoptimizer to improve the speed of the program withou
changing its behavior. Either during the optimizations or afterward, the assembly language
abstract computer is translated into the assembly language of the target computer, then tra
into machine code.

The MIPS RISC assembler is somewhat unusual in that the language it accepts (MAL)
the true assembly language (TAL) of the hardware. This is because the MIPS RISC asse
performs additional optimizations before it generates the machine language code. Nevert
the process of writing straightforward assembly language programs that can be translate
MAL is a realistic way to write programs for a MIPS RISC-based computer.

2.2 Variable Declaration

Like all high-level languages, C provides a means for declaring the type of a variable. D
ration is for the benefit of the compiler or assembler, which must know (among other things)
much space to allocate for specific variables. Different variable types can take on different v
and require different amounts of space. It is important that sufficient space, but not more,
aside.

SAL understands three simple types: integers, characters, and floating point. The decla
of a variable is accomplished by giving a variable a name and a type. Integers are declared
the following syntax. An integer declaration in C is

int variablename { = value};

The SAL declaration of an integer variable looks like

{ variablename: } .word { value }

For the definitions, keywords are indicated inboldface . Optional words are in braces ({}).
When an identifier is used to give a name to a variable, such asvariablename , it is called a
label. In both C and SAL, identifiers follow the rule that they start with a letter, and can be
lowed by letters or digits. The colon (:) marks the end of the variable name. The.word identifies
the variable as an integer. It indicates how much space must be provided for the variable, w
the label indicates how the variable is to be referenced. Ifvalue is present, it represents an inte
ger constant. The value will be assigned to the variable as an initial value. If there is no in
value in the variable declaration, then the value of the variable will be initialized to zero.

The declaration
ten: .word 10
REVISED September 7, 1999

Page 4

SAL

ame.
ax of

ar-
acter,

escape

e

a
ion is
gal

emory
n as

ction
sets aside space for a variable namedten , and initializes its value to be 10. The declaration
counter: .word

sets aside space for a variable namedcounter , and initializes its value to be 0. Bothten and
counter are type integer. Notice that the value of a SAL variable isalways defined.

The SAL character type declaration is similar to the SAL integer type declaration.The
declaration of a character type variable looks like

{variablename:} .byte {value}

The word.byte identifies the variable as a character. The label specifies the variable n
Like integer declarations, the value portion of the declaration is optional. If present, the synt
value is that of a single character enclosed in single quote marks.

The declaration
sentinel: .byte ’z’

identifies the variable namedsentinel to be a character, and initializes its value to be the ch
acter z. A declaration without a value portion will set aside enough space for a single char
bind the variable’s name to the space, and assign the null character as a value.

Other characters such as the linefeed (newline) character are specified using the same
sequences as in C. The linefeed character in SAL can be declared:

.linefeed: .byte ’\n’

Real (noninteger) variables are declared in the same format as the other types. A C declaration
of a variable of type floating point is

float variablename { = value };

The SAL declaration of a type real variable looks like this:
{variablename:} .float {value}

The .float identifies the variable as a real number. The variable’s name is given by
variablename and value is optional. If present, the variable is initialized with the valu
given. Otherwise, the variable is assigned the value 0. Thevalue is given by the following syn-
tax. A floating point value contains an optional sign (+ or -) and a set of digits that may contain
decimal point, and may be followed by an exponent specification. The exponent specificat
the letterE or e followed by an optional sign and an integer. The following examples are all le
floating point values, and they all specify the same value.

136.42
1.3642E2
+13.642e1
0.13642e+3
13642.e-2

Declarations are information given to the assembler about how tocreatethe program, not how
to execute it. They are therefore set apart within a program in a section that specifies how m
is to be allocated. The memory is divided into two distinct areas, one for instructions, know
thecodeor text space, and one for variables, known as thedata space. In SAL, declarations can
occur anywhere, but they must be separated from code by the use ofdirectives or pseudo-
instructions. This is indicated by preceding one or more declarations by the pseudo-instru
.data , as in

.data
var1: .word
var2: .byte
REVISED September 7, 1999

Page 5

f oper-
nadic or
divi-

ulti-
-level
sion by

, per-
it by
riable.
f an

-
er the

e fol-
te-
Code is distinguished in SAL by preceding it with the pseudo-instruction.text . There may be
multiple .data and.text sections in a program.

2.3 Arithmetic Operations

The assignment statement in Pascal involves the evaluation of expressions composed o
ators, variables, and constants. In Pascal, as in most languages, all operators are either mo
dyadic. Addition and multiplication are not inherently dyadic operations, but subtraction and
sion are inherently dyadic operations. The longhand methods for performing addition and m
plication are dyadic, however, so it generally seems natural to make this restriction. High
languages such as C and Pascal go to great lengths to define how to evaluate an expres
defining the order in which the operators are applied. Thus the C statement

answer = a - b + c;

is defined precisely to be
answer = (a - b) + c;

and not
answer = a - (b + c);

In fact, the evaluation of a C statement involves a series of dyadic or monadic operations
formed on constants and variables in a well-defined order. SAL makes this order explic
requiring that each operation be specified explicitly, and that the result be assigned to a va

Table 1 gives SAL’s arithmetic instructions and C equivalents. An instruction consists o

operation specification, known as themnemonic or opcodeand two or three operand specifica
tions. An operand is either (1) the name of a variable or (2) a constant. For example, consid
C statement

int area_triangle, width, height;
...
area_triangle = (width * height) / 2;

This statement could be translated into the following SAL code:
area_triangle: .word
width: .word
height: .word
tmp: .word
...
mul tmp, width, height
div area_triangle, tmp, 2

For all arithmetic instructions, the first operand specifies the destination of the result, and th
lowing operands are sources. Themove instruction is equivalent to a simple C assignment sta

SAL Instructions Equivalent C Statement
move x, y x = y;

add x, y, z x = y + z;

sub x, y, z x = y - z;

mul x, y, z x = y * z;

div x, y, z x = y / z;

rem x, y, z x = y % z;

Table 1: Arithmetic operations in SAL.
REVISED September 7, 1999

Page 6

by the

era-
here

in one
r)
ment. The value assigned to the first (destination) operand variable given in themove instruction
is the value of the second (source) variable. The value of the source variable is unchanged
move instruction. The C assignment statement

A := B;

could be translated to the SAL instruction
move A, B

Theadd , sub , andmul instructions perform the operations that are specified in C by the op
tors +, -, and *, respectively. Instructions equivalent to these operators are defined in SAL w
the operands are either integers or real numbers. Operand types should not be mixed
instruction. Integer division is specified by thediv instruction, and the modulus (or remainde
function is specified by therem instruction. For integer variables, thediv corresponds to integer
division operator in C, andrem corresponds to the C%function. In addition,div can be applied
to real variables to obtain the floating point quotient.
REVISED September 7, 1999

Page 7

of the

-

o iden-
r allo-

hen a
ith the
.

y sur-
A Simple SAL Program

Figure 1 contains the code for an exceptionally simple program that finds the average

three integers, contained in the variablesi1 , i2 , andi3 . This example illustrates several impor
tant parts of a program not yet specified. The program is shown in both C and in SAL.

So far, labels have been used only to identify variable names. Labels can also be used t
tify any instruction or variable declaration. When the program is assembled, the assemble
cates storage space for both program instructions and data. Each label must be unique. W
label is attached to an instruction or to data, the assembler associates a memory location w
label. The sample program has the label__start attached to the first instruction in the program
All SAL programs must have the label__start to identify where execution of the program
begins. It usually is the first instruction in the program, but need not be.

SAL programs can be documented by adding comments. A comment in C is marked b

/* a simple C program to average 3 integers */
#include <stdio.h>
main()
{

int avg;
int i1 = 20;
int i2 = 13;
int i3 = 82;

avg = (i1 + i2 + i3) / 3;
}

a simple SAL program to average 3 integers

.data
avg: .word # integer average
i1: .word 20 # first number in the average
i2: .word 13 # second number in the average
i3: .word 82 # third number in the average

.text
__start: add avg, i1, i2

add avg, avg, i3
div avg, avg, 3
done

Figure 1: C and SAL versions of a program that averages three integers.
REVISED September 7, 1999

Page 8

asis.
ent.

ing a #
ment
lines.

red as

e com-
run. A

le pro-

es to

of
o
m of
e-
of the

alled a

con-
r it,

e and
am is
o new
rounding it with the character strings /* and */. SAL comments are formed on a line-by-line b
Within any line of a program, anything that follows a # symbol is considered to be a comm
Therefore, a comment may appear on the same line as an instruction or declaration by plac
character between the end of the instruction or declaration and the comment itself. A com
may also appear by itself on a line that begins with the # character. Comments may not span

Because the variableavg is declared to be an integer, the instructiondiv only gives the inte-
ger portion of the average. The remainder is lost. For example, if the variables were decla

i1 = 10 , i2 = 5 andi3 = 5 , the result inavg would be 6, not . If the variableavg were

declared to be a real (.float), the value would be extremely close to, but not exactly, .

The end of a program is indicated by the single worddone . The worddone is not a directive;
it is a macro. Chapter 10 explains macros. The end of a program must be marked so that th
puter understands that the program has been completed to allow another program to be
SAL program may have more than onedone , but it must have at least one.

2.4 Control Structures

The assembly language instructions presented so far are not sufficient to form a usab
gramming language. C provides two categories ofstructured statementsor control structures:
conditionals and iteratives. An example of the first category is anif statement. It provides the
capability for conditionally executing a statement. If the condition in the if statement evaluat
true, then the statement is executed. Otherwise it is skipped. Here is a C if statement.

if (a < b)
c = a + b;

When the if statement is executed, the first thing that occurs is a comparison. The valuea is
compared against the value ofb. If a is indeed less thanb, then the conditional evaluates t
true , and the statement associated with the if statement is executed. In this case, the sua
andb is calculated and assigned to variablec . If the conditional evaluated to false, then the stat
ment is not executed. It is skipped. This is conditional execution; depending on the value
condition, a statement may or may not be skipped.

An example of the second category is arepetitive statementwhich is used to implement a
loop. C examples of repetitive statements arefor , while , anddo-while loops. Both of these
categories of statements are made possible by a single assembly language construct c
branch. The simplest branch instruction is the equivalent of the Cgoto statement, which
branches to a label.

More complex branch instructions combine conditional execution with agoto statement.
This powerful set of instructions is the only mechanism provided in SAL to enable looping
structs. While this limitation may seem restrictive initially, there are very good reasons fo
since this restriction closely reflects the underlying hardware restrictions. The use ofgoto is gen-
erally discouraged in high-level languages because it makes programs difficult to analyz
debug. If the compiler is implemented correctly, however, and the high-level language progr
well-structured, the use of branch instructions at the assembly language level introduces n
concerns.

6
2
3

6
2
3

REVISED September 7, 1999

Page 9

ons are
those

s the

mputers
con-

lterna-
Table 2 summarizes SAL’s branch instructions. The variablesx andy may be of type integer

or character, and they can be constants or variables. Note that many of the branch instructi
redundant. In fact, the instructions in the latter half of the table are simply special cases of
instructions in the first half of the table, where the second operand is implicitly zero. Thu
instruction

ble sum, 0, L1

is equivalent to the instruction
blez sum, L1

These instructions are included because tests against zero are so common that many co
are optimized to handle them efficiently. Also note that an unconditional branch can be
structed from a special case of a conditional branch. As an example, the SAL instruction

b next

is equivalent to
beqz 0, next

The SAL instruction
ble x, y, L1

is also equivalent to
blt x, y, L1 # Branch if x < y.
beq x, y, L1 # Branch if x = y.

This alternative requires two instructions to be executed and is therefore a less attractive a
tive.

SAL instructions Equivalent C Statement
b label goto label;

beq x, y, label if (x == y) goto label;

bne x, y, label if (x != y) goto label;

blt x, y, label if (x < y) goto label;

bgt x, y, label if (x > y) goto label;

ble x, y, label if (x <= y) goto label;

bge x, y, label if (x >= y) goto label;

bltz x, label if (x < 0) goto label;

bgtz x, label if (x > 0) goto label;

blez x, label if (x <= 0) goto label;

bgez x, label if (x >= 0) goto label;

beqz x, label if (x == 0) goto label;

bnez x, label if (x != 0) goto label;

Table 2: Branch instructions in SAL.
REVISED September 7, 1999

Page 10

iva-

c-
econd

gram
n one
ntage
Figure 2 shows a Cif-then-else statement and two possible assembly language equ

lents. The statement tests ifA is positive. IfA is positive, it assigns toB the value ofC/A .
.Otherwise, it assignsB the valueA + 10. All three code fragments implement the same fun
tion. Note that the first SAL equivalent reverses the sense of the comparison, and the s
reverses the order of theif andelse statements.

Two versions of SAL code are given to illustrate a point. There are numerous ways to pro
any given high-level language control structure. Based on the specific program, code writte
way might execute more efficiently than code written another. This fact can be used to adva
by a sophisticated compiler or assembly language programmer.

C statement

if (A > 0)
 B = C / A;
else
 B = A + 10;

Possible SAL equivalent

blez A, elsepart
div B, C, A
b endif

elsepart: add B, A, 10
endif:

Another possible SAL equivalent

bgtz A, ifpart
add B, A, 10
b endif

ifpart: div B, C, A
endif:

Figure 2: SAL code implementing the Cif-then-else statement.
REVISED September 7, 1999

Page 11

s an

to
ree

o
e

A compound conditional can be built out of multiple branch instructions. Figure 3 show

example of a C compound conditional statement. One of the two conditions must evaluate
true if the statements within theif statement are to be executed. The SAL code uses th
branch statements to implement the structure of the compound conditional. IfA is not equal toB,
then thebeq branch is not taken, and the second instruction (blt) is executed. IfA andB are
equal, then the branch is taken to the code within theif statement. If both conditionals turn out t
be false, then the unconditional branch instruction,b, modifies the PC such that it contains th
addressendif .

C statement

if ((A = B) || (C < D)) {
A = A + 1;
B = B - 1;
D = A + C;

}

SAL equivalent

beq A, B, do_if
blt C, D, do_if
b end_if

do_if: add A, A, 1
add B, B, -1
add D, A, C

end_if:

Figure 3: SAL code implementing a C compound conditional.
REVISED September 7, 1999

Page 12

of a

his
com-
A second example of a compound conditional is given in Figure 4. It shows an example

logical and together with a logical or. In C, the evaluation of theand is completed before theor .
The equivalent SAL code to implement theif statement reverses some of the conditions. T
reversal has the effect of reducing the number of instructions necessary to implement the
plete test.

C statement

if ((A == B) && (C == D) || (E < 0)) {
A = A + 1;
C = E;

}

SAL equivalent
bne A, B, check_E
beq C, D, do_if

check_E: bgez E, end_if
do_if: add A, A, 1

move C, E
end_if:

Figure 4: SAL code implementing a C compound conditional.
REVISED September 7, 1999

Page 13

5

on. It

ned
An equivalent to a Cwhile loop is straightforward to build out of SAL instructions. Figure

contains both a C version and a SAL version of a while loop that implements a power functi

calculates , whereexponent is assumed to be a positive integer. The result is assig
to the variableresult . Note that the variablesbase andexponent are not changed by the
execution of the loop, like the C implementation.

C statement

result = 1;
counter = exponent;
while (counter > 0) {
 result = result * base;
 counter = counter - 1;
}

SAL equivalent

move result, 1
move counter, exponent

while: blez counter, endwhile
mul result, result, base
sub counter, counter, 1
b while

endwhile:

Figure 5: SAL code to caculate using a while loop.base
exponent

base
exponent
REVISED September 7, 1999

Page 14

than
d.
e for
p, the
ping
s
ari-
ly lan-
ages

th the
licity,
from
A C for loop can also be formed from SAL instructions. Figure 6 contains a Cfor loop and

a SAL translation of the loop. Before the loop is entered, the loop induction variablecounter is
initialized to 1. At the top of the loop is a test to see if the loop induction variable is greater
the given ending value (exponent). If it is greater, the branch is taken, and the loop is exite
This is done by a conditional branch instruction in the SAL code. The last statement in th
loop is an unconditional branch back to the top of the loop. Before branching back to the to
loop induction variable is incremented by 1. Notice that although the high-level language loo
construct can define that afor loop implicitly increments the loop induction variable, SAL doe
not. A SAL equivalent must explicitly contain an instruction to add one to the loop induction v
able. Incrementing an induction variable is such a common operation that some assemb
guages provide a mechanism for implicitly incrementing a variable, just as high-level langu
do.

2.5 Communication with the User

The final necessary item for an assembly language is some form of communication wi
user. The communication is between the computer and the user of the program. For simp
assume that all communication from the user comes from a keyboard. All communication
the computer to the user goes to a display (or screen).

C statement
result = 1;
for (counter = 1; counter <= exponent; counter++) {

result = result * base;
}

SAL equivalent
move result, 1 # initialize result
move counter, 1 # initialize loop induction variable
exit loop when counter > exponent

for: bgt counter, exponent, endfor
mul result, result, base
increment loop induction variable
add counter, counter, 1
b for

endfor:

Figure 6: SAL code to calculate using afor loop.base
exponent
REVISED September 7, 1999

Page 15

d as an
y

he
racter

tive.
ider

When
le

im-

like

e zero
Table 3 contains SAL communication instructions. The onlyinput instruction isget . It

reads some amount of data from a keyboard, and places the data in the variable specifie
operand. There are twooutput instructions,put andputs . Each displays the data specified b
the operand variable.

The output operationputs takes a special form of string, and prints it to the screen. T
string is essentially an array of characters, and the final character of the string is the null cha
‘ \0 ’. A string ended this way is often called anull-terminated string .

A simple way to declare a string that is automatically null terminated is by using a direc
The .asciiz directive allows a string to be specified, and null terminates the string. Cons
the directive

string1: .asciiz "howdy!\n"

This directive declares a string of 8 characters, and labels itstring1 . The first 7 characters are
assigned to be the characters in the string, and the final character is the null character.
declared using the.asciiz directive, the string is printed out to a display by using the sing
instruction

puts string1

Theputs instruction is a powerful instruction for displaying messages, but it is in fact a s
ple procedure that callsput repeatedly. Here is the SAL code to write the messagehowdy! , fol-
lowed by the newline character, using onlyput instructions.

put ’h’
put ’o’
put ’w’
put ’d’
put ’y’
put ’!’
put ’\n’

The structure of the input and output instructions is similar to than that of C. Theget instruc-
tion works on a line-by-line basis for variables of type integer and floating point, making it
the C statement

void scanf("%d\n", &user_int);

or
void scanf("%f\n", &user_float);

Even if there is more than one value on a line, aget instruction will read the first value and
throw away the rest. When the first value in the input read does not match the type, the valu
is placed in the operand.

SAL instructions Equivalent C Statement Notes

get x
scanf("%d\n", &x);
x = getc(stdin);

x is type.word
x is type.byte

put x
printf("%d", x);
printf("%c", x);
printf("%f", x);

x is type.word
x is type.byte
x is type.float

getc x x = getc(stdin);

putc x printf("%c", x);

puts string printf("%s", string);

Table 3: SAL communication instructions.
REVISED September 7, 1999

Page 16

y. The

in a
e

as

itly
ne.
When the operand of aget instruction is a character (declared as.byte) the SAL get
instruction is equivalent to the C getc statement. No characters in the input are thrown awa
SAL instruction

get user_char

is equivalent to the Cgetc statement
user_char = getc(stdin);

SAL also contains agetc instruction. It works exactly the same as the SAL instructionget
where the operand is of type character (declared in SAL as.byte).

The SALput instruction does not work on a line-by-line basis. It displays the operand
format appropriate to the type of its operand. The Cprintf statement accomplishes the sam
operation as the SALput instruction. The SAL instruction

put variable

has different output depending on the type of variable. If the operand calledvariable were of
type character (declared in SAL as.byte), the equivalent C statement is

printf("%c", &variable);

The SALputc instruction is identical in function to the SALput instruction where the operand
is of type character (declared in SAL as.byte).

If the variable in the SALput instruction were declared of type integer (declared in SAL
.word), the equivalent C statement is

printf("%d", &variable);

If the variable were declared of type floating point (declared in SAL as.float), the equivalent
C statement is

printf("%f", &variable);

As in C, in order to inject a new line into the output, the newline character, ‘\n’ is explic
printed. Printing out this character forces the cursor to move to the beginning of the next li
REVISED September 7, 1999

Page 17

ed on
Figure 7 gives both C and SAL code (not a complete program) that reads characters typ

the keyboard until the character ‘Z’ is encountered. It then prints out the message
Z encountered

and quits.

C code

while ((ch = getc(stdin)) != ’Z’);
printf("\nZ encountered\n");

SAL equivalent

.data
message: .asciiz "\nZ encountered\n"
.text
loop: get ch

bne ch, ’Z’, loop
puts message
done

Figure 7: C and SAL code to read characters until the character ’Z’ is encountered.
REVISED September 7, 1999

Page 18

sum
2.6 A SAL Program

Figure 8 and Figure 9 contain a simple, complete program that prints out for the user the

#include <stdio.h>
main()
{

int n; /* user entered integer */
int sum; /* running sum of the first n integers */
int i; /* integer to be added into sum, from 0 to n */

/* prompt for input */
printf("Please enter a positive integer: ");
void scanf("%d\n", &n);
printf("\n");

/* calculate the sum */
sum = 0;
for (i=0; i<=n; i++)

sum = sum + i;
printf("The sum of the first %d integers is %d\n", n, sum);

}

Figure 8: C program that sums the firstn positive integers.
REVISED September 7, 1999

Page 19

n-
at is
enters
out an

r pro-
sm to

his
of the firstn positive integers, wheren is a positive integer that is input by the user. Figure 9 co
tains a SAL version of the C program given in Figure 8. While the program does exactly wh
stated, it has one major drawback. There is no error checking on the user’s input. If the user
something other than an integer, the program may either crash, or it may calculate and print
unexpected result.

2.7 Procedures and Functions

Any programmer who undertakes the writing of a large program understands the need fo
gram modularization. Procedures and functions provide a useful abstraction. A mechani
facilitate function calls and returns is often provided in an assembly language.

The Parts of a Procedure

The various parts of a function and function call are identified in the following C code. T

a SAL program to add up the first n integers,
where n is a positive integer entered by the user.

 .data
strings for making the output look nice
str1: .asciiz "Please enter a positive integer: "
str2: .asciiz "The sum of the first "
str3: .asciiz " integers is "
newline: .byte ’\n’
variable declarations
n: .word 0 # user entered integer
sum: .word 0 # running sum of the first n integers
i: .word 0 # integer to be added into sum,

runs from 0 to n
tmp: .word # used for comparisons of i and n

.text
__start: puts str1 # prompt for input

get n
put newline

for: sub tmp, n, i # for i:= 0 to n do
bltz tmp, endfor # sum := sum + i;
add sum, sum, i
add i, i, 1
b for

endfor: puts str2 # print the sum in nice form
put n
puts str3
put sum
put newline
done

Figure 9: SAL program that sums the firstn positive integers.
REVISED September 7, 1999

Page 20

seful
cute a
rs, and

t be
cuted,
ight
program fragment contains a function call and the function. Functionswitch is a trivial function
that switches the values pointed to by its parameters.

In order to gain insight into the implementation of a function in assembly language, it is u
to go over the steps involved in the execution of a function. Four steps are required to exe
simplified function. The function execution to be discussed is one that passes no paramete
is not recursive. Here are the four steps in the execution.

1. Save return address

2. Procedure call

3. Execute procedure

4. Return
Step 2, the function call, is really a branch instruction. The control of the program mus

transferred to the first instruction within the function. Once the function’s code has been exe
control must be transferred back to the instruction following the function call. This return m

main()
{

.

.
switch(&a, &b);
c = a + 1;
.
.

}

void switch(x, y)
int *x;
int *y;
{

int temp;

temp = *x;
*x = *y;
*y = temp;

}

REVISED September 7, 1999

Page 21

l loca-
an be
ck to
cause

. The
es an

loca-
be accomplished by using another branch instruction as follows.

The problem with this scheme for calls and returns becomes apparent when multiple cal
tions are considered. One of the important features of a procedure or function is that it c
called multiple times, from various locations in a program. The use of an explicit branch ba
the address following the call does not work if there is more than one call location. This is be
there can be only one label identifying the return location.

Addresses

The solution to this problem requires that the program remember a return address
address remembered is different for each call location. SAL provides an instruction that plac
address into a variable.

la saved_address, rtnaddr

Thela (load address) instruction assigns the value of the label in its second variable into the
tion given by the first variable. The address corresponding to the labelrtnaddr is placed into
the variable labelledsaved_address . Variablesaved_address must be an integer type
variable. It could be declared as

.data
saved_address: .word

A comparison of the SALmove andla instructions highlights the function of thela instruc-
tion. Assume that addresses can be represented by integers. Let the value of variablex be placed
at the integer address 3. The value of the variabley will be at address 5.

.text
.
.
.

call: b proc
rtnaddr:

.

.

.
done

proc: # procedure’s code here
.
.
.

b rtnaddr

label address contents
x 3 25
y 5 7
REVISED September 7, 1999

Page 22

turn
m the
h to a
call

l:

vari-
next
will

the
on

is syn-
Consider the result of executing the instructions
move x, y

and
la x, y

The result of the move instruction will be to copy the value ofy into the variablex . Sox would
contain the value 7 after execution of the move instruction. The result of thela instruction will be
to copyy into the variablex . The labely is the address 5 in this example. Sox would contain the
value 5 after execution of thela instruction.

Remembering Return Addresses

The solution to the problem of multiple calls to a function or procedure is to save a re
address before a function is called, and then use the saved value when it is time to return fro
function. A return address is saved in a variable associated with a function. Before the branc
function’s first instruction, the correct return address is copied into that variable. A function
example is the following:

la proc1_ret, ret_addr1
b proc1

ret_addr1:

A second call to the same function is the same, except for the different return address labe
la proc1_ret, ret_addr2
b proc1

ret_addr2:

Return Mechanism

The final piece of a function call and return mechanism is the return. As given above, one
able will now be associated with each function. That variable will contain the address of the
instruction to be executed when the function is done. But, the following branch instruction
not work as a return.

b proc1_ret

This branch instruction would cause the program to branch to a variable.proc1_ret is the label
of a variable, not an instruction. What is desired is to branch to the address contained within
variableproc1_ret . An extension to the functionality of the unconditional branch instructi
will have the desired effect. The parentheses around the variable in the instruction

b (proc1_ret)

have the effect of branching back to the correct location. The contents of variableproc1_ret
are used instead of the address itself. Only the unconditional branch instruction can use th
tax of parentheses to branch to the address contained within a variable.

2.8 A Modular SAL Program
REVISED September 7, 1999

Page 23

igure
A program made modular by the use of procedures is given in Figures 2.10 and 2.11. F

/* A C program to calculate the longest, shortest, */
/* and average length of strings entered by the user. */

#include <stdio.h>

main()
{
int str_count: integer; /*number of user entered strings*/
int sum; /* running sum of the string lengths */
int ave; /* average of the string lengths */
int str_length; /* length of each string */
int shortest, longest;
char ch; /* used to read characters */

/* initialize variables */
str_count = 0;
sum = 0;
ave = 0;
shortest = 1000;
longest = -1;

getstring; /* prompt for input */
while (str_length != 0) {

calculate;
getstring;

}
if (str_count > 0) {

average;
printresults;

}
}

void getstring()
{

str_length = 0;
printf("Enter a string (<CR> to stop): ");
while ((ch = getc(stdin)) != ’\n’)

str_length = str_length + 1;
}

void calculate()
{

str_count = str_count++;
sum = sum + str_length;
if (str_length > longest)

longest = str_length;
if (str_length < shortest)

shortest = str_length;
}

Figure 10: C program that calculates longest, shortest and average string lengths.
REVISED September 7, 1999

Page 24
void average()
{

ave = sum div str_count;
}

void printresults()
{

printf("The longest string entered was %d characters long.\n",
longest);

printf("The shortest string entered was %d characters long.\n",
shortest);

printf("The average string length was %d characters.\n", ave);
}

Figure 10: C program that calculates longest, shortest and average string lengths.
REVISED September 7, 1999

Page 25

nta-
2.10 contains a C implementation of the program, and Figure 2.11 contains a SAL impleme

A SAL program to calculate the longest, shortest,

and average length of strings entered by the user.

.data

str_count: .word 0 # number of user entered strings

sum: .word 0 # running sum of the string lengths

ave: .word 0 # average of the string lengths

str_length: .word # length of each string

shortest: .word 1000

longest: .word -1

ch: .byte # used to read characters

newline: .byte ’\n’

getstring_ra:.word # return address for procedure getstring

calculate_ra:.word # return address for procedure calculate

average_ra:.word # return address for procedure average

printresults_ra:.word # return address for procedure printresults

str1:.asciiz "Enter a string (<CR> to stop):"

str2:.asciiz "The longest string entered was "

str3:.asciiz " characters long.\n"

str4:.asciiz "The shortest string entered was "

str5:.asciiz "The average string length was "

str6:.asciiz " characters.\n"

.text

main program

__start:la getstring_ra, rtn1

b getstring # prompt for input

rtn1: beqz str_length, endwhile # while str_length<>0 do

la calculate_ra, rtn2 #

b calculate # calculate

rtn2: la getstring_ra, rtn3 #

b getstring # getstring

rtn3: b rtn1 # endwhile

endwhile:blezstr_count, rtn5 # if str_count>0 then

la average_ra, rtn4 #

b average # average

rtn4: la printresults_ra, rtn5 #

b printresults # printresults

rtn5: done # endif

Figure 11: SAL program that calculates longest, shortest and average string lengths.
REVISED September 7, 1999

Page 26

is the
tion of the program. The program reads in user generated strings, and figures out which one

procedure getstring -- reads characters on 1 line until the

newline character is encountered. It

also figures out the length of the string,

not including the newline character.

getstring: move str_length, 0

puts str1

get ch

while: beq ch, newline, getstr_rtn

add str_length, str_length, 1

get ch

b while

getstr_rtn: b (getstring_ra)

procedure calculate -- adds current string length into the running

total, and sets variables longest and

shortest appropriately if this string is

the longest or shortest so far.

calculate: add str_count, str_count, 1

add sum, sum, str_length

ble str_length, longest, nextif

move longest, str_length

nextif: bge str_length, shortest, calc_rtn

move shortest, str_length

calc_rtn: b (calculate_ra)

procedure average -- calculates an integer average by dividing

the running total by the number of strings.

average: div ave, sum, str_count

b (average_ra)

procedure printresults -- prints the results of the program

in a reasonable format.

printresults:putsstr2

put longest

puts str3

puts str4

put shortest

puts str3

puts str5

put ave

puts str6

b (printresults_ra)

Figure 11: SAL program that calculates longest, shortest and average string lengths.
REVISED September 7, 1999

Page 27

are not
ssing.

am is

tions,
uage

mne-
uage.
ration.
l lan-
shortest, which is the longest, and the integer average length of the strings. Parameters
passed to the C functions, since the SAL implementation does not provide for parameter pa
All variables are global. The goal in presenting both C and SAL versions of the same progr
to see how the various pieces correspond.

Summary

SAL implements all the features of a high-level language: declarations, arithmetic opera
control structures, and communication with the user. SAL code looks like assembly lang
code. Each instruction or declaration is on its own line, and instructions are written with a
monic followed by one or more operands. The SAL language acts like an assembly lang
Each instruction has a fixed number of operands, and performs a single, well-defined ope
All operations in an assembly language are explicit, unlike some operations in high-leve
guages.
REVISED September 7, 1999

Page 28

what

and

if the

f Feb-

dular
Problems

1. Draw a diagram of a skeleton SAL program. Identify the different parts of the program,
pieces are optional, and where instructions and data belong.

2. Explain how to implement a boolean type variable in SAL. What is the variable’s type,
how is it used?

3. Write SAL code for the following C for loop.

for (i=2; i<=z ; i++) {
a = i mod 2;
if (a == 0) then

sum = sum + i;
}

4. Write SAL code that implements the following C code.
{
int a, b, c, d, i;

b = 13;
for (i = 2; i <= a; i++) {

c = b * i;
if (c != 0)
{

d = b - a;
d = d % c;

}
}

}

5. Are constants included in SAL? How is a constant specified and used in SAL?

6. From Figure 2, which of the two assembly language constructs would be more efficient
C statement contained no else part? Why?

7. Write a SAL program that prints out a sequence ofn Xs, wheren is a positive integer entered
by the user.

8. Write a SAL program that calculates average high and low temperatures for the month o
ruary. Have the user enter high and low temperatures for each day.

9. Rewrite the SAL program that calculates average high and low temperatures in a mo
way, using procedures.

10. The code given in Figure 5,
move result, 1
move counter, exponent

while: blez counter, endwhile
mul result, result, base
sub counter, counter, 1
b while

endwhile:
REVISED September 7, 1999

Page 29

ctions
te

at the
ted if

re 2?

does

graph
can be rewritten thus:
move result, 1
move counter, exponent
blez counter, endwhile

loop: mul result, result, base
sub counter, counter, 1
bgtz counter, loop

continue:

While these two methods have the same number of instructions, the number of instru
executedwill differ. Give a value forcounter for which the second method would execu
fewer instructions than the first method. Give a value forcounter for which the second
method would execute more instructions than the first method.

11. The code in Figure 6 can be rewritten to eliminate the unconditional branch instruction
end of the loop. Rewrite the SAL code segment so that fewer instructions are execu
exponent is ten.

12. In Figure 2, another possible way of writing the code would be the following:
div B, C, A
bgtz A, endif
add B, A, 10

endif:

Under what circumstances would this code be superior to the two versions given in Figu
Is there any reason fornot using this code?

13. Write a SAL procedure that decides if the integer variablevalue is evenly divisible by 3. If
value is evenly divisible, it should set the variableflag to 1, and ifvalue is not evenly
divisible, then it should setflag to 0.

14. Design and write a SAL program that calculates the area of a triangle. What information
the user need to enter for this program?

15. Design and write a SAL program that counts the number of punctuation marks in a para
entered by the user.
REVISED September 7, 1999

	Chapter 2
	SAL -- Simple Abstract Language
	2.1 On Assembly and Compilation
	Why Write Assembly Language Programs?
	Where SAL Fits In
	2.2 Variable Declaration
	2.3 Arithmetic Operations
	Table 1: Arithmetic operations in SAL.

	A Simple SAL Program
	Figure�1: C and SAL versions of a program that averages three integers.
	2.4 Control Structures
	Table 2: Branch instructions in SAL.
	Figure�2: SAL code implementing the C if-then-else statement.
	Figure�3: SAL code implementing a C compound conditional.
	Figure�4: SAL code implementing a C compound conditional.
	Figure�5: SAL code to caculate using a while loop.
	Figure�6: SAL code to calculate using a for loop.

	2.5 Communication with the User
	Table 3: SAL communication instructions.
	Figure�7: C and SAL code to read characters until the character ’Z’ is encountered.

	2.6 A SAL Program
	Figure�8: C program that sums the first n positive integers.
	Figure�9: SAL program that sums the first n positive integers.

	2.7 Procedures and Functions

	The Parts of a Procedure
	1. Save return address
	2. Procedure call
	3. Execute procedure
	4. Return

	Addresses
	Remembering Return Addresses
	Return Mechanism
	2.8 A Modular SAL Program
	Figure�10: C program that calculates longest, shortest and average string lengths.
	Figure�11: SAL program that calculates longest, shortest and average string lengths.

	Summary
	Problems
	1. Draw a diagram of a skeleton SAL program. Identify the different parts of the program, what pi...
	2. Explain how to implement a boolean type variable in SAL. What is the variable’s type, and how ...
	3. Write SAL code for the following C for loop.
	4. Write SAL code that implements the following C code.
	5. Are constants included in SAL? How is a constant specified and used in SAL?
	6. From Figure 2, which of the two assembly language constructs would be more efficient if the C ...
	7. Write a SAL program that prints out a sequence of n Xs, where n is a positive integer entered ...
	8. Write a SAL program that calculates average high and low temperatures for the month of Februar...
	9. Rewrite the SAL program that calculates average high and low temperatures in a modular way, us...
	10. The code given in Figure 5,
	11. The code in Figure 6 can be rewritten to eliminate the unconditional branch instruction at th...
	12. In Figure 2, another possible way of writing the code would be the following:
	13. Write a SAL procedure that decides if the integer variable value is evenly divisible by 3. If...
	14. Design and write a SAL program that calculates the area of a triangle. What information does ...
	15. Design and write a SAL program that counts the number of punctuation marks in a paragraph ent...

