Page 1

Chapter 2!

SAL -- Simple Abstract Language

A programming language provides a method for the programmer to describe precisely the data
structures and the algorithms to be performed on those data structures. This chapter introduces a
powerful assembly language, SAL, that allows the creation of useful programs. Its power comes
from allowing a high level of abstraction. It is similar to high-level languages such as Pascal or C

in the amount of work that is accomplished with individual instructions. Its syntax is similar to a
traditional assembly language. The capabilities of SAL are demonstrated by comparing examples
in Pascal and in SAL.

Any programming language must provide ways of specifying four types of operations. First,
the language must provide a way to specifytyyee of a variable. This implies the range of values
the variable can be assigned and the ways it can be used. Some languages, such as FORTRAN,
allow implicit declaration depending on the name chosen for the variable. Second, the language
must have a way of specifying arithmetic operations such as addition and multiplication. Third,
the language must provide control structures that allow looping and conditional execution. Fourth,
a programming language must provide a way to communicate with the user of the program cre-
ated in the programming language.

This chapter discusses aspects of assembly language programming, such as when and why
assembly language code is written. It then focuses on the details of the SAL programming lan-
guage. Most programming examples are given in both Pascal and in SAL. Each of the four neces-
sary operation types are discussed in turn. At the end of the chapter is a description of a procedure
call and return mechanism, followed by a complete program.

2.1 On Assembly and Compilation

A goal of programming language design is to provide an environment to maximize the effi-
ciency of the programmer. The structure of the programming language should make it easy to
write programs correctly and quickly. The programming language should also foster programs
that make it easy for a programmer unfamiliar with a program to read and understand how it
works for the purpose of modifying it. In addition to assisting in the programming process, how-
ever, a programming language should be designed so that it can be executed efficiently on a com-
puter. Programs should make the best possible use of the hardware so that they execute as rapidly
as possible, using as few resources as possible.

Unfortunately, these two goals — programmer efficiency and hardware efficiency — are fre-
guently incompatible. Often, an unsophisticated algorithm is easily written and easily understood,
but slow to execute. A more obscure algorithm might use resources more efficiently or take
advantage of certain features of the computer that make the algorithm run efficiently. For exam-
ple, a program that uses a temporary variable calegp to save many different intermediate

1. Copyright 1997, Oxford University Press. Use by permission only.
Contact Peter Gordon: pcg@oup-usa.org

REVISED September 7, 1999

Page 2

results may be difficult to understand. If the variableaserloaded by using it to take on the

value of different variables during the course of a single program, it may be difficult to analyze the
program or identify a programming error. It is more easily understood when different variables
are given independent variable names. Yet declaring numerous variables when one would suffice
wastes of computing resources. Memory space is not used efficiently much of the time since most
of the variables are not defined. CPU resources are not used efficiently if this data is loaded and
stored many times.

Why Write Assembly Language Programs?

Years ago, hardware efficiency was extracted at the expense of the programmer’s time. If a fast
program was needed, then it was written in assembly language. Compilers were capable of trans-
lating programs from high-level languages, but generated assembly language programs that were
relatively inefficient. Programmers often found it necessary to optimize the assembly language
code created by the compiler for two reasons. The first is that memory space was often quite lim-
ited. A programmer could write code that fit in the available space where a compiler could not.
The second reason that assembly code was written was to achieve acceptable performance. A pro-
grammer could write code that executed faster than the code generated by compilers.

This is no longer the case. Compilers have improved to the point that they can generate code
comparable, or better than the code most programmers can generate. There are two main reasons
why the use of compiler-generated code has become common. Advances in compiler technology
have greatly improved the quality of the assembly language code generated. Writing in assembly
language may result in little or no improvement over the best code a compiler can generate. In
many cases it is hard to find ways to improve the code generated by a high quality compiler. The
second reason is that there is little benefit derived by improving the execution speed of the assem-
bly language. Many computers today execute so rapidly that it is not necessary to optimize code
at the assembly language level.

It has become increasingly rare that programmers find it necessary to write assembly language
code. However, there are several special reasons why it might be necessary. First, there are fea-
tures of the computer that can be accessed with assembly language that are not well captured in a
high-level language. Programs that must use those features may need to be written, at least par-
tially, in assembly language. Critical parts of an operating system are an example of code that is
often written in assembly language for this reason. Second, some programs have critical con-
straints, for example, a program that must fit in a very small amount of memory. Another example
is a program that must execute in a highly predictable amount of time. Sometimes the reason for
writing in assembly language is simply the unavailability of a good compiler. This last reason
should become increasingly rare as compiler technology becomes more widely established.

Compiler writers must understand how to write programs in assembly language before they
can write compilers. For a compiler to produce efficient code, a compiler writer must be able to
assess the costs and benefits of various code implementations. There are often several ways to
implement the same code, and the best way often depends on details that are specific to the imple-
mentation of the targeted computer. These details vary from machine to machine.

Where SAL Fits In

SAL is similar to the intermediate language that a compiler might generate. It is not difficult to

REVISED September 7, 1999

Page 3

translate high-level language code into SAL, and it is straightforward to translate SAL code into
MAL (or even TAL) code. SAL therefore provides a good starting point for the introduction of
computer architecture for a programmer who knows a high level language.

In general, this book presents the simplest, most obvious sequence of instructions. As is typi-
cal of modern high-level languages, ease of understanding is emphasized over efficiency of the
program. This is consistent with the way compilers generate efficient assembly language code.
Using a more-or-less direct translation, a compiler initially creates a program in an intermediate
language that is often an abstraction of the assembly language of the targeted computer. Then the
compiler invokes a program, known as@ptimizer to improve the speed of the program without
changing its behavior. Either during the optimizations or afterward, the assembly language of the
abstract computer is translated into the assembly language of the target computer, then translated
into machine code.

The MIPS RISC assembler is somewhat unusual in that the language it accepts (MAL) is not
the true assembly language (TAL) of the hardware. This is because the MIPS RISC assembler
performs additional optimizations before it generates the machine language code. Nevertheless,
the process of writing straightforward assembly language programs that can be translated into
MAL is a realistic way to write programs for a MIPS RISC-based computer.

2.2 Variable Declaration

Like all high-level languages, C provides a means for declaring the type of a variable. Decla-
ration is for the benefit of the compiler or assembler, which must know (among other things) how
much space to allocate for specific variables. Different variable types can take on different values
and require different amounts of space. It is important that sufficient space, but not more, be set
aside.

SAL understands three simple types: integers, characters, and floating point. The declaration
of a variable is accomplished by giving a variable a name and a type. Integers are declared using
the following syntax. An integer declaration in C is

int variablename { = value};
The SAL declaration of an integer variable looks like

{ variablename: } .word {value}

For the definitions, keywords are indicatedbnoldface . Optional words are in braces ({}).

When an identifier is used to give a name to a variable, sucfagablename |, itis called a

label. In both C and SAL, identifiers follow the rule that they start with a letter, and can be fol-
lowed by letters or digits. The colon () marks the end of the variable namewiird identifies

the variable as an integer. It indicates how much space must be provided for the variable, whereas
the label indicates how the variable is to be referencedhllie is present, it represents an inte-

ger constant. The value will be assigned to the variable as an initial value. If there is no integer
value in the variable declaration, then the value of the variable will be initialized to zero.

The declaration
ten: .word 10

REVISED September 7, 1999

Page 4

sets aside space for a variable nateed, and initializes its value to be 10. The declaration
counter: .word

sets aside space for a variable namsednter , and initializes its value to be 0. Boten and

counter are type integer. Notice that the value of a SAL variakédwaysdefined.

The SAL character type declaration is similar to the SAL integer type declaration.The SAL
declaration of a character type variable looks like

{variablename:} .byte {value}

The word.byte identifies the variable as a character. The label specifies the variable name.
Like integer declarations, the value portion of the declaration is optional. If present, the syntax of
value is that of a single character enclosed in single quote marks.

The declaration

sentinel: .byte 'z’
identifies the variable namesdntinel to be a character, and initializes its value to be the char-
acter z. A declaration without a value portion will set aside enough space for a single character,
bind the variable’s name to the space, and assign the null character as a value.

Other characters such as the linefeed (newline) character are specified using the same escape

sequences as in C. The linefeed character in SAL can be declared:
Jinefeed: .byte \n’
Real (noninteger) variables are declared in the same format as the othe&ypedgclaration
of a variable of type floating point is
float variablename { = value };
The SAL declaration of a type real variable looks like this:
{variablename:} float {value}

The .float identifies the variable as a real number. The variable’s name is given by
variablename andvalue is optional. If present, the variable is initialized with the value
given. Otherwise, the variable is assigned the value O.vEhee is given by the following syn-
tax. A floating point value contains an optional signaf -) and a set of digits that may contain a
decimal point, and may be followed by an exponent specification. The exponent specification is
the letterk or e followed by an optional sign and an integer. The following examples are all legal
floating point values, and they all specify the same value.

136.42
1.3642E2
+13.642e1
0.13642e+3
13642.e-2

Declarations are information given to the assembler about haretdethe program, not how
to execute it. They are therefore set apart within a program in a section that specifies how memory
is to be allocated. The memory is divided into two distinct areas, one for instructions, known as
the codeor text space, and one for variables, known asda& space. In SAL, declarations can
occur anywhere, but they must be separated from code by the udeeofives or pseudo-
instructions. This is indicated by preceding one or more declarations by the pseudo-instruction
.data ,asin

.data
varl: .word
var2: .byte

REVISED September 7, 1999

Page 5

Code is distinguished in SAL by preceding it with the pseudo-instructext . There may be
multiple .data and.text sections in a program.

2.3 Arithmetic Operations

The assignment statement in Pascal involves the evaluation of expressions composed of oper-
ators, variables, and constants. In Pascal, as in most languages, all operators are either monadic or
dyadic. Addition and multiplication are not inherently dyadic operations, but subtraction and divi-
sion are inherently dyadic operations. The longhand methods for performing addition and multi-
plication are dyadic, however, so it generally seems natural to make this restriction. High-level
languages such as C and Pascal go to great lengths to define how to evaluate an expression by
defining the order in which the operators are applied. Thus the C statement

answer=a-b +c;
is defined precisely to be

answer=(a-b)+c;
and not

answer=a-(b+c);
In fact, the evaluation of a C statement involves a series of dyadic or monadic operations, per-
formed on constants and variables in a well-defined order. SAL makes this order explicit by
requiring that each operation be specified explicitly, and that the result be assigned to a variable.

Table 1 gives SAL's arithmetic instructions and C equivalents. An instruction consists of an

SAL Instructions Equivalent C Statement
move X, y X[Fy;
add x, y, z X=y+2z
sub x,y, z X=y-2z
mul X, y, z X=y*z
divx,y,z x=y/z
remx,y, z X=y % z;

Table 1: Arithmetic operations in SAL.

operation specification, known as themonic or opcodeand two or three operand specifica-
tions. An operand is either (1) the name of a variable or (2) a constant. For example, consider the

C statement
int area_triangle, width, height;

;rea_triangle = (width * height) / 2;
This statement could be translated into the following SAL code:

area_triangle: .word
width: .word
height: .word
tmp: .word

mul tmp, width, height

div area_triangle, tmp, 2
For all arithmetic instructions, the first operand specifies the destination of the result, and the fol-
lowing operands are sources. Tim@ve instruction is equivalent to a simple C assignment state-

REVISED September 7, 1999

Page 6

ment. The value assigned to the first (destination) operand variable givenrotresinstruction
is the value of the second (source) variable. The value of the source variable is unchanged by the
move instruction. The C assignment statement

A =B;

could be translated to the SAL instruction

move A, B
Theadd, sub, andmul instructions perform the operations that are specified in C by the opera-
tors +, -, and *, respectively. Instructions equivalent to these operators are defined in SAL where
the operands are either integers or real numbers. Operand types should not be mixed in one
instruction. Integer division is specified by tdes instruction, and the modulus (or remainder)
function is specified by theem instruction. For integer variables, tdes corresponds to integer
division operator in C, ancem corresponds to the @function. In additiondiv can be applied
to real variables to obtain the floating point quotient.

REVISED September 7, 1999

Page 7

A Simple SAL Program

Figure 1 contains the code for an exceptionally simple program that finds the average of the

/* a simple C program to average 3 integers */
#include <stdio.h>
main()
{ .
int avg;
intil = 20;
inti2 =13;
inti3 = 82;

avg = (il +i2 +i3) / 3;

a simple SAL program to average 3 integers

.data
avg: .word # integer average
i1: .word 20 # first number in the average
i2: .word 13 # second number in the average
i3: .word 82 # third number in the average
text
__start: add avg, i1, i2

add avg, avg, i3
div avg, avg, 3
done

Figure 1: C and SAL versions of a program that averages three integers.

three integers, contained in the variahiles i2 , andi3 . This example illustrates several impor-
tant parts of a program not yet specified. The program is shown in both C and in SAL.

So far, labels have been used only to identify variable names. Labels can also be used to iden-
tify any instruction or variable declaration. When the program is assembled, the assembler allo-
cates storage space for both program instructions and data. Each label must be unique. When a
label is attached to an instruction or to data, the assembler associates a memory location with the
label. The sample program has the labettart attached to the first instruction in the program.

All SAL programs must have the label start to identify where execution of the program
begins. It usually is the first instruction in the program, but need not be.

SAL programs can be documented by adding comments. A comment in C is marked by sur-

REVISED September 7, 1999

Page 8

rounding it with the character strings /* and */. SAL comments are formed on a line-by-line basis.
Within any line of a program, anything that follows a # symbol is considered to be a comment.
Therefore, a comment may appear on the same line as an instruction or declaration by placing a #
character between the end of the instruction or declaration and the comment itself. A comment
may also appear by itself on a line that begins with the # character. Comments may not span lines.

Because the variabkevg is declared to be an integer, the instructdim only gives the inte-
ger portion of the average. The remainder is lost. For example, if the variables were declared as

i1 = 10 ,i2 = 5 andi3 = 5 , the resultiravg would be 6, nobg . If the variablavg were

declared to be a real (.float), the value would be extremely close to, but not @%actly,

The end of a program is indicated by the single wdotie . The worddone is not a directive;
it is a macro. Chapter 10 explains macros. The end of a program must be marked so that the com-
puter understands that the program has been completed to allow another program to be run. A
SAL program may have more than atene, but it must have at least one.

2.4 Control Structures

The assembly language instructions presented so far are not sufficient to form a usable pro-
gramming language. C provides two categoriestaictured statementsor control structures:
conditionals and iteratives. An example of the first category i atatement It provides the
capability for conditionally executing a statement. If the condition in the if statement evaluates to
true, then the statement is executed. Otherwise it is skipped. Here is a C if statement.

if(a<b
()c =a+hb;

When the if statement is executed, the first thing that occurs is a comparison. The \alise of
compared against the value bf If a is indeed less thab, then the conditional evaluates to
true , and the statement associated with the if statement is executed. In this case, theasum of
andb is calculated and assigned to variabldf the conditional evaluated to false, then the state-
ment is not executed. It is skipped. This is conditional execution; depending on the value of the
condition, a statement may or may not be skipped.

An example of the second category isegetitive statementwhich is used to implement a
loop. C examples of repetitive statements e , while , anddo-while loops. Both of these
categories of statements are made possible by a single assembly language construct called a
branch. The simplest branch instruction is the equivalent of thggyd@o statement, which
branches to a label.

More complex branch instructions combine conditional execution wigot@ statement.
This powerful set of instructions is the only mechanism provided in SAL to enable looping con-
structs. While this limitation may seem restrictive initially, there are very good reasons for it,
since this restriction closely reflects the underlying hardware restrictions. The gstofis gen-
erally discouraged in high-level languages because it makes programs difficult to analyze and
debug. If the compiler is implemented correctly, however, and the high-level language program is
well-structured, the use of branch instructions at the assembly language level introduces no new
concerns.

REVISED September 7, 1999

Page 9

Table 2 summarizes SAL's branch instructions. The variablaady may be of type integer

SAL Instructions Equivalent C Statement
b Tabel goto label;
beq x, vy, label if (x 3= y) goto label;
bne x, y, label if (X !¥y) goto label,
blt x, y, label if (x <y) goto label;
bat x, y, label if (x >|y) goto label;
ble x, y, label if (X <¥y) goto label;
bge x, vy, label if (x >=y) goto label;
bltz x, label if (x 4 0) goto label;
bgtz x, label if (x p 0) goto label;
blez x, label if (x £= 0) goto label;
bgez x, label if (x|>= 0) goto label;
beqz x, label if (x|==0) goto label;
bnez x, label if (x|!=0) goto label,

Table 2: Branch instructions in SAL.

or character, and they can be constants or variables. Note that many of the branch instructions are
redundant. In fact, the instructions in the latter half of the table are simply special cases of those
instructions in the first half of the table, where the second operand is implicitly zero. Thus the
instruction

ble sum, 0, L1
is equivalent to the instruction

blez sum, L1
These instructions are included because tests against zero are so common that many computers
are optimized to handle them efficiently. Also note that an unconditional branch can be con-
structed from a special case of a conditional branch. As an example, the SAL instruction

b next
is equivalent to

beqz 0, next
The SAL instruction

ble x, y, L1
is also equivalent to

bltx,y, L1 #Branchifx<y.

beqx,y,L1 #Branchifx=y.
This alternative requires two instructions to be executed and is therefore a less attractive alterna-
tive.

REVISED September 7, 1999

Page 10

Figure 2 shows a @-then-else statement and two possible assembly language equiva-

C statement
if (A >0)
B=C/A;

else
B=A+10;

Possible SAL equivalent

blez A, elsepart

div B,C,A
b endif
elsepart: add B, A, 10

endif:

Another possible SAL equivalent

bgtz A, ifpart

add B, A, 10
b endif
ifpart: dv B,CA
endif:
Figure 2: SAL code implementing the Gf-then-else statement.

lents. The statement testAifs positive. IfA is positive, it assigns B the value ofC/A.

.Otherwise, it assignB the valueA + 10. All three code fragments implement the same func-
tion. Note that the first SAL equivalent reverses the sense of the comparison, and the second
reverses the order of tife andelse statements.

Two versions of SAL code are given to illustrate a point. There are numerous ways to program
any given high-level language control structure. Based on the specific program, code written one
way might execute more efficiently than code written another. This fact can be used to advantage
by a sophisticated compiler or assembly language programmer.

REVISED September 7, 1999

Page 11

A compound conditional can be built out of multiple branch instructions. Figure 3 shows an

C statement

if((A=B)[[(C<D)){
A=A+1;
B=B-1;
D=A+C;

}

SAL equivalent

beq A, B,do_if
bt C, D, do_if

b end_if
do_if: add AA 1

add B, B, -1

add D,A C

end_if:

Figure 3: SAL code implementing a C compound conditional.

example of a C compound conditional statement. One of the two conditions must evaluate to
true if the statements within thé statement are to be executed. The SAL code uses three
branch statements to implement the structure of the compound conditioAas ifot equal tdB,

then thebeq branch is not taken, and the second instructiolh () is executed. IfA andB are
equal, then the branch is taken to the code withinfthestatement. If both conditionals turn out to
be false, then the unconditional branch instructiopnmodifies the PC such that it contains the
addresendif

REVISED September 7, 1999

Page 12

A second example of a compound conditional is given in Figure 4. It shows an example of a

C statement

if ((A==B)&& (C==D) || (E<0)){

A=A+1,;
C=E;
}
SAL equivalent

bne A, B, check_E
beq C, D, do_if

check_E: bgez E, end_if

do_if: add AA 1

move C,E
end_if:

Figure 4: SAL code implementing a C compound conditional.

logical and together with a logical or. In C, the evaluation ofdhd is completed before ther .
The equivalent SAL code to implement tife statement reverses some of the conditions. This

reversal has the effect of reducing the number of instructions necessary to implement the com-
plete test.

REVISED September 7, 1999

Page 13

An equivalent to a Qvhile loop is straightforward to build out of SAL instructions. Figure 5

C statement

result = 1;

counter = exponent;

while (counter > 0) {
result = result * base;
counter = counter - 1;

SAL equivalent

move result, 1
move counter, exponent
while: blez counter, endwhile
mul result, result, base
sub counter, counter, 1
b while
endwhile:

Figure 5: SAL code to caculaterasé™™™ using a while loop.

contains both a C version and a SAL version of a while loop that implements a power function. It

calculatesasé*™™™ , wherexponent is assumed to be a positive integer. The result is assigned
to the variableresult . Note that the variablesase andexponent are not changed by the
execution of the loop, like the C implementation.

REVISED September 7, 1999

Page 14

A C for loop can also be formed from SAL instructions. Figure 6 containda Cloop and

C statement
result = 1;
for (counter = 1; counter <= exponent; counter++) {
result = result * base;
}

SAL equivalent

move result, 1 # initialize result
move counter,1 # initialize loop induction variable
exit loop when counter > exponent

for. bgt counter, exponent, endfor
mul result, result, base
increment loop induction variable
add counter, counter, 1
b for

endfor:

Figure 6: SAL code to calculatepas€™™™ using &r loop.

a SAL translation of the loop. Before the loop is entered, the loop induction vadablger is
initialized to 1. At the top of the loop is a test to see if the loop induction variable is greater than
the given ending valueskponent). If it is greater, the branch is taken, and the loop is exited.
This is done by a conditional branch instruction in the SAL code. The last statement in the for
loop is an unconditional branch back to the top of the loop. Before branching back to the top, the
loop induction variable is incremented by 1. Notice that although the high-level language looping
construct can define thatfar loop implicitly increments the loop induction variable, SAL does
not. A SAL equivalent must explicitly contain an instruction to add one to the loop induction vari-
able. Incrementing an induction variable is such a common operation that some assembly lan-
guages provide a mechanism for implicitly incrementing a variable, just as high-level languages
do.

2.5 Communication with the User

The final necessary item for an assembly language is some form of communication with the
user. The communication is between the computer and the user of the program. For simplicity,
assume that all communication from the user comes from a keyboard. All communication from
the computer to the user goes to a display (or screen).

REVISED September 7, 1999

Page 15

Table 3 contains SAL communication instructions. The omlyut instruction isget . It

SAL instructions Equivalent C Statement Notes
ot X scanf("%d\n", &x); X is type.word
9 X = getc(stdin); X is type.byte
printf("%d", x); X is type.word
put x printf("%c", x); X is type.byte
printf("%f", x); X is type.float
getc x x| = getc(stdin);
putc x printf("%c", x);
puts string printf("%s", string);

Table 3: SAL communication instructions.

reads some amount of data from a keyboard, and places the data in the variable specified as an
operand. There are twautput instructionsput andputs . Each displays the data specified by
the operand variable.

The output operatioputs takes a special form of string, and prints it to the screen. The
string is essentially an array of characters, and the final character of the string is the null character
‘\0 . A string ended this way is often callednall-terminated string.

A simple way to declare a string that is automatically null terminated is by using a directive.
The.asciiz directive allows a string to be specified, and null terminates the string. Consider
the directive

stringl: .asciiz "howdy\n"
This directive declares a string of 8 characters, and labstsiitigl . The first 7 characters are
assigned to be the characters in the string, and the final character is the null character. When
declared using theasciiz directive, the string is printed out to a display by using the single
instruction

puts stringl

Theputs instruction is a powerful instruction for displaying messages, but it is in fact a sim-
ple procedure that calfsut repeatedly. Here is the SAL code to write the mesdauyedy! , fol-
lowed by the newline character, using oplyt instructions.

put 'h’
put’o’
put’'w’
put’'d’
put’y’
put’l’

put \n’

The structure of the input and output instructions is similar to than that of Cg&henstruc-
tion works on a line-by-line basis for variables of type integer and floating point, making it like
the C statement

void scanf("%d\n", &user_int);
or
void scanf("%f\n", &user_float);

Even if there is more than one value on a linget instruction will read the first value and
throw away the rest. When the first value in the input read does not match the type, the value zero
is placed in the operand.

REVISED September 7, 1999

Page 16

When the operand of get instruction is a character (declared &yte) the SAL get
instruction is equivalent to the C getc statement. No characters in the input are thrown away. The
SAL instruction

get user_char
is equivalent to the Getc statement

user_char = getc(stdin);
SAL also contains getc instruction. It works exactly the same as the SAL instructet
where the operand is of type character (declared in SAhyss).

The SAL put instruction does not work on a line-by-line basis. It displays the operand in a
format appropriate to the type of its operand. Thertf statement accomplishes the same
operation as the SAput instruction. The SAL instruction

put variable
has different output depending on the type of variable. If the operand callemble were of
type character (declared in SAL >e), the equivalent C statement is

printf("%c", &variable);
The SALputc instruction is identical in function to the SAhut instruction where the operand
is of type character (declared in SAL.bgte).

If the variable in the SAlput instruction were declared of type integer (declared in SAL as
.word), the equivalent C statement is

printf("%d", &variable);
If the variable were declared of type floating point (declared in SAlflaat), the equivalent
C statement is

printf("%f", &variable);

As in C, in order to inject a new line into the output, the newline character, \n’ is explicitly
printed. Printing out this character forces the cursor to move to the beginning of the next line.

REVISED September 7, 1999

Page 17

Figure 7 gives both C and SAL code (not a complete program) that reads characters typed on

C code

while ((ch = getc(stdin)) 1="2");
printf("\nZ encountered\n");

SAL equivalent

.data

message: .asciiz "\nZ encountered\n"
text

loop: get ch

bne ch,’Z’, loop
puts message
done

Figure 7: C and SAL code to read characters until the character 'Z’ is encountered.

the keyboard until the charact@ is encountered. It then prints out the message
Z encountered

and quits.

REVISED September 7, 1999

Page 18

2.6 A SAL Program
Figure 8 and Figure 9 contain a simple, complete program that prints out for the user the sum

#include <stdio.h>

main()

{
int n; /* user entered integer */
int sum; /* running sum of the first n integers */
inti; /* integer to be added into sum, from 0 to n */

[* prompt for input */

printf("Please enter a positive integer: ");
void scanf("%d\n", &n);

printf("\n");

/* calculate the sum */
sum = 0;
for (i=0; i<=n; i++)
sum = sum + i;
printf("The sum of the first %d integers is %d\n", n, sum);

Figure 8: C program that sums the firstn positive integers.

REVISED September 7, 1999

Page 19

a SAL program to add up the first n integers,
where n is a positive integer entered by the user.

.data

strings for making the output look nice

strl: .asciiz "Please enter a positive integer: "
str2: .asciiz "The sum of the first "

str3: .asciiz " integersis "

newline: .byte \n’

variable declarations

n .word O # user entered integer
sum: .word O # running sum of the first n integers
i: .word 0 # integer to be added into sum,
runsfromOton

tmp: .word # used for comparisons of i and n
text
__start: puts strl # prompt for input

get n

put newline

for: sub tmp, n,i #fori:z=0tondo
bltz tmp, endfor # sum:=sum +i;
add sum, sum, i
add i,i,1
b for

endfor: puts str2 # print the sum in nice form
put n
puts str3
put sum
put newline
done

Figure 9: SAL program that sums the firstn positive integers.

of the firstn positive integers, whene is a positive integer that is input by the user. Figure 9 con-
tains a SAL version of the C program given in Figure 8. While the program does exactly what is
stated, it has one major drawback. There is no error checking on the user’s input. If the user enters
something other than an integer, the program may either crash, or it may calculate and print out an
unexpected result.

2.7 Procedures and Functions

Any programmer who undertakes the writing of a large program understands the need for pro-
gram modularization. Procedures and functions provide a useful abstraction. A mechanism to
facilitate function calls and returns is often provided in an assembly language.

The Parts of a Procedure

The various parts of a function and function call are identified in the following C code. This

REVISED September 7, 1999

Page 20

program fragment contains a function call and the function. Funstiotth is a trivial function
that switches the values pointed to by its parameters.

main()

{

switch(&a, &b);
c=a+1l;

}

void switch(x, y)

int *x;
int *y;
{
int temp;
temp = *x;
*X = *y,
*y = temp;
}

In order to gain insight into the implementation of a function in assembly language, it is useful

to go over the steps involved in the execution of a function. Four steps are required to execute a
simplified function. The function execution to be discussed is one that passes no parameters, and
is not recursive. Here are the four steps in the execution.

1.

2.
3.
4

Save return address
Procedure call
Execute procedure

Return
Step 2, the function call, is really a branch instruction. The control of the program must be

transferred to the first instruction within the function. Once the function’s code has been executed,
control must be transferred back to the instruction following the function call. This return might

REVISED September 7, 1999

Page 21

be accomplished by using another branch instruction as follows.

text

call: b proc

rtnaddr:
done

proc: # procedure’s code here
b rtnaddr

The problem with this scheme for calls and returns becomes apparent when multiple call loca-
tions are considered. One of the important features of a procedure or function is that it can be
called multiple times, from various locations in a program. The use of an explicit branch back to
the address following the call does not work if there is more than one call location. This is because
there can be only one label identifying the return location.

Addresses

The solution to this problem requires that the program remember a return address. The
address remembered is different for each call location. SAL provides an instruction that places an
address into a variable.

la saved_address, rtnaddr
Thela (load address) instruction assigns the value of the label in its second variable into the loca-
tion given by the first variable. The address corresponding to the ftatsedr is placed into
the variable labelleddaved _address . Variablesaved address must be an integer type
variable. It could be declared as

.data

saved_address: .word

A comparison of the SAlmove andla instructions highlights the function of th& instruc-
tion. Assume that addresses can be represented by integers. Let the value of xablplaced
at the integer address 3. The value of the variabldl be at address 5.

label address contents
X 3 25
y 5 7

REVISED September 7, 1999

Page 22

Consider the result of executing the instructions

move X, y
and

la x,y
The result of the move instruction will be to copy the valugydhto the variablex. Sox would
contain the value 7 after execution of the move instruction. The result ¢d thestruction will be
to copyy into the variablex. The labely is the address 5 in this example. Savould contain the
value 5 after execution of th& instruction.

Remembering Return Addresses

The solution to the problem of multiple calls to a function or procedure is to save a return
address before a function is called, and then use the saved value when it is time to return from the
function. A return address is saved in a variable associated with a function. Before the branch to a
function’s first instruction, the correct return address is copied into that variable. A function call
example is the following:

la procl_ret, ret_addrl
b procl
ret_addrl:

A second call to the same function is the same, except for the different return address label:
la procl_ret, ret_addr2
b procl
ret_addr2:

Return Mechanism

The final piece of a function call and return mechanism is the return. As given above, one vari-
able will now be associated with each function. That variable will contain the address of the next
instruction to be executed when the function is done. But, the following branch instruction will
notwork as a return.

b procl_ret
This branch instruction would cause the program to branch to a var@blel_ret is the label
of a variable, not an instructiolVhat is desired is to branch to the address contained within the
variableprocl _ret . An extension to the functionality of the unconditional branch instruction
will have the desired effect. The parentheses around the variable in the instruction

b (procl_ret)
have the effect of branching back to the correct location. The contents of vapiaidg ret
are used instead of the address itself. Only the unconditional branch instruction can use this syn-
tax of parentheses to branch to the address contained within a variable.

2.8 A Modular SAL Program

REVISED September 7, 1999

Page 23

A program made modular by the use of procedures is given in Figures 2.10 and 2.11. Figure

/* A C program to calculate the longest, shortest, */
/* and average length of strings entered by the user. */

#include <stdio.h>

main()

{

int str_count: integer; /*number of user entered strings*/
int sum; /* running sum of the string lengths */

int ave; /* average of the string lengths */

int str_length; /* length of each string */

int shortest, longest;

char ch; /* used to read characters */

/* initialize variables */
str_count = 0;
sum = 0;
ave = 0;
shortest = 1000;
longest = -1;

getstring; /* prompt for input */
while (str_length = 0) {

calculate;
getstring;
}
if (str_count > 0) {
average;
printresults;
}
}
void getstring()
{
str_length = 0;
printf("Enter a string (<CR> to stop): ");
while ((ch = getc(stdin)) '="\n")
str_length = str_length + 1;
}
void calculate()
{
str_count = str_count++;
sum = sum + str_length;
if (str_length > longest)
longest = str_length;
if (str_length < shortest)
shortest = str_length;
}

Figure 10: C program that calculates longest, shortest and average string lengths.

REVISED September 7, 1999

Page 24

void average()

{
}

void printresults()

{

printf("The longest string entered was %d characters long.\n",
longest);

printf("The shortest string entered was %d characters long.\n",
shortest);

printf("The average string length was %d characters.\n", ave);

ave = sum div str_count;

}

Figure 10: C program that calculates longest, shortest and average string lengths.

REVISED September 7, 1999

Page 25

2.10 contais a C implementation of the program, and Figure 2.11 contains a SAL implementa-

A SAL program to calculate the longest, shortest,
and average length of strings entered by the user.

.data

str_count: .word O # number of user entered strings
sum: .word O # running sum of the string lengths
ave: .word O # average of the string lengths

str_length: .word # length of each string

shortest: .word 1000

longest: .word -1

ch: .byte # used to read characters

newline: .byte '\n’

getstring_ra:.word # return address for procedure getstring
calculate_ra:.word # return address for procedure calculate
average_ra:.word # return address for procedure average
printresults_ra:.word # return address for procedure printresults
strl:.asciiz "Enter a string (<CR> to stop):"

str2:.asciiz "The longest string entered was "

str3:.asciiz " characters long.\n"

str4:.asciiz "The shortest string entered was "

str5:.asciiz "The average string length was "

str6:.asciiz " characters.\n"

text
main program
| _start:la getstring_ra, rtnl

b getstring # prompt for input
rtnl: beqz str_length, endwhile # while str_length<>0 do
la calculate_ra, rtn2 #
b calculate # calculate
rtn2: la getstring_ra, rtn3 #
b getstring # getstring
rtn3: b rinl # endwhile
endwhile:blezstr_count, rtn5 # if str_count>0 then
la average_ra, rtn4 #
b average # average
rtnd: la printresults_ra, rtn5 #
b printresults # printresults
rtn5: done # endif

Figure 11: SAL program that calculates longest, shortest and average string lengths.

REVISED September 7, 1999

Page 26

procedure getstring -- reads characters on 1 line until the

newline character is encountered. It
also figures out the length of the string,
i not including the newline character.
getstring: move str_length, 0

puts strl

get ch
while: beq ch, newline, getstr_rtn

add str_length, str_length, 1

get ch

b while
getstr_rtn: b (getstring_ra)

procedure calculate -- adds current string length into the running

total, and sets variables longest and
i shortest appropriately if this string is
i# the longest or shortest so far.

calculate: add str_count, str_count, 1
add sum, sum, str_length
ble str_length, longest, nextif
move longest, str_length

nextif: bge str_length, shortest, calc_rtn
move shortest, str_length
calc_rtn: b (calculate_ra)

procedure average -- calculates an integer average by dividing

the running total by the number of strings.
average: div ave, sum, str_count
b (average_ra)

procedure printresults -- prints the results of the program
in a reasonable format.
printresults:putsstr2

put longest

puts str3

puts str4

put shortest

puts str3

puts str5

put ave

puts str6

b (printresults_ra)

Figure 11: SAL program that calculates longest, shortest and average string lengths.
tion of the program. The program reads in user generated strings, and figures out which one is the

REVISED September 7, 1999

Page 27

shortest, which is the longest, and the integer average length of the strings. Parameters are not
passed to the C functions, since the SAL implementation does not provide for parameter passing.
All variables are global. The goal in presenting both C and SAL versions of the same program is
to see how the various pieces correspond.

Summary

SAL implements all the features of a high-level language: declarations, arithmetic operations,
control structures, and communication with the user. SAL code looks like assembly language
code. Each instruction or declaration is on its own line, and instructions are written with a mne-
monic followed by one or more operands. The SAL language acts like an assembly language.
Each instruction has a fixed number of operands, and performs a single, well-defined operation.
All operations in an assembly language are explicit, unlike some operations in high-level lan-
guages.

REVISED September 7, 1999

Page 28

Problems

1. Draw a diagram of a skeleton SAL program. ldentify the different parts of the program, what
pieces are optional, and where instructions and data belong.

2. Explain how to implement a boolean type variable in SAL. What is the variable’s type, and
how is it used?

3. Write SAL code for the following C for loop.

for (i=2; i<=z ; i++) {
a=imod 2;
if (a == 0) then
sum = sum + i;
}
4. Write SAL code that implements the following C code.

{

int a, b,cdi
b=13;
for (i=2;i<=a;i++) {
c=b*i

if(cl=0)

{
d=b-a;
d=d%c;

}
}

5. Are constants included in SAL? How is a constant specified and used in SAL?

6. From Figure 2, which of the two assembly language constructs would be more efficient if the
C statement contained no else part? Why?

7. Write a SAL program that prints out a sequence &fs, wheren is a positive integer entered
by the user.

8. Write a SAL program that calculates average high and low temperatures for the month of Feb-
ruary. Have the user enter high and low temperatures for each day.

9. Rewrite the SAL program that calculates average high and low temperatures in a modular
way, using procedures.

10. The code given in Figure 5,

move result, 1
move counter, exponent

while: blez counter, endwhile
mul result, result, base
sub counter, counter, 1
b while

endwhile:

REVISED September 7, 1999

Page 29

can be rewritten thus:
move result, 1
move counter, exponent
blez counter, endwhile
loop: mul result, result, base
sub counter, counter, 1
bgtz counter, loop
continue:

While these two methods have the same number of instructions, the number of instructions
executedwill differ. Give a value forcounter for which the second method would execute

fewer instructions than the first method. Give a valuedounter for which the second
method would execute more instructions than the first method.

11. The code in Figure 6 can be rewritten to eliminate the unconditional branch instruction at the
end of the loop. Rewrite the SAL code segment so that fewer instructions are executed if
exponent is ten.

12. In Figure 2, another possible way of writing the code would be the following:

div B,C,A
bgtz A, endif
add B, A, 10

endif:

Under what circumstances would this code be superior to the two versions given in Figure 27?
Is there any reason faot using this code?

13. Write a SAL procedure that decides if the integer variablee is evenly divisible by 3. If
value is evenly divisible, it should set the varialflag to 1, and ifvalue is not evenly
divisible, then it should séfag to Q.

14. Design and write a SAL program that calculates the area of a triangle. What information does
the user need to enter for this program?

15. Design and write a SAL program that counts the number of punctuation marks in a paragraph
entered by the user.

REVISED September 7, 1999

	Chapter 2
	SAL -- Simple Abstract Language
	2.1 On Assembly and Compilation
	Why Write Assembly Language Programs?
	Where SAL Fits In
	2.2 Variable Declaration
	2.3 Arithmetic Operations
	Table 1: Arithmetic operations in SAL.

	A Simple SAL Program
	Figure�1: C and SAL versions of a program that averages three integers.
	2.4 Control Structures
	Table 2: Branch instructions in SAL.
	Figure�2: SAL code implementing the C if-then-else statement.
	Figure�3: SAL code implementing a C compound conditional.
	Figure�4: SAL code implementing a C compound conditional.
	Figure�5: SAL code to caculate using a while loop.
	Figure�6: SAL code to calculate using a for loop.

	2.5 Communication with the User
	Table 3: SAL communication instructions.
	Figure�7: C and SAL code to read characters until the character ’Z’ is encountered.

	2.6 A SAL Program
	Figure�8: C program that sums the first n positive integers.
	Figure�9: SAL program that sums the first n positive integers.

	2.7 Procedures and Functions

	The Parts of a Procedure
	1. Save return address
	2. Procedure call
	3. Execute procedure
	4. Return

	Addresses
	Remembering Return Addresses
	Return Mechanism
	2.8 A Modular SAL Program
	Figure�10: C program that calculates longest, shortest and average string lengths.
	Figure�11: SAL program that calculates longest, shortest and average string lengths.

	Summary
	Problems
	1. Draw a diagram of a skeleton SAL program. Identify the different parts of the program, what pi...
	2. Explain how to implement a boolean type variable in SAL. What is the variable’s type, and how ...
	3. Write SAL code for the following C for loop.
	4. Write SAL code that implements the following C code.
	5. Are constants included in SAL? How is a constant specified and used in SAL?
	6. From Figure 2, which of the two assembly language constructs would be more efficient if the C ...
	7. Write a SAL program that prints out a sequence of n Xs, where n is a positive integer entered ...
	8. Write a SAL program that calculates average high and low temperatures for the month of Februar...
	9. Rewrite the SAL program that calculates average high and low temperatures in a modular way, us...
	10. The code given in Figure 5,
	11. The code in Figure 6 can be rewritten to eliminate the unconditional branch instruction at th...
	12. In Figure 2, another possible way of writing the code would be the following:
	13. Write a SAL procedure that decides if the integer variable value is evenly divisible by 3. If...
	14. Design and write a SAL program that calculates the area of a triangle. What information does ...
	15. Design and write a SAL program that counts the number of punctuation marks in a paragraph ent...

