
Page 1

modu-
by

of the

calls,
h-level
con-

o lan-
 level.

proce-

s and

ecu-
ounter.
 Chapter 9

Procedures1

A high level language programmer uses procedures for several reasons. Code becomes
lar, facilitating later modification. The writing of code within a modular program can be done
more than one programmer. All that is necessary is that the functionality and parameters
different procedures be well defined.

A compiler needs to generate assembly langugage code for implementing procedure
returns, and parameter passing. There are many correct ways for doing these tasks. The hig
language specifies rules for syntax and functionality, and a compiler will implement a set of
ventions. The conventions vary from computer to computer, and they vary from language t
guage. This chapter discusses how procedures are implemented at the assembly language

9.1 MAL Procedure Call and Return Mechanisms

Here are the four steps that need to be accomplished in order to call and return from a
dure.

1. save return address

2. procedure call

3. execute procedure

4. return
From Chapter 2, the SAL instructions that invoke a procedure by saving a return addres

calling the procedure are the following:
la proc1_ret, ret_addr
b proc1

ret_addr:

MAL provides a single instruction that does both operations. The MALjal (jump and link)
instruction simplifies the procedure call sequence. The instruction

jal procedure_label

does two things. It places the address of the instructionfollowing the jal instruction into register
$31 (also called $ra), and it branches to the instruction labeledprocedure_label . The choice
of register $31 is arbitrary, but it it is fixed. Its use is implied by thejal  instruction.

The MAL jr (jump register) instruction is convenient to use for procedure returns. Its ex
tion causes the value contained in the register specified to be loaded into the Program C
The effect of this is an unconditional jump to the address contained in the register.

1. Copyright 1999, Oxford University Press. Use by permission only.
Contact Peter Gordon: pcg@oup-usa.org
REVISED September 7, 1999



Page 2

re call

re calls.
oked,
place

ot com-
e for the
ss for a
when

ly by
s this
. The

a pro-

sing the
(also
t grows
pointer
k. It is
Figure 1 contains skeleton code for a procedure that has no parameters. The procedu

and return usejal andjr instructions.

9.2 Dynamic Storage Allocation

Placing a return address in a register works fine as long as there are no nested procedu
A nested call is a procedure call within the body of a procedure. If a nested procedure is inv
the value held in register $ra will be overwritten. To avoid the loss of return addresses, a safe
for storing return addresses is needed. For each procedure that has been invoked but n
pleted, a return address must be saved. Note that once a procedure has returned, the spac
return address is no longer needed, and can be reused (for example, to store a return addre
newly invoked procedure). A method that can dynamically allocate space for procedures
they are invoked and deallocate the space when they return is needed.

The amount of memory required to save all the return addresses is therefore limited on
the number of levels of procedure calls permitted. In many modern programming language
limit is very large. To provide space for storing many return addresses, a stack is employed
space is said to bedynamically allocated.

Many computer systems implement a stack as part of the environment provided when
gram is running. This stack is referred to as thesystem stack. It is such an important and fre-
quently used structure that some computers provide assembly language support for acces
stack efficiently. The MIPS RISC architecture system stack has its bottom of the stack
known as the base) at a very large memory address. As items are pushed on the stack, i
towards smaller memory addresses. By convention, register $29 (also called $sp) is a stack
for the system stack. It contains the address of the first empty location at the top of the stac

.text
.
.
.

call: jal proc
.
.
.
done

proc: # procedure code here
.
.
.
jr $ra

Figure 1: Procedure implementation usingjal  and jr  instructions.
REVISED September 7, 1999



Page 3

itial

om the

onto the
n

initialized prior to the beginning of a program’s execution. Figure 2 shows a diagram of the in

state of the system stack.
A push operation to the system stack can be coded as

sw $8, 0($sp)
sub $sp, $sp, 4

or
sub $sp, $sp, 4
sw $8, 4($sp)

where the content of register $8 is the data being pushed onto the stack. A pop operation fr
system stack can be coded as

add $sp, $sp, 4
lw $8, 0($sp)

or
lw $8, 4($sp)
add $sp, $sp, 4

Using the Stack for Return Addresses

One common use of the system stack is saving return addresses. They can be pushed
stack once a procedure has been called usingjal , and popped off just before a return instructio

Figure 2: Initial (empty) state of the system stack.

small memory
addresses

large memory
addresses

bottom of stack
$sp
REVISED September 7, 1999



Page 4

en a

his is
while

dure
rsion,
nd lost.

e
y pop-

e push,

st cor-

edure
jr is executed. Figure 3 contains a MAL procedure that implements a power function. Giv

base and a power, the procedure calculatesbase power .
The implementation given in Figure 3 uses global variables instead of parameters. T

done in order to give an example of using the system stack for saving a return address,
ignoring the issue of parameter passing.

The procedure isrecursive. Recursive procedure calls are a special case of nested proce
calls. An example of recursion is when a procedure directly calls itself. Because of the recu
it is necessary that return addresses be saved on the stack so that they are not overwritten a
After being invoked, the procedure pushes its return address (saved in register $ra by thjal
instruction) onto the stack. Before it returns, the procedure must restore the return address b
ping it off the stack into register $ra.

A procedure that does not call any other procedures is known as aleaf procedure. It does not
need to store its return address onto the stack - the value can be held in register $ra. Itmayexecute
the push and pop, but the push and pop of a return address is not required. If it executes th
it must also execute the pop.

9.3 Activation Records

The compiler’s role is to correctly generate assembly language. The code generated mu
rectly implement its high level language rules. The rules include those ofscope. Scoping rules
generally refer to which variables, memory locations, and other procedures an active proc

.text
.
.
.
li $16, 10 # base 10 calculations
li $18, 1 # $18 will contain the result
move $19, $17 # $19 is a counter

# $17 contains the power
jal power
.
.
done
.
.
.

power: sub $sp, $sp, 4 # save return address by
sw $ra, 4($sp) # pushing it on the stack

if: sub $19, $19, 1
blez $19, endif

jal power # recursive procedure call
endif: mul $18, $18, $16 # $16 contains base

lw $ra, 4($sp) # restore return address by
add $sp, $sp, 4 # popping it off the stack

return: jr $ra

Figure 3: MAL implementation of power function.
REVISED September 7, 1999



Page 5

erent

-
e pre-
ation

e values
ermi-
t must

soci-
r pre-
ace is a

ntains
n acti-
, except
ctiva-
s of C

lls, and
has access to. For example, the scope of a local variable declared within a C function is only
within that procedure. This implies that variables of the same name declared within diff
functions are not related, and they may be assigned different values at the same time.

When a procedure is invoked, a newenvironment is created. In this newly created environ
ment, new local variables are defined, while the values of the previous environment must b
served. Variables for holding intermediate values during a computation like expression evalu
may also be needed. Like return addresses, these local variables are dynamic data, whos
must be preserved over the lifetime of the procedure, but not beyond its termination. At the t
nation of the procedure, the current environment disappears and the previous environmen
be restored.

At procedure invocation, memory space must be allocated for holding the information as
ated with the new environment. This space is used not only for return address, but also fo
serving the values from other registers, and as a place to keep parameters. The allocated sp
single block of memory, known as anactivation record or stack frame. In general, an activation
record consists of all the information that corresponds to the state of a procedure. It co
enough information about a procedure for nested procedure calls to be handled correctly. A
vation record is pushed onto the stack in the same way that words are pushed onto a stack
that an activation record will be larger than a word. When returning from a procedure, the a
tion record associated with its invocation is popped from the stack. Figure 4 shows skeleton

code and its associated call tree for an example. The tree shows the nesting of procedure ca
the root of the tree is shown as procedure A.

main()
{

A();
}

A()
{

B();
C();

}

B()
{

D();
}

C()
{}

D()
{

E();
}

E()
{}

Figure 4: Example code block and call tree.

A

B C

D

E

REVISED September 7, 1999



Page 6

or dif-
record.
stack.

it was

ck is

ation

leaf
ecord

It also
within
The stack pointer must be adjusted by the size of the activation record. This size varies f
ferent procedures. The adjustment of the stack pointer allocates space for the activation
When the procedure returns to the calling program, the activation record is popped off the
The stack pointer must be adjusted by the same amount, leaving the stack the same size
prior to the invocation of the procedure.

Figure 5 follows the state of the stack for the code given in Figure 4. The state of the sta

shown immediately following each new procedure invocation. The letters represent the activ
record for the procedures.

Skeleton MAL code for this example is given below. The size of an activation record for
functions is arbitrarily set to be four words. Non-leaf procedures are assigned an activation r
size of six words.This code shows the allocation and deallocation of the activation records.
shows the saving and restoring of return addresses within the stack frame. The first word

Figure 5: Stack immediately following each new procedure invocation.

A

$sp

A

$sp

B

A

$sp

B

D

A

$sp

B

D

E

A

$sp

C

REVISED September 7, 1999



Page 7

return
oce-
alling

n
ams.
te the

ient)

stack
the frame is arbitrarily chosen as the position for the return address.
# main()

jal A
.
.
.
done

A: sub $sp, $sp, 24 # allocate frame for A
sw $ra, 4($sp) # save return address in A’s frame
jal B
jal C
lw $ra, 4($sp) # restore A’s return address
add $sp, $sp, 24 # deallocate A’s frame
jr $ra

B: sub $sp, $sp, 24 #allocate frame for B
sw $ra, 4($sp) # save return address in B’s frame
jal D
lw $ra, 4($sp) # restore B’s return address
add $sp, $sp, 24 # deallocate B’s frame
jr $ra

C: sub $sp, $sp, 16 # allocate frame for C
sw $ra, 4($sp) # unnecessary save of C’s return address
lw $ra, 4($sp) # restore C’s return address
add $sp, $sp, 16 # deallocate C’s frame
jr $ra

D: sub $sp, $sp, 24 # allocate frame for D
sw $ra, 4($sp) # save return address in D’s frame
jal E
lw $ra, 4($sp) # restore D’s return address
add $sp, $sp, 24 # deallocate D’s frame
jr $ra

E: sub $sp, $sp, 16 # allocate frame for E
sw $ra, 4($sp) # unnecessary save of E’s return address
lw $ra, 4($sp) # restore E’s return address
add $sp, $sp, 16 # deallocate E’s frame
jr $ra

One item of interest that this example does not show is a saving and restoring of the
address frommain() . The operating system could view the execution of a program as a pr
dure call. Given this view, the main program would need to save its return address before c
any procedures, restore the return address, and then exit the program withjr $ra . The given
implementation presumes thatdone is an explicit call to the operating system with informatio
that the program is finished. Therefore, the operating system is free to execute other progr

The example given so far presumes that the stack pointer is freely moved to accomoda
allocation and deallocation of activation records. A more traditional (and usually more effic
implementation maintains a second pointer into the stack called aframe pointer. The frame
pointer always points to the start of the currently invoked procedure’s activation record. The
REVISED September 7, 1999



Page 8

the
ed for
access
done

ame

vation
eans
other

nd the
frame
ure B.

B was
pointer is used to always point to the top of the stack. In the implementation of MAL, this is
empty location at the top of the stack. Then, within a procedure, the stack pointer may be us
pushing and popping temporary values used in expression evaluation, without affecting the
to values within the current activation record. All accesses within the activation record are
using offsets from the frame pointer. A register is often dedicated to be a frame pointer.

The following MAL code shows the implementation of procedure B assuming use of a fr
pointer. Register $16 is chosen to be the frame pointer for this example.

B: sub $sp, $sp, 24 # allocate B’s activation record
sw $ra, 12($sp) # save B’s return address
sw $16, 16($sp) # save caller’s frame pointer
add $16, $sp, 24 # set frame pointer to B’s activation record

# procedure B’s body here

lw $ra, -12($16) # restore B’s return address
move $8, $16 # save frame pointer temporarily
lw $16, -8($16) # restore caller’s frame pointer
move $sp, $8 # deallocate B’s activation record
jr $ra

There are several policy issues set in this example. One is that the allocation of the acti
record for procedure B is done within B itself. This is benefical to a compiler, because it m
that the code of the caller does not need knowledge of the size of the activation record. An
point in this code is that the deallocation of both temporary values pushed onto the stack a
current activation record is a matter of setting the stack pointer to the current value of the
pointer. Figure 6 contains diagrams of the stack before and after the invocation of proced

After procedure B returns, the state of the stack is the same as it was before procedure
called.

Figure 6: Stack contents before and after invocation of procedure B.

activation
caller’s

record

$sp

$16

$ra

caller’s fp

B’s
activation

record

$sp

$16
REVISED September 7, 1999



Page 9

ctiva-
will
e. After
eters
n the

ation
d pro-
ation
dure’s
initial

To set
tack in
r
re the
tion is

s from
meter
9.4 Parameter Passing

Passing parameters to a function or procedure is straightforward using space within the a
tion record for the procedure. A compiler will either use a fixed size activation record, or it
calculate the correct amount of memory space needed to hold all parameters to a procedur
determining the size of the activation record, a compiler fixes the position of the param
within the activation record. Memory space for the activation record is allocated, and the
calling program can place parameters into the activation record.

To keep the calling program from needing to know the size of the called procedure’s activ
record, the parameters will be placed onto the stack between the calling program and calle
cedure’s activation record. They will be included as part of the called procedure’s activ
record, but the caller does not need to allocate space for the remainder of the called proce
activation record. Figure 7 shows the state of the stack through the setup of parameters. The

state of the stack has the caller’s activation record and frame pointer as shown in Figure 7a.
up the procedure call, two parameters are pushed onto the stack, to give the state of the s
Figure 7b. Then, control is passed to procedure B (usingjal ). Procedure B allocates space fo
the remainder of its activation record, and then sets it up as in Figure 7c. The code to resto
state of the stack to that of the caller is the same as given above. No special considera
needed to deal with parameters passed this way.

Within the procedure, access to the parameters is accomplished by copying the value
their location within the activation record to a register. For this same example, the first para
would be copied to a register using the MAL instruction

lw $8, 0($16)

Figure 7: Stack state during parameter setup.

$16

$sp

$16

$sp

parameter 1

parameter 2
caller’s fp

$ra

B’s
activation

record

caller’s
activ.
record

a. b. c.

parameter 2

parameter 1 $16

$sp
REVISED September 7, 1999



Page 10

e pro-

an be
ions are
egisters
ic data,
e regis-

egisters

two
for the
this

iffer-
ure to
hort.

ontrol
nction
e call-
ent to

Pascal

proce-
e type
type

o pass
an access
arame-
where register $8 is the register designated to hold the parameter during the execution of th
cedure.

An alternative method for passing parameters is to pass values directly in registers. It c
more efficient than using the stack, because there may be fewer memory accesses. Instruct
not spent pushing parameters on the stack and then copying the parameters back into r
during the procedure’s execution. Like return addresses, procedure parameters are dynam
so they can only be passed in registers to procedures that do not themselves use those sam
ters for parameter passing to a nested procedure call. In general, passing parameters in r
alone will not work for programs that contain nested procedure calls.

The following code uses the same example of procedure B, modified only in that the
parameters are passed in registers $4 and $5 instead of within the activation record. Space
parameters is still allocated within the activation record for reasons explained later within
chapter.

sub $sp, $sp, 8 # allocate space for 2 parameters
add $4, $18, 1 # first parameter placed into register $4
move $5, $21 # second parameter placed into register $5
jal B
.
.
.

B: sub $sp, $sp, 16 # allocate B’s activation record
sw $ra, 12($sp) # save B’s return address
sw $16, 16($sp) # save caller’s frame pointer
add $16, $sp, 24 # set frame pointer to B’s activation record

# procedure B’s body here

lw $ra, -12($16) # restore B’s return address
move $sp, $16 # deallocate B’s activation record
lw $16, -8($16) # restore caller’s frame pointer
jr $ra

Returning a result from a function is similar in many ways to passing a parameter. The d
ence is that the information is being passed in the reverse direction -- from the called proced
the calling program. In addition, the time during which the value must be preserved is very s
The value must be preserved only over the interval from when the result is generated until c
is returned to the calling program. The system stack could be used for this purpose. The fu
return value could be placed at the top of the stack just before the function returns. Then, th
ing program retrieves the value from the top of the stack. It would also be simple and expedi
return the value within a register. This is common practice.

Programming languages give restrictions on the use of parameters. As an example,
requires parameters to be passed either by value or by reference. Parameters of typevar are
passed by reference. This means that the value of the parameter may be changed within the
dure, and the changed value will be reflected outside the bounds of the procedure. A valu
parameter in Pascal will not have its value changed by a procedure. C allows only value
parameters. A simple way of enforcing these rules on assembly language programming is t
either addresses or copies of values as parameters. By passing an address, a procedure c
the variable, thereby changing its value if necessary. If a copy of a variable is passed as a p
REVISED September 7, 1999



Page 11

an be

empo-
ss val-
some

, how-
re any
alled
calling

values
reused
ctiva-

d. This

ram are

s
isters
aller’s

g them

mer to
roce-

t have

irst

e
e
.

reg-
within
piler

r, and
frame
ter, the caller’s variable is never touched, and will not be changed. In this case, the copy c
modified within the procedure, but will not change the value of the original variable.

9.5 Saving Registers

A procedure often needs many registers for local variables, copies of parameters, and t
rary calculations. In a load/store architecture, the procedure needs registers in order to acce
ues stored on the stack. A newly invoked procedure therefore must immediately have
registers made available to it. The state of the registers is part of the current environment
ever, so the values in the registers set by the calling program should be left intact. Therefo
register that is part of the environment of the calling program cannot be used by a newly c
procedure unless its value can first be preserved and then be restored upon return to the
program. Once again, use of activation records provides a convenient solution. Register
can be saved by the called procedure within its activation record. Then, the registers can be
by the procedure. Before returning, the registers are restored to their original values. The a
tion record is therefore defined to include space for any registers that might need to be save
method of clearing out registers for the procedure’s use is calledcallee save. It is said that register
values are preserved across procedure calls, because the register values of the calling prog
not changed by a called procedure.

An alternative to callee saved registers iscaller savedregister values. These register value
are said tonot be preserved across procedure calls. Before a procedure is called, any reg
whose values should not be modified by the procedure to be called are first saved in the c
activation record. After the procedure returns, the register values can be restored by loadin
from the activation record.

Both caller saved and callee saved schemes are used in practice. It is up to the program
choose one, although many systems adopt a fixed convention to improve interoperability of p
dures written in different environments. The calling program and the called procedure mus
the same understanding about what registers are being saved, and when.

 Note for advanced readers:

The VAX architecture had a single procedure call instruction that set up a complete activation record on the stack.The
call instruction pushes a return address, parameters, and register variables onto the stack, and then branches to the f
instruction within the procedure. The programmer has control over which registers to save on the stack (as part of the
procedure call) by providing a mask. Often only a subset of the registers need to be saved on the stack. One bit of th
mask corresponds to each register in the machine. The procedure call instruction checks each bit in the mask. If th
bit is set, then its value is saved on the stack. The instruction that implements a procedure return is similarly complex
It must restore registers to their previous values, deal with parameters, and use the return value (from the stack) to
return from the procedure.

9.6 MIPS RISC Procedure Conventions

A set of conventions is encouraged for use of registers in the MIPS RISC architecture. A
ister is not dedicated for use as a frame pointer in the architecture. Therefore, access to data
the activation record is accomplished using offsets from the stack pointer ($sp or $29). A com
could implement a frame pointer by designating one of the registers to be a frame pointe
then using it for that purpose.The programmer or compiler is free to choose whether a
pointer is implemented or not.
REVISED September 7, 1999



Page 12

callee
ure calls,
rs. They

ister, a
tempo-
eserve
tween
use of

f stack

space
s $a0-
mined
ts for
ter are

s passed
efore it
llocated

ade

egis-
To increase efficiency, the MIPS RISC architecture does not specify all registers as
saved or all registers as caller saved. Rather, some registers are preserved across proced
others are not. Those that are preserved across procedure calls are the callee saved registe
are calledsaved registers, and are designated as $s0-$s8 or $16-$23, $30.

Those that are not preserved across procedure calls aretemporary registers, and are desig-
nated as $t0-t9 or $8-$15, $24-$25. These are caller saved registers. When allocating a reg
choice must be made. If a procedure does not contain any nested calls, it prefers to use the
rary registers. The body of a procedure can use the temporary registers without having to pr
their previous values. If the procedure does contain procedure calls, there is a choice be
using a temporary register or a saved register. There are many strategies for optimizing the
registers. The goal behind having some of each kind of register is to reduce the number o
(memory) accesses.

Parameter passing on the MIPS RISC architecture uses a combination of registers and
in the activation record. The first four (non-floating point) parameters are passed in register
$a3, or $4-$7. Additional parameters are passed within the activation record. Studies deter
that a majority of procedures receive four or fewer parameters. Therefore, the possibility exis
reducing the number of stack (memory) accesses to store and retrieve parameters if regis
designated as a place to pass parameters. Note that if a procedure is called with parameter
in registers $a0 and $a1, the called procedure must be careful to save these two registers b
invokes another (nested) procedure. For this reason, space for the parameters is always a
within the activation record of the (non-leaf) called procedure. It may not be used, but is m
available for those cases when it will be needed.

Figure 8 specifies the conventions for register usage for the MIPS RISC architecture. R
REVISED September 7, 1999



Page 13

by the
gisters

take

mon
alcu-
IPS
mmon
ters $v0 and $v1, or $2 and $3 are used for function return values. Register $1 is used
assembler when an extra register is needed for temporary calculations. Floating point re
$f12 and $f14 may also be used to pass some of the first four parameters.

The MAL input and output instructions are implemented similar to procedures. They
parameters in registers $a0-$a3, and they return values in registers $v0 and $v1.

9.7 A MAL Program that uses Procedures

The following MAL code contains a modular program that calculates the greatest com
divisor of two positive integers. The user is prompted for two integers. The program then c
lates the greatest common divisor, and prints out the result. This MAL program follows the M
RISC register usage conventions. It uses a recursive function to calculate the greatest co

Register
Name

Alias Use

$0 the value 0
$1 $at reserved by the assembler

$2-$3 $v0-$v1 expression evaluation and function results

$4-$7 $a0-$a3
the first four parameters --
not preserved across procedure calls

$8-$15 $t0-$t7
temporaries--
not preserved across procedure calls

$16-$23 $s0-$s7
saved values--
preserved across procedure calls

$24-$25 $t8-$t9
temporaries--
not preserved across procedure calls

$26-$27 $k0-$k1 reserved for use by the operating system
$28 $gp global pointer
$29 $sp stack pointer

$30 $s8
saved values--
preserved across procedure calls

$31 $ra return address
$f0-$f2 floating point function results

$f4-$f10
temporaries--
not preserved across procedure calls

$f12-$f14
the first two floating point parameters--
not preserved across procedure calls

$f16-$f18
temporaries--
not preserved across procedure calls

$f20-$f30
saved values--
preserved across procedure calls

Figure 8: MIPS RISC register usage conventions.
REVISED September 7, 1999



Page 14
divisor.

# This MAL program computes the greatest common divisor of 2 positive
#   integers.  The function that does the main calculation is recursive.

.data
err_msg:  .asciiz  “\nbad integer entered\n”
.text
__start:   jal  intro
           jal  getint
           beqz $v0, input_err
           move $s0, $v1
           jal  getint
           beqz $v0, input_err
           move $a1, $v1
           move $a0, $s0
           jal  gcd
           move $a0, $v0

jal  print_result
           done
input_err:
           la   $t0, err_msg
           puts $t0
           done

# intro
# A simple procedure to print a little introduction message.
# There are no parameters.
.data
msg1:  .asciiz  “This program computes the greatest common divisor of\n”
msg2:  .asciiz  “two user entered integers.\n\n”
.text
intro:     la   $t0, msg1
           puts $t0
           la   $t0, msg2
           puts $t0
           jr $ra
REVISED September 7, 1999



Page 15
#getint
# A function to get a single positive integer from the user.
# return values:
#  $v0 -- flag indicating success of the function
#         value is 1 if integer entered is ok.
#         value is 0 if not ok.
#  $v1 -- the integer entered
#
# register assignments:
#  $t0 --  user entered character
#  $t1 --  digit of integer
#  $t2 --  newline character (the constant)
#  $t3 --  the integer being entered
#  $t4 --  the constant 10, the base
#  $t5 --  temp
#  $t6 --  the constant 9
.data
prompt:  .asciiz  “Enter positive integer:  “
.text
getint:
           li   $t2, 10   # $t2 <- newline character
           li   $t4, 10   # constant, 10
           li   $t3, 0
           li   $t6, 9
           la   $t5, prompt
           puts $t5
getchar:
           getc $t0
           beq  $t0, $t2, getint_rtn
           sub  $t1, $t0, 48
           bgt  $t1, $t6, int_err
           bltz $t1, int_err
           mul  $t3, $t3, $t4
           add  $t3, $t3, $t1
           b    getchar

getint_rtn:
           li   $v0, 1
           move $v1, $t3
           jr $ra

int_err:   li  $v0, 0
           jr $ra
REVISED September 7, 1999



Page 16
# gcd
# A recursive function to calculate the greatest common divisor.
#
#    gcd(m,n) =   m,                if n = 0
#                 gcd(n, m mod n),  if n > 0
# return values:
#  $v0 -- the greatest common divisor
# parameters:
#  $a0 -- m
#  $a1 -- n
.data
gcd_err_msg:  .asciiz “error in calculating gcd -- quitting.\n”
.text
gcd:
           sub  $sp, $sp, 12    # allocate activation record
           sw   $ra, 12($sp)    # save return address
           bgtz $a1, n_greater
           bnez $a1, gcd_err
           move $v0, $a0        # return m
           b    gcd_rtn
n_greater: sw   $a0, 8($sp)     # save current parameters
           sw   $a1, 4($sp)
           rem  $t0, $a0, $a1
           move $a0, $a1        # set up parameters for call
           move $a1, $t0
           jal  gcd             # recursive call to gcd
           lw   $a0, 8($sp)     # restore current parameters
           lw   $a1, 4($sp)

# return value already in $v0
gcd_rtn:
           lw   $ra, 12($sp)    # restore return address

add  $sp, $sp, 12    # remove activation record
           jr   $ra             # return
gcd_err:   la   $t0, gcd_err_msg
           puts $t0
           done

# print_result
# Procedure to print out the base ten integer passed to the procedure
# as a parameter.
#
# return values:
#  none
# parameters:
#  $a0 -- the integer to be printed out
#
# register assignments:
#  $t0 -- address of output string
#  $t1 -- stack pointer before pushing characters onto stack
#  $t2 -- copy of integer to be printed
#  $t3 -- ASCII character code of digit to be printed as pushed
#  $t4 -- ASCII character code of digit to be printed as popped
#  $t5 -- newline character for nice output
REVISED September 7, 1999



Page 17

age pro-
assing,
e. They
pilers
.data
result_msg:  .asciiz  “The greatest common divisor is “
.text
print_result:
           move $t2, $a0
           la   $t0, result_msg
           puts $t0
           move $t1, $sp
           bnez  $t2, push_loop
           li   $t3, 0           # special case for printing 0
           sw   $t3, 0($sp)
           sub  $sp, $sp, 4
           b    print_loop

push_loop:                       # push characters onto stack
           rem  $t3, $t2, 10
           add  $t3, $t3, 48
           sw   $t3, 0($sp)
           sub  $sp, $sp, 4
           div  $t2, $t2, 10
           bnez $t2, push_loop

print_loop:                      # pop characters off stack and print
           add  $sp, $sp, 4
           lw   $t4, 0($sp)
           putc $t4
           bne  $t1, $sp, print_loop

           li   $t5, 10   # print newline
           putc $t5
           jr   $ra

9.8 Summary

Procedures have both advantages and disadvantages when it comes to assembly langu
gramming. The disadvantage is that much extra code is needed to deal with parameter p
register saving and restoring, and stack accesses. Yet procedures are also an advantag
facilitate modular code, and they are easy to use in high-level languages. Fortunately, com
provide the benefit of generating detailed assembly code automatically.
REVISED September 7, 1999



Page 18

ing a

isms?

d
ss the

d
ss the

d
. Use

ir own
after

cur-

ters be

, and
 PROBLEMS

1. What is the point of having procedures in a high-level language? Is there a point to hav
procedure mechanism in assembly language?

2. When is the use of a stack necessary in implementing procedure call and return mechan

3. Write a MAL code fragment that implements the same operations as thejal  instruction.

4. Write MAL code for a procedure calledswitch that takes two (integer) parameters an
swaps them. Write MAL code that implements a procedure call and the procedure. Pa
parameters in registers.

5. Write MAL code for a procedure calledswitch that takes two (integer) parameters an
switches them. Write MAL code that implements a procedure call and the procedure. Pa
parameters on the stack.

6. Write MAL code for a procedure calledswitch that takes two (integer) parameters an
switches them. Write MAL code that implements a procedure call and the procedure
MIPS RISC procedure conventions.

7. One method of parameter passing might be to permanently assign all variables to the
registers. Then there won’t be any shuffling of data into and out of registers before and
the procedure call. When will this method fail?

8. Write a MAL procedure that implements the factorial function recursively. Factorial is re
sively defined by

factorial(0) = 1
factorial(x) = x * factorial(x-1)

9. Can Pascalvar type parameters be passed in registers? Can Pascal value type parame
passed in registers? Why or why not?

10. Write a modular MAL program to calculate the integer X, where

The user enters an integer value for n.

11. Write a modular MAL program that prints out a user-entered integer in base 3, base 5
base 8 (octal).

X i
i 1=

n

∑=
REVISED September 7, 1999


	Chapter 9
	Procedures
	9.1 MAL Procedure Call and Return Mechanisms
	1. save return address
	2. procedure call
	3. execute procedure
	4. return
	Figure�1: Procedure implementation using jal and jr instructions.

	9.2 Dynamic Storage Allocation
	Figure�2: Initial (empty) state of the system stack.

	Using the Stack for Return Addresses
	Figure�3: MAL implementation of power function.
	9.3 Activation Records
	Figure�4: Example code block and call tree.
	Figure�5: Stack immediately following each new procedure invocation.
	Figure�6: Stack contents before and after invocation of procedure B.

	9.4 Parameter Passing
	Figure�7: Stack state during parameter setup.

	9.5 Saving Registers
	Note for advanced readers:
	9.6 MIPS RISC Procedure Conventions


	Use
	the value 0
	reserved by the assembler
	expression evaluation and function results
	the first four parameters --
	not preserved across procedure calls
	temporaries--
	not preserved across procedure calls
	saved values--
	preserved across procedure calls
	temporaries--
	not preserved across procedure calls
	reserved for use by the operating system
	global pointer
	stack pointer
	saved values--
	preserved across procedure calls
	return address
	floating point function results
	temporaries--
	not preserved across procedure calls
	the first two floating point parameters--
	not preserved across procedure calls
	temporaries--
	not preserved across procedure calls
	saved values--
	preserved across procedure calls
	Figure�8: MIPS RISC register usage conventions.
	9.7 A MAL Program that uses Procedures
	9.8 Summary
	Problems
	1. What is the point of having procedures in a high-level language? Is there a point to having a ...
	2. When is the use of a stack necessary in implementing procedure call and return mechanisms?
	3. Write a MAL code fragment that implements the same operations as the jal instruction.
	4. Write MAL code for a procedure called switch that takes two (integer) parameters and swaps the...
	5. Write MAL code for a procedure called switch that takes two (integer) parameters and switches ...
	6. Write MAL code for a procedure called switch that takes two (integer) parameters and switches ...
	7. One method of parameter passing might be to permanently assign all variables to their own regi...
	8. Write a MAL procedure that implements the factorial function recursively. Factorial is recursi...
	9. Can Pascal var type parameters be passed in registers? Can Pascal value type parameters be pas...
	10. Write a modular MAL program to calculate the integer X, where
	11. Write a modular MAL program that prints out a user-entered integer in base 3, base 5, and bas...




