
Agenda: Tuesday, June 14

Chapter 2: SAL - Simple Abstract Language

• Motivation for SAL
• Programming Language Requirements
• SAL Examples
• Procedures

Sending e-mail needed to complete P0 (due Thursday)

Motivation for learning SAL

1. SAL is a "fake" assembly language. There is no machine that can run SAL code
directly.

2. We learn SAL to bridge the gap between HLLs and true assembly languages.
a. It abstracts (hides some details) of true assembly languages.
b. We will learn about the hidden details later.

3. This is a "Top-down" approach to learning about Computer Architecture.

HLL --> SAL --> assembly language --> machine code
HLL --> SAL --> MAL --> TAL --> MIPS RISC machine code

SAL

• subset of the functionality of most high level languages
• no records or structures.
• no formal arrays (but they can be implemented- see ch 7)
• one instruction, declaration per line
• comments are anything on a line following ‘#’

MAL - the MIPS assembly language

TAL - is a true assembly language for MIPS

each SAL instruction maps to one or more MAL instructions

each MAL instruction maps to one or more TAL instructions

each TAL instruction maps to one line of MIPS RISC machine code

Programming Language Requirements

1. Declarations

• tell how much space in memory is needed for a variable
• assign (attach) a name or label to a the reserved space

There are three basic types

• integer (.word)
• floating point or real (.float)
• character (.byte)

Value is optional- it gives the variable an initial value

Other types can be created out of these three:
for example,

boolean is really an integer with only 2 defined values.

C/C++/Java example
vartype varname [= initvalue] ;
int i = 3;

Sal example

variablename: type value

Unlike many HLLs, in most assembly languages (including SAL) all declarations are
grouped together and placed in a separate (data) section of the program code.

Each type of data requires a different amount of space to be reserved.

• Integers need one "word" of space or 32 bits
• Characters need one "byte" or 8 bits
• Floating point values need 32 or 64 bits

SAL declaration examples (in a section defined by the data directive)

 .data #directive
x: .word # space for an integer

 # integer-sized variable, defaults to
 # an initial value of 0

y: .word 250
int: .word 3

letter: .byte
ch: .byte 'b' # space for a character
newline: .byte '\n' # space for a new line character
 # reminder: '\n' is one character
A: .byte 'A'

e: .float 2.71828 # space for a floating point value

Note:

• only be only declaration per line.
• The default initial value is always 0.
• Comments are anything on a line following ‘#’ (comments may not span lines)
• Read code linearly (top to bottom)

SAL Directives

Directives- special instructions used to give additional information to the assembler.
- they give information about how much memory space is needed
- they can label (assign a name to) the memory space
** not executed as part of the program.
The character '.' is used to indicate a directive in SAL and MAL.

common directives:

 .data # identifies the start of the variable declaration section
 # There can be more than 1 .data section in
 # a program.
 # There will be 1 global location where data
 # from all .data sections is placed.

 .byte
 .word
 .float

 .text # identifies where instructions are
 # There can be more than 1 .text section in
 # a program.

 .asciiz "a string.\n" # places a string into memory
 # and null terminates the string.

 .ascii "new string." # places a string into memory
 # WITHOUT null termination.

 .space # used to reserve a specific number of bytes

 __start: # label to start program
 # identifies the first instr to execute

 done # syscall to end program

The variable names are labels. Labels (in SAL/MAL) should start
with a letter of the alphabet ('A'-'Z', 'a'-'z'), and may be
followed by other letters, digits or the underscore character ('_').

Some useful characters:
 '\n' the newline (a line feed followed by a carriage return)
 '\t' horizontal tab
 '\\' the backslash character
 '\"' the double quote mark
 '\0' the null character (for SAL/MAL, appended to the end of
 a string to identify the end of the

 string.)

SAL Arithmetic Operations

• The type of the result of the operation depends on the type of variables
• cannot increase the number of operands
• y and/or z can be IMMEDIATES, but x can not

 ARITHMETIC operations

 SAL C or C++ or Java

 move x, y x = y;
 add x, y, z x = y + z;
 sub x, y, z x = y - z;
 mul x, y, z x = y * z;
 div x, y, z x = y / z; (gives quotient)
 rem x, y, z x = y % z; (gives remainder)

There are other instructions that implement boolean functions, but we don't cover them yet.
(not, and, or, xor, nand, nor)

C/C++ examples SAL examples
count = 0; move x, y

x = a + b; add x, a, b

y = c - d; sub y, c, d

z = e * 35; mul z, e, 35

result = 3 / numstudents; div result, 3, numstudents

remainder = total % 3; rem remainder, total, 3

SAL Conditional Operations

Conditional execution is when some condition or test is used to determine if a specific set of
instructions will be executed.

In most HLLs, this is usually an "if" statement. If the condition is true some block of
instructions are executed, otherwise (else) a different block of instructions (or none) are
executed.

At the machine level, this is called a conditional branch. If the condition in the instruction is
true, then we branch (jump) to a different instruction in the program.

In the mnemonics,
 b stands for branch
 g greater
 l less
 t than
 e equal to
 z zero

SAL 'ifs' and 'gotos'
SAL C/C++ (kind of)
b label goto label;
bltz x, label if (x < 0) goto label;
bgtz x, label if (>) goto label;
blez x, label if (<=) goto label;
bgez x, label if (>=) goto label;
beqz x, label if (==) goto label;
bnez x, label if (!=) goto label;
beq x, y, label if (x == y) goto label;
bne x, y, label if (!=) goto label;
blt x, y, label if (<) goto label;
bgt x, y, label if (>) goto label;
ble x, y, label if (<=) goto label;
bge x, y, label if (>=) goto label;

C/C++ examples SAL examples

if (x < 0) {
 < more instructions here >
}

 bgez x, label
 < more instructions here >
label:

Structured loops like those used in HLLs (do-while & for), can be built out of ifs and gotos. Combine a
condition test with a branch.

About Labels

A label is an identifier. It follows the same rules as those given for identifiers (variable names).

A label identifies a location (an address).

The syntax for the use of a label places the label first, and follows it with a colon.

Examples of labels that you have already used:

 count: .word 0
 my_string: .asciiz "Here is my string, ready to go!\n"

Each of these examples assigns a human-readable mneumonic to an address (assigned by the
assembler).

The same may be done within code. These labels are necessary in the case of identifying the
instruction which is the target of a branch instruction. But, we could also add unnecessary labels.

Examples of labels that might be unnecessary:

 label1:
 add x, y, z
 label2:
 label3:
 sub aa, bb, cc
 putc char8

In this code fragment, the address assigned for both label2 and for label3 is the same. No syntax
rules are broken by having more than one label for the same thing.

It could get confusing, as well as misleading.
Fortunately, our simulator disallows this double labeling of
items within the .data section.

 .data
count1:
count2: .word 0
str1: .asciiz "count1 is "
str2: .asciiz "count2 is "
newline: .byte '\n'
 .text
__start:
 add count1, count1, 1
 add count2, count2, 1
 puts str1
 put count1
 put newline
 puts str2
 put count2
 done

The simulator gives the following output for this program:

spim: (parser) Unknown type on line 12 of file lotsalabels.s
 add count1, count1, 1
 ^
spim: (parser) Type mismatch on line 12 of file lotsalabels.s
spim: (parser) Unknown type on line 12 of file lotsalabels.s
spim: (parser) Unknown type on line 12 of file lotsalabels.s
spim: (parser) Unknown type on line 18 of file lotsalabels.s
 put count1
 ^
spim: (parser) Unknown type on line 18 of file lotsalabels.s

put count1
 ^
count1 is
count2 is 1

Examples
 C equivalent:

 if (count < 0)
 count = count + 1;

 SAL equiv to if-then-else:

 bltz count, ifstuff
 b endif
 ifstuff: add count, count, 1
 endif: # next program instruction goes here

 -- OR --

 bgez count, endif
 add count, count, 1
 endif: # next program instruction goes here

*** last one is best
Examples of compound conditionals:

 C/Java:

 if ((x < y) || (w == z)) {
 a = a + 1;
 }

 One possible SAL equivalent:

 blt x, y, increment # no need to check second
 bne w, z, no_increment # condition if first is True
 increment: add a, a, 1
 no_increment:

C/Java:
 if ((x < y) && (w == z)) {
 a = a + 1;
 }

 One possible SAL equivalent:
 bge x, y, no_increment # must check second
 bne w, z, no_increment # condition if first is True
 add a, a, 1
 no_increment:

Example: while loop
 C:
 while (count > 0) {

 a = a % count;
 count --;

 }

 SAL:
 while: blez count, endwhile
 rem a, a, count
 sub count, count, 1
 b while
 endwhile: # next program instruction goes here

repeat loop example
 (NOTE: This example shows an implementation of nonsense code.)

 C:
 /* do statement while expression is TRUE */
 /* when expression is FALSE, exit loop */
 do {
 if (aa < bb)
 aa++;
 if (aa > bb)
 aa--;
 } while(aa != bb);

 SAL:
 repeat: bge aa, bb, secondif
 add aa, aa, 1
 secondif: ble aa, bb, until
 sub aa, aa, 1
 until: bne aa, bb, repeat

C:
 while ((count < limit) && (c==d))
 {

 /* loop's code goes here */
 }

 SAL:
 while: bge count, limit, endwhile
 bne c, d, endwhile

 # loop's code goes here

 b while
 endwhile:

Example: for loop
C:

 for (i = 3; i <= 8; i++)
 {
 a = a + i;
 }

 SAL:
 move i, 3
 for: bgt i, 8, endfor
 add a, a, i
 add i, i, 1

 b for
 endfor:

More SAL conditional examples

Communication with user

SAL has simple read (get) and write (put) commands for communicating with the user of a
SAL program. The following table shows a close match in a HLL.

 SAL C++ Java
 put x cout << x; System.out.print(x);
(x is either 1 char or an int)
 puts msg cout << msg; System.out.print(msg);
(msg is a string)
 get x cin >> x; x = stdin.read();

get x, where x is an integer variable. (.word)
SAL will read input from the user and interpret it as an integer. If a non-integer character is
found before a valid integer, the value returned is zero. It will discard the rest of the line.

get c, where c is a character variable. (.byte)
SAL will read one character and place it into the variable c.
It will not discard the rest of the line.

Examples: (input)

 >23 abc
 > -13
 >1234fgh!

SAL Code (each using the same input above):
 get int1 # int1 <-- 23
 get int2 # int2 <-- -13
 get int3 # int3 <-- 1234
 OR: (1st line)
 get char1 # char1 <-- '2'
 get int1 # int1 <-- 3 (found therefore discard rest
 of the line)
 get char2 # char2 <-- ' ' (2nd line)

 OR: (1st line)
 get char1 # char1 <-- '2' (read char by char)
 get char2 # char2 <-- '3'
 get int1 # int1 <-- 0, because the first value read
(ignoring white space)
 # is not a digit, so the type does not match.

 ** To get more than one non-character value from a single
line of input, you must read input character by character, and
convert to whatever form is desired. (More in Chapter 4)

A Simple Example (either calling get ch or get y)

 .data
x: .word 3
msg: .asciiz "hi"
ch: .byte
y: .word

 .text
put x # x can be int, char, float
puts msg
get ch # ch is a character
get y
done

The SAL "get" instruction has some interesting results

Input returned by "get y" returned by "get ch"
23 23 2
-13 -13 -
3, hello 3 3
" "123hi 123 " " (“ ” are spaces)
13.2 13 1
hi 0 h

SAL Program Examples

this simple program adds up 2 integers and prints their sum and
products.

 .data
 prompt1: .asciiz "Enter an integer: "
 prompt2: .asciiz "Enter a second integer: "
 linefeed: .byte '\n'
 msg1: .asciiz "The sum of "
 msg2: .asciiz " and "
 msg3: .asciiz " is "
 msg4: .asciiz "The product of "
 int1: .word 0
 int2: .word 0
 sum: .word
 product: .word

 .text
 # get the 2 integers from user
 __start: puts prompt1
 get int1
 put linefeed
 puts prompt2
 get int2
 put linefeed
 # calculate the sum and products
 add sum, int1, int2
 mul product, int1, int2
 # print out the sum and products
 puts msg1
 put int1
 puts msg2
 put int2
 puts msg3
 put sum
 put linefeed

 puts msg4
 put int1
 puts msg2
 put int2
 puts msg3
 put product
 put linefeed
 done

On Screen:
Enter an Integer

5
Enter a second Integer

3
(sum:3, prod:15)
The sum of 5 and 3 is 8
The product of 5 and 3 is 15

For the students to try at home.
A SAL program to print out a multiplication table

 .data
start: .word 0 # entered by user
finish: .word 0 # entered by user
ii: .word # loop induction variable
jj: .word # loop induction variable
product: .word
prompt1: .asciiz "Enter starting value: "
prompt2: .asciiz "Enter ending value: "
newline: .byte '\n'
x_symbol: .byte 'X'
equals: .byte '='
space: .byte ' '

 .text

__start: puts prompt1 # get user input
 get start
 puts prompt2
 get finish

 move ii, start
for: bgt ii, finish, all_done # nested for loop to print out
 move jj, start # the table
nested: bgt jj, finish, next_iter
 mul product, ii, jj

 # print one line of table
 put ii
 put space
 put x_symbol
 put space
 put jj
 put space
 put equals
 put space
 put product
 put newline

 add jj, jj, 1
 b nested
next_iter: add ii, ii, 1
 put newline
 b for
all_done: done

Procedures

SAL has only rudimentary methods for procedure call and return.
There is no explicit mechanism for parameter passing or function return values.
However, you will see how you can implement this functionality.
(It just won't be as convenient as you would like.)

Parts of a procedure

1. The call to the procedure
Example: b procname

2. The execution of the procedure's code

3. The return from the procedure
This is the hard part. (branch or jump)

By adding a label to the return instruction, we can branch to that instruction when the
procedure is complete.

A BAD example

 b procname
 rtn1: # more code here

 procname: # procedure code here
 .
 .
 .
 b rtn1

Unfortunately, this is not a procedure. It just jumps to a different place in the code and the
"procedure" cannot be called from more than one location. No matter where the procedure is
called from, it returns to the same location.

We need an ADDRESS to return to!

Example:

In main program:

...
y = abs(x); <--call--need a branch
y = y + 1; <--return point/address
...

(function:)
int abs (x);
int x, y;
{
 if (x < 0) {

y = -x;
 }
 else {

y = x;
 }
return(y);
}; <-- return -- branch back

Ignore parameters, simplest SAL:

...
b abs

return: add y,y,1
...

abs: bgez x, nonnegative
sub y, 0, x
b endabs

nonnegative: move y, x
endabs: b return # really needs (return here)

an address- a label for a specific spot in memory.

Load Address- SAL instruction that can put the address of a label into a variable.

la var1, label

The address implied by label is placed into var1.
var1 must be declared as an integer (.word)

Try
x=1 & x= -1

So, var1 is a POINTER to the memory with the label label.

Notice difference between address and contents of the address.

 label address contents
 aa: 103 6
 bb: 104 'a'
 cc: 105 2001

The SAL instruction la cc, bb (take address of bb and store it in
cc) changes the table above to be:

 label address contents
 aa: 103 6
 bb: 104 'a'
 cc: 105 ** 104 **

For procedure call and return, save a return address before branching to the procedure.

 la procname_ret, rtn1
 b procname
 rtn1: # more code here
 .
 .
 .
 procname: # procedure code here
 .
 .
 .
 b procname_ret ****variable

THIS STILL DOESN'T WORK!

It branches to label procname_ret.
But, procname_ret is a variable! We do NOT want to branch to a variable!
To solve the problem, there is a special form of the b instruction used only for procedure
return.

b (var1) #parentheses identify the special form
This branches to the contents of var1, not to var1 itself.

So, the complete and correct SAL call/return code is:

 la procname_ret, rtn1 # one call
 b procname
 rtn1: # more code here

 .
 .
 .
 la procname_ret, rtn2 # a second call
 b procname
 rtn2: # more code here
 .
 .
 .
 procname: # procedure code here
 .
 .
 .
 b (procname_ret) # procedure return

Prior abs() example: Change SAL procedure:

abs: bgez x, nonnegative
sub y, 0, x
b endabs

nonnegative: move y, x
endabs: b returnhere <-- change, NOT!

Must be:

endabs: b (returnhere) <-- Parentheses are important

2nd

4th

1st,
3rd

