
Chapter 4: Data Representations

• Integer Representations
o unsigned
o sign-magnitude
o one's complement
o two's complement
o bias
o comparison
o sign extension
o overflow

• Character Representations
• Floating Point Representations

Data Representation

Goal: to store numbers, characters, etc. in computer

Location: store in a memory location
a BOX or CONTAINER that can hold a value

(Memory is just an array (1-D) of these boxes, address is just the array
index)

Concentrate on one box.

binary representation- represent all information using only 0s and 1s
(low/high voltage). -computers

Many different ways to represent the same information using only 0s and 1s
(binary).

Its easiest to build electronic circuits with two states,
logically called 1 and 0, => 1 bit
physically often 3.3 and 0 volts.



Assume our box (memory) consists of one bit

We can use the bit to represent two different values

value representation
---- -----
1 0 but only two numbers not useful
2 1

Recall number vs. representation in last chapter

value representation
---- -----
false 0 for Pascal's boolean variables
true 1

What if box has two bits:
one combination has zero ones: 00
two have one one: 01, 10
one has two ones: 11

Since position matters can represent four values (or 2^2)

value representation
---- -----
east 00
north 01
west 10
south 11

Three bits can represent 8 (2^3) values:  000, 001, ..., 111

n bits can represent 2^n values:

n can represent about
-- --- ---
8 256
16 65,536 65 thousand (64K where K=1024)
32 4,294,967,296 4 billion
64 1.8446... x 10^19 20 billion billion



Most computers today use:

type bits name for box size
--- ---- -----------------
characters  8 | 16   byte (ASCII) | 16b Unicode (e.g., Java)
integers 32   word (sometimes 16 or 64 bits)
reals 32 | 64   word | double-word

Integer Representations

Why do we have four (popular) different representations for integers?
Each has it's own advantages and disadvantages.

Assume our box has a fixed number of bits n (e.g., 32).

We have two problems.

(1) Which 4 billion integers do we want?  Remember there are an infinite
number of integers less than zero and an infinite number greater than zero.

Today (1) is answered with either
  (a) non-negative integers:  zero & first positive integers
  (b) positive and negative integers: zero about half negative & half positive

(2) What bit patterns should we select to represent each integer from (1)?
Recall representation does not affect the calculated result , but it can affect
its ease of use.

Since we'll convert to decimal before showing numbers to humans,
select representation for computation ease, not intuition.

Today (2):
   unsigned for (a)
   signed magnitude for (b)
   one's complement for (b)
   two's complement for (b)
   biased for (b)

Today unsigned and two's complement most common.



Unsigned Binary Integer Representation

== "Base 2 Number System" (Chapter 3)

The range of values indicates which integers can be represented for a given
number of bits.
In each example, n represents the number of bits available to store the value.

The range of values for an unsigned binary number with n bits is: 0 to 2n-1

4 bit Unsigned Binary example

Number of bits: 4
Range: 0 to 24-1, OR 0 to +15

binary decimal hexidecimal  binary decimal hexidecimal

0000 0 0  1000 8 8

0001 1 1  1001 9 9

0010 2 2  1010 10 a

0011 3 3  1011 11 b

0100 4 4  1100 12 c

0101 5 5  1101 13 d

0110 6 6  1110 14 e

0111 7 7  1111 15 f

Notice: Only positive numbers can be represented.

Why can't the '-' character be used for storing negative values?
Computers can only recognize a value of 0 or a 1 in each bit.
An additional symbol like '-' can not be added.



Sign-magnitude Integer Representation

Sign-magnitude reserves one bit to store the sign (0 means positive and 1
means negative).

Good: represent negative numbers using only 0s and 1s

Bad: reduces the range of positive values that can be represented with the
same number of bits. Note: the most significant bit is being used to represent
negative values.

sign bit- bit that stores the sign of the number

convention: store the sign bit as the left-most bit of the number.

• 0 for positive
•  1 for negative

The range of values for a sign-magnitude number with n bits is: -(2n-1)+1
to +(2n-1)-1

4 bit Sign-Magnitude example

Number of bits: 4
Range: -(2(4-1))+1 to +(2(4-1))-1, which is -7 to +7

Sign-Mag decimal  Sign-Mag decimal

0000 +0  1000 -0

0001 +1  1001 -1

0010 +2  1010 -2

0011 +3  1011 -3

0100 +4  1100 -4

0101 +5  1101 -5

0110 +6  1110 -6

0111 +7  1111 -7

Notice: There are two representations of zero, +0 and -0.



Is it good or bad to have two representations of zero?
It's bad.

Why is it bad?

• For the hardware to calculate any arithmetic or logical operation
on zero must give the correct answer regardless of which value of
zero is used.

• More complex (costly) than a system that has only one
representation of zero.

example:  4 bits
      0101   is  5

      1101   is -5

                         8 bits        s   mag
      00100001  is  0 0100001  is  33
      10100001  is  1 0100001  is -33

to get the additive inverse of a sign magnitude integer, just flip
  (not, invert, complement, negate) the sign bit.

One's Complement Integer Representation

Importance:

• historical reasons (it used to be used, e.g. Cray)
• it is used to produce two's complement representations (what is

currently used).

Positive integers = unsigned binary (and sign-magnitude for that matter).

Negative integers = complement of the number's positive representation.

The complement of 0 is 1

the complement of 1 is 0.

Complement of an n-bit number is produced by flipping each bit of the
number. (ADDITIVE INVERSE, NEGATE, FLIP, INVERT or NOT).



4 bit One's Complement example

Number of bits: 4
Range: -(2(4-1))+1 to +(2(4-1))-1, which is -7 to +7

1s Comp decimal  1s Comp decimal

0000 +0  1000 -7

0001 +1  1001 -6

0010 +2  1010 -5

0011 +3  1011 -4

0100 +4  1100 -3

0101 +5  1101 -2

0110 +6  1110 -1

0111 +7  1111 -0

Bad:

• still two representations of zero, +0 and -0, and they are the one's
complement of each other (0000 and 1111).

• the range of values is the same for the same number of bits in sign-
magnitude.

Translation:

• If the most significant bit is a 1, the number represents a negative
value.

• To determine which negative value, take the one's complement to find
the positive decimal magnitude (value).

• Example: Given 1100
 0011 (flip the bits
 3 (but the MSB is 1)
 -3

things to notice:
1. any negative number will have a 1 in the MSB.
2. there are 2 representations for 0, 00000 and 11111.



Two's Complement Integer Representation

Two's complement = one's complement

allows one additional negative value instead of having two representations
of zero.

• If MSB of a number is a 0 => the number is positive and can be
interpreted the same as an unsigned binary representation.

• If MSB is a 1 => the number is negative (use the additive inverse to
determine its decimal value in decimal).

• Note: the bit pattern 1111 represents -1 instead of -0.

The value of each negative representation is shifted by one in this way.
       shifting allows

• one additional negative value
• leaves only one representation of zero.

Two's complement representation of a positive decimal number:

• use the unsigned binary representation for the decimal value
• ensure the decimal value is in the valid range for the given number of

bits
• Otherwise, overflow will occur and the result will be a negative value.

Two's complement representation of a negative decimal number:

• take the additive inverse of the representation of its positive value
• Example:

o two's complement representation of -3
o  take the additive inverse (the two's complement) of 0011
o  which is 1101.

take the positive value    0101 (+5)
      take the 1's comp.         1010 (-5 in 1's comp)
      add 1                     +   1

------

     1011 (-5 in 2's comp)



Ok, but how do I take the two's complement?
1. Take the one's complement. (Flip the bits)
2. Add one to the result.

Ok, but how do I add one?
It's just like decimal.

add two bits and carry to the next place
if the result is two bits.

           02 + 02 =  02
           02 + 12 =  12
           12 + 02 =  12
           12 + 12 = 102
      12 + 12 + 12 = 112

4 bit Two's Complement example

Number of bits: 4
Range: -(2(4-1)) to +(2(4-1))-1, which is -8 to +7

2s Comp decimal  2s Comp decimal

0000 +0  1000 -8

0001 +1  1001 -7

0010 +2  1010 -6

0011 +3  1011 -5

0100 +4  1100 -4

0101 +5  1101 -3

0110 +6  1110 -2

0111 +7  1111 -1

With 32 bits:

[2147483648,..,-1,0,+1,..,2147483647]  approx= +/- 2G
 [2^31,..,-1,0,+1,..,(2^31 - 1)] = 2^31 + 1 + (2^31 - 1) = 2^32



• There is only one representation of zero, +0
• two's complement of zero is still zero
• Try taking the two's complement of zero to convince yourself.

What happens to the 1 that gets carried out of the most significant bit
when I take the two's complement of zero?
Nothing, it gets carried out and the n-bit result is still correct.

What decimal value does the two's complement 1110011
represent?

          1110011 (in 2's comp)

          0001100 (after taking the 1's complement)
       +        1
       ----------
          0001101 (this value is 13,
                   therefore its additive inverse
                   1110011 is -13.)

Verify on your own that the 2's complement of
0001101 is 1110011.

The most significant bit in a one or two's complement number is not a
sign bit. Why not?
A sign bit is one bit that indicates the sign of the number and nothing
more.

MSB of a two's complement number is only part of the sign of the number.
Example:

the sign of the two's complement number 1111101 is indicated by
each of the five most significant bits.

The value 1111101 is the same as 101 or 11101.



  a 3-bit example:
  bit pattern:    100   101  110  111  000  001  010  011

  1's comp:       -3     -2   -1    0   0    1    2    3

  2's comp.:      -4     -3   -2   -1   0    1    2    3

A LITTLE BIT ON ADDING

  we'll see how to really do this in the next chapter, but here's
  a brief overview.

  its really just like we do for decimal!
    0 + 0 = 0
    1 + 0 = 1
    1 + 1 = 2  which is 10 in binary, sum is 0 and carry the 1.
    1 + 1 + 1 = 3  sum is 0, and carry a 1.

       a      0011
     +b    +0001
      --       -----
     sum   0100

     see truth table next

carry in  a  b   sum  carry out
   0     0  0    0    0
   0      0  1    1    0
   0      1  0    1    0
   0      1  1    0    1
   1      0  0    1    0
   1      0  1    0    1
   1      1  0    0    1
   1      1  1    1    1



Biased Integer Representation

Similar to unsigned binary

• Difference: it can represent negative numbers
• The range of values represented is skewed.

o Instead of representing 0 to 2n-1
o bias-representation represents the range of values from

-bias to 2n-1-bias.

4 bit Bias-7 example

Number of bits: 4
Range: -B to 24-1-B, which is -7 to 24-1-7
this evaluates to -7 to +8

binary decimal Bias-7  binary decimal Bias-7
0000 0 -7  1000 8 1

0001 1 -6  1001 9 2

0010 2 -5  1010 10 3

0011 3 -4  1011 11 4

0100 4 -3  1100 12 5

0101 5 -2  1101 13 6

0110 6 -1  1110 14 7

0111 7 0  1111 15 8

Any integer can be used as the bias. The bias is chosen based on the range
desired.



Bias-B
Binary Integer Representation

The range of values represented includes negative numbers
The bias is usually chosen to give an equal number of positive and negative values.

Bias-0

Bias-3

Bias-7

Bias-8

Notice: The bias of 7 was chosen so that approximately half the representable values
were negative and the other half were positive.



visual example (of the re-mapping):

bit pattern:        000  001  010  011  100  101  110  111

unsigned value:      0    1    2    3    4    5    6    7

biased-2 value:      -2   -1   0    1    2    3    4    5

This is biased-2.  Note the dash character in the name
of this representation.  It is not a negative sign.

examples:    given 4 bits, we BIAS values by 2^3 (8)

  true value to be represented        3
  add in the bias                  +8

 ----
  unsigned value                   11

  so the bit pattern of 3 in biased-8 representation
  will be  1011
  going the other way, suppose we were given a
  biased-8 representation as   0110

  unsigned 0110  represents   6
  subtract out the bias   - 8

  ----
  true value represented   -2

    ADD BIAS TO TABLE
    this representation allows operations on the biased numbers
    to be the same as for unsigned integers, but actually represents
    both positive and negative values.

    choosing a bias:
      the bias chosen is most often based on the number of bits
      available for representing an integer.  To get an approx.
      equal distribution of true values above and below 0,
      the bias should be    2 ^ (n-1)      or   (2^(n-1)) - 1

Used in floating-point exponents



Comparison of Integer Representations

Representation Range Addition
Additive
Inverse

Unsigned 0 to 2n-1
easy
same as decimal

N/A, can't
represent
negatives

Sign-Magnitude
-(2n-1)+1
to +(2n-1)-1

complex
easy
flip the sign
bit

One's
Complement

-(2n-1) + 1
to +(2n-1) - 1

medium
have to consider
both zeros

take
additive
inverse of
each bit

Two's
Complement

-(2n-1)
to +(2n-1) - 1

easy
take one's
complement
and add one

Biased
-bias
to +(2n) - 1 - bias

<easy
convert
add
convert

hard

How many distinct values can be represented with n bits?
2n, regardless of the representation.

Why is Two's Complement used to represent integers, by most
computers?
1. The hardware for the most common operations is faster.
2. The hardware is simpler (cheaper to design & build).



Use n=4 to illstrate,

values

in box unsign SM 1SC 2SC Bias-8

0000  0 +0 -8
0001  1 +1 -7
0010  2 +2 non-neg -6
0011  3 the same

0100  4
0101  5
0110  6
0111  7 +7 -1

1000  8 -0 -7 -8  0
1001  9 -1 -6 -7 +1
1010 10 -2 -5 -6 +2
1011 11

1100 12
1101 13
1110 14
1111 15 -7 -0 -1 +7

key values

0 0
2^(n-1) - 1 7
2^(n-1) 8
2^n - 1 15
2^n 16
(and corresponding negative values)



Sign-Extension

How do I change an integer with a smaller number of bits into the same
integer (same representation) with a larger number of bits?
There is a different answer for each representation.

Arithmetic units must sometimes convert values held in one number of bits
into the same value in a larger number of bits.

The process is different for each representation.

Unsigned

The original value goes in the least significant bits and 0's are placed in all
more significant bits.

                           place 0s
                           ||||||||
          01001101   -->   0000000001001101
          11101001   -->   0000000011101001
                                   ^^^^^^^^
                                   original
                                   value

• only positive values and zero

             xxxxx   -->   yyyyyyyy
          000xxxxx

copy the original integer into the LSBs, and put 0's
elsewhere

range:   0 to 2^n - 1, for n bits

ADD UNSIGN TO TABLE



example:   4 bits, values 0 to 15
   n=4, 2^4 -1 is 15
   [0, 15] = 16 = 2^4 different numbers

   7 is 0111
   17 not represenable
   -3 not represenable

example:   32 bits = [0, 4,294,967,295]
   4,294,967,296 = 2^32 different numbers

Sign-Magnitude

Copy the original integer's magnitude into the least significant bits, and put
the original sign into the most significant bit. Place 0's everywhere else in
the larger number.

                            place 0s
                            ||||||||
          01001101   -->   0000000001001101
          11101001   -->   1000000001101001
                           ^        ^^^^^^^
                         sign       original
                          bit       magnitude

sxxxx   -->   yyyyyyyy
       s00xxxxx

copy the original integer's magnitude into the LSBs,
put the original sign into the MSB, and put 0's elsewhere

IDEA: use 1 bit of integer to represent the sign of the integer

let sign bit be msb where
    0 is +
    1 is -

the rest of the integer is a magnitude, uses same encoding as unsigned
integers



To get the additive inverse of a number, just flip (invert, complement) the
sign bit.
range:    -(2^(n-1)) + 1     to    2^(n-1) -1

ADD SM TO TABLE

  4 bits, -7 to +7
  n=4, - 2^3 + 1     to    2^3 - 1
       -8 + 1         to     8 - 1

example:             4 bits
      0101   is  5

      -5 is represented as 1101
      +12 not representable

      [-7,..,-1,0,+1,..,+7] = 7 + 1 + 7 = 15 < 16 = 2^4  Why?

because of the sign bit, there are 2 representations for 0.
This is a problem for hardware. . .

    0000 is +0, 1000 is -0

    Since +0 equals -0, comparison logic can't just test for the
    same representation -- sounds trivial, but it's a big deal!



One's and Two's Complement

Copy the original integer into the least significant bits and copy the most
significant bit of the original integer and copy it elsewhere. The most
significant bit of the original value is shown in bold type-face.

  1's and 2's complement:   called SIGN EXTENSION
                        sign-extension
                           ||||||||
          01001101   -->   0000000001001101
          11101001   -->   1111111111101001
                                   ^^^^^^^^
                                   original
                                    value
.

copy the original integer into the LSBs,
take the MSB of original integer and copy it
elsewhere.

example:       0010101
      000 0010101

         11110000
      11111111 11110000

Bias

In most cases, the bias would change and other calculations would be
required to make the change to a larger number of bits.



Overflow

Each representation in a given number of bits has a range of integers that can
be represented. However, there are many integers that are greater (or
smaller) than that range. If one of these integers is the result of a calculation,
then overflow is said to have occurred.

Example: The result of adding the integers 0111 + 1101 causes overflow if
the result (11100) must fit in 4-bits.

Overflow occurs when performing arithmetic operations.

sometimes a value cannot be represented in the limited number
of bits allowed.   Examples:
    unsigned, 3 bits:    8 would require at least 4 bits (1000)
    sign mag., 4 bits:   8 would require at least 5 bits (01000)

when a value cannot be represented in the number of bits allowed,
we say that overflow has occurred.  Overflow occurs when doing
arithmetic operations.

      example:          3 bit unsigned representation

      011 (3)
   + 110 (6)
    ---------
       ?  (9)     it would require 4 bits (1001) to represent

  the value 9 in unsigned rep.

What happens on overflow?
ignored
tested
trap



Character Representation

Characters are represented by 0s and 1s (binary sequence) in a computer.

ASCII Character Set- There is a standard 8-bit encoding for representing
characters in binary. ASCII stands for American Standard for Character
Information Interchange.

(See table on p.102 for the printable characters of the ASCII Character Set)

past: most I/O devices operated on 8-bit quantities

Box (memory location) for a character usually contains 8 bits:
00000000 to 1111111 or in hex 0x00 to 0xff.

As with integers we ask

(1) Which characters?

(2) Which bit patterns for which characters?

For (1):  A, B, C, ..., Z, a, b, c, ..., Z, 0, 1, 2, ..., 9
punctuation (,:{ ...) and special (\n \0 ...)

For (2): (a) Want STANDARD! and (b) want to help sorting
(i.e., representation(B) is between rep(A) and rep(C)).

I/O devices work with 8 bit (really only 7 bit) quantities.
A standard code  ASCII (American Standard for Computer Information
Interchange) defines what character is represented by each sequence.

now: 16-bit is more common. We will use 8-bit sequences in this course.

The order of bit patterns makes it possible to sort letters based on the integer
values.

Uppercase letters have different bit patterns (values) than the same
lowercase letter.

Also, notice that the bit pattern for the characters that represent digits are
different than the encoding for decimal values.



For example, the character '3' is different than the integer value 3.

examples:
    0100 0001  is  41 (hex)  or 65 (decimal).  It represents 'A'
    0100 0010  is  42 (hex)  or 66 (decimal).  It represents 'B'

    Different bit patterns are used for each different character
    that needs to be represented.
The code has some nice properties.  If the bit patterns are compared,
(pretending they represent integers), then

'A' < 'B'
 65 < 66

This is good, because it helps with sorting things into alphabetical
order.

Notes:        'a' (61 hex)  is different than 'A' (41 hex)
              '8' (38 hex) is different than the integer 8

    the digits:
  '0' is 48 (decimal) or 30 (hex)
  '9' is 57 (decimal) or 39 (hex)

Quiz question:  Why are there no character codes to represent: 10, 12 or
354?
Answer:  Use 2 or 3 chars

 Because of this, you have to be careful.  Consider the following
example:



Incorrect Program Example

in1:      .byte
result:   .byte

          get  in1
          add  result, in1, in1
          put  result

If the user had entered '3', result would be 51 + 51 = 102 (decimal)
The output would be 'f', since the ASCII code for 102 is 'f'

Correct Program Example

in1:      .byte
number:   .word
result:   .byte
out1:     .byte

          get  in1
          sub  number, in1, 0x30 # subtract ASCII

# value for '0'
          add  result, number, number
          add  out1, result, 0x30 # covert decimal

# to character
          put  out1

The subtraction takes the bias out of the character representation.
The addition puts the bias back into the ASCII encoding.

This will only work right if the result is a single digit.
        (What would happen if it wasn't?)

What we need is an algorithm for translating character strings
to the integers the represent, and visa versa.



How do I convert a string of characters into an integer value?
We need an algorithm for the conversion.

Algorithm to convert a string of characters into an
integer:

    initialize integer to 0
    while (there are more characters) {
         get a character
         set digit to the character - 0x30

(the value of '0')
         set integer to the value of

integer * base + digit
    }

ALGORITHM:   character string --> integer
   the steps:

      for '3' '5' '4'

      read '3'
      translate '3' to 3

      read '5'
      translate '5' to 5
      integer =  3 * 10  + 5 = 35

      read '4'
      translate '4' to 4
      integer =  35 * 10  + 4 = 354

  the algorithm:

     asciibias = 48
     integer = 0
     while there are more characters
       get character
       digit <-  character - asciibias
       integer <- integer * 10  + digit



How do I convert an integer into a string of characters?
We need an algorithm for the conversion.

Algorithm to convert an integer into a string of
characters:

calculate the number of characters in the result value of the base
calculate the power = base(number of characters - 1)  e.g. (102)=100

    while (integer > 0 ) {
        set digit to the integer / power
        set integer to integer mod power
        convert digit to it's ASCII code
        output the character
        set power to power / base
    }

ALGORITHM:  integer --> character string
   the steps:
   for 354, figure out how many characters there are (3)

   354 div 100 gives 3
   translate 3 to '3' and print it out
   354 mod 100 gives 54
   (100/10 = 10 for the power)

   54 div 10 gives 5
   translate 5 to '5' and print it out
   54 mod 10 gives 4
   (10/10 = 1 for the power)

   4 div 1 gives 4
   translate 4 to '4' and print it out
   4 mod 1 gives 0
   (1/10 = 0, so you're done)



written in a form using two loops:

     # figure out base^(number of characters - 1)
     power_of_base = base
     while power_of_base is not large enough
         power_of_base = power_of_base * base

     while power_of_base != 0
         digit = integer / power_of_base

 char_to_print = digit + 48
 print char_to_print
 integer = integer % power_of_base
 power_of_base = power_of_base / base

Compare:

mystring: .asciiz "123"
mynumber: .word  123

"123" is '1' 0x31 0011 0001
 '2' 0x32 0011 0010
 '3' 0x33 0011 0011
 '\0' 0x0 0000 0000

==> 0011 0001 0011 0010 0011 0011 0000 0000
Series of four ASCII characters

123 = 0x7b = 0x0000007b = 00 00 00 7b

==> 0000 0000 0000 0000 0000 0000 0111 1011
a 32-bit 2SC integer

P.S.  if you read "123" as .word it would be 825,373,440

(OPTIONAL) GO OVER FIG 4.7 (p. 103) (SAL codes for char/int
conversion.)



Floating Point Representation

Box (memory location) for a real number usually contains 32 or 64 bits,
allowing 2^23 or 2^64 numbers.

As with integers and chars, we ask

(1) Which reals?  There are an infinite number between two adjacent integers.
In fact, there are an infinite number between any two reals!!!!!!!

(2) Which bit patterns for reals selected for (1)?

Answer for both strongly related to scientific notation.

Computers represent real values in a form similar to that of scientific
notation.

        1.23 x 104

The number has a sign (positive in this case).
The significand (1.23) is written with one non-zero digit to the left of the
decimal point.
The base (radix) is 10.
The exponent (an integer value) is 4. It also has a sign, positive.

There are standards which define what the representation means so that
across computers there will be consistency. Note that this is not the only way
to represent floating point numbers, it is just the IEEE standard way of doing
it.

Consider: a x 10^b and show on number line, where
"a" has only one digit of precision.

 a    b a x 10^b
---   --- --------
0   any 0
1 .. 9    0 1 .. 9
1 .. 9    1 10 .. 90
1 .. 9    2 100 .. 900

1 .. 9   -1 0.1 .. 0.9
1 .. 9   -2 0.01 .. 0.09



Many representable numbers close to zero where a small error is a big deal

Representable numbers spread out far from zero where a larger absolute
error is still a small relative error

Let r be some real number and let fp(r) be the representable number closest
to r,  want

| fp(r) - r |
| --------- |  <  small for all r (but zero)
|     r       |

For above error maximum at r=1.5  | (1-1.5)/1.5 | = 1/3

If a can have five digits, worst relative error at 1.00005

| (1-1.00005)/1.00005 | approx= 0.00005

For (1):  Minimize max relative error due to representation

For (2): (a) Want STANDARD!

Answer:  Floating-point, especially IEEE FP

Here's what we do:

The representation has three fields:

 -------------------------
 | S |   E     |  F      |
 -------------------------

S is one bit representing the sign of the number
E is an 8-bit biased integer representing the exponent
F is an unsigned integer



the value represented is:

  (-1)S x f x 2e

where

    e = E - bias
                 n

    f = F/2  + 1

for single precision representation (the emphasis in this class)

       n = 23
       bias = 127

What does all this mean?

 S, E, F all represent fields within a representation.
Each is just a bunch of bits.

 S is just a sign bit. 0 for positive, 1 for negative.
This is the sign of the number.

 E is an exponent field. The E field is a biased-127 representation.
The true exponent represented is (E - bias).
The radix for the number is ALWAYS 2.

Note: Computers that did not use this representation, like those built
before the standard, did not always use a radix of 2.
Example: some IBM machines had radix of 16.

 F is the mantissa (significand). It is in a somewhat modified form.
There are 23 bits available for the mantissa.

 If floating point numbers are always stored in their normalized form,
then the leading bit (the one on the left, or MSB) is ALWAYS a 1.
So, why store it at all? It gets put back into the number (giving 24 bits of
precision for the mantissa) for any calculation, but we only have to store
23 bits.

The MSB is called the HIDDEN BIT.



An example: Put the decimal number 64.2 into the IEEE standard single
precision representation.

first step:
  get a binary representation for 64.2
  to do this, get binary reps. for the stuff to the left
  and right of the decimal point separately.

  64  is   1000000

  .2 can be gotten using the algorithm:

  .2 x 2 =  0.4      0
  .4 x 2 =  0.8      0
  .8 x 2 =  1.6      1
  .6 x 2 =  1.2      1

  .2 x 2 =  0.4      0  now this whole pattern (0011) repeats.
  .4 x 2 =  0.8      0
  .8 x 2 =  1.6      1
  .6 x 2 =  1.2      1

    so a binary representation for .2  is    .001100110011. . .
                 ----

    or  .0011  (The bar over the top shows which bits repeat.)

Putting the halves back together again:
   64.2  is     1000000.0011001100110011. . .

second step:
Normalize the binary representation. (make it look like
scientific notation)

    6
1.000000 00110011. . . x 2



      third step:
6 is the true exponent.  For the standard form, it needs to
be in biased-127 form.

      6
  + 127
  -----
    133

133 in 8-bit, unsigned representation is 1000 0101

This is the bit pattern used for E in the standard form.

      fourth step:
the mantissa stored (F) is the stuff to the right of the radix point
in the normalized form.  We need 23 bits of it.

  000000 00110011001100110

      put it all together (and include the correct sign bit):

 S     E               F
 0  10000101  00000000110011001100110

      the values are often given in hex, so here it is

 0100 0010 1000 0000 0110 0110 0110 0110

     0x     4        2        8        0      6       6        6       6

Some extra details:

 -->  Since floating point numbers are always stored in a normalized
      form, how do we represent 0?

      We take the bit patterns 0x0000 0000 and 0x8000 0000
      to represent the value 0.

       (What fl. pt. numbers cannot be represented because of this?)



      Note that the hardware that does arithmetic on floating
      point numbers must be constantly checking to see if it needs
      to use a hidden bit of a 1 or a hidden bit of 0 (for 0.0).

      Values that are very close to 0.0, and would require the hidden
      bit to be a zero are called denormalized or subnormal numbers.
      These are specified

                 S                E                F
   0.0         0 or 1   00000000   00000000000000000000000
               (hidden bit is a 0)

   subnormal   0 or 1   00000000   not all zeros
               (hidden bit is a 0)

   normalized  0 or 1   > 0        any bit pattern
               (hidden bit is a 1)

 -->  Other special values:
                                    S   E            F
       +infinity              0 11111111 00000... (0x7f80 0000)
       -infinity               1 11111111 00000... (0xff80 0000)

       NaN (Not a Number)     ? 11111111 ?????...
  (S is either 0 or 1, E=0xff, and F is anything but all zeros)

 -->  Single precision representation is 32 bits.
      Double precision representation is 64 bits.
      For double precision:
         S  is the sign bit (same as for single precision).

   E  is an 11-bit, biased-1023 integer for the exponent.

   F  is a 52-bit mantissa, using same method as single
      precision (hidden bit is not expicit in the representation).



One last example:

0x4228 0000 is stored

0100 0010 0010 1000 0 ...

0 |  1000 0100 |  0101 0000 ...

positive

e = E - 127 = E - 128 + 1 = E - 10000000 + 1 =5

f = F/2^23 + 1 =  0.01010000 + 1 = 1.01010000

+1.01010000 x 2^(+5)  = 101010.000 = 32 + 8 + 2 = 42

Important Ideas
n-bit box can represent 2^n things
choose represention that eases computation
integers: UNSIGNED and 2SC most common
character: ASCII
real numbers: IEEE FP

IEEE Instruction Page

Convert floating point decimal number to IEEE representation,

SEF single point precision.

1. Calculate S (or set sign bit).

   S = 0, if number is positive.

   S = 1, if number is negative

2. Convert unsigned decimal number to unsigned binary notation

   a. Convert integer part to unsigned binary

   b. Convert fractional part to binary

   c. Put both parts together



3. Convert the unsigned binary into Scientific Notation and normalize.

4. Calculate E (8 bits). It's the Bias-127 value of the exponent.

   E = e + 127.

5. Convert E to unsigned binary

6. Calculate (or set) F (23 bits).  It is the 23 most significant bits of the fractional part
calculated in Step 3.

7. Place S, E and F together into one 32-bit single precision IEEE representation.

   _______________________________________________________________
   | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
   |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
   |S|       E       |                  F                       |
   |-|---------------|-------------------------------------------|
    1        8                       23


