
Chapter 5: Integer Arithmetic

Integer Arithmetic

We will cover the following operations on integers:

• Integer Addition
• Integer Subtraction
• Integer Multiplication (see Karen's notes)
• Integer Division (see Karen's notes)
• Logical Operations (.words only) (see Karen's notes)
• Shifting Operations (.words only) (see Karen's notes)

Integer Addition

Arithmetic on integers is different for each of the integer representations
discussed in Chapter 4.

All arithmetic in computers is performed with a fixed precision. The number
of bits in each operand and the result is fixed.

The addition of binary digits (bits) is the same as the addition of decimal
digits. We just have to remember how each value in binary is represented.

 02 + 02 = 02
 02 + 12 = 12
 12 + 02 = 12
 12 + 12 = 102

 102 + 12 = 112
 12 + 12 + 12 = 112

carry in a b | sum carry out
---------------+----------------
 0 0 0 | 0 0
 0 0 1 | 1 0
 0 1 0 | 1 0
 0 1 1 | 0 1
 1 0 0 | 1 0
 1 0 1 | 0 1
 1 1 0 | 0 1
 1 1 1 | 1 1

Remember when you're adding two values together, add each place starting
from right to left. At each place, add the digits from each value. The last
digit of that answer goes in the final result and the other digit(s) get carried
over to the next place in the addition.

Decimal Example

 10011 the digits that were carried over
 849479
 + 90349

 939828 the final answer

This is the basic method for adding two values. It is used for each
representation, but there are some differences as well.

• unsigned
• sign-magnitude
• one's complement
• two's complement

Unsigned Binary Addition

carry over bits
 11 111 1 1111
 a 0011 101101 00111010 (58)
 + b + 0001 + 011101 + 00001110 (14)
 --- ------ -------- ---------------
 sum 0100 1 001010 01001000 (72)
 overflow

Overflow of unsigned binary

If there is a carry over from the addition of the most significant bits, that
digit is ignored (thrown away), and OVERFLOW has occurred.

Sign-magnitude Addition

Rules for adding two Sign-Magnitude values

1. Only add integers of same sign.
(add two positive values or two negative values only)

2. The sign of the result is the same as the sign of the operands (addends).
3. do unsigned addition on magnitudes only

(do not carry into the sign bit)
4. throw away any carry out of the msb of the magnitude

(be sure this is not recorded as the sign bit)

Sign-Magnitude Addition examples

two positives
 111
 0 0101 (+5)
 + 0 0011 (+3)

 0 1000 (+8)

two negatives

 1 1101 (-13)
 + 1 0010 (-2)

 1 1111 (-15)
don't add the sign bits!

positive and negative

 0 01011 (+11)
 + 1 01110 (-14)

don't add!
must do subtraction!

OVERFLOW
 111
 0 11011 (27)
 + 0 01110 (14)

 0 01001
 overflow
don't carry over into the sign bit!

OVERFLOW
 1
 1 11011 (-27)
 + 1 11000 (-24)

 1 10011
 overflow
don't carry over into the sign bit!

One's Complement Addition

Rules for adding two One's Complement values

1. Add integers of any sign.
2. Do unsigned addition.
3. Don't throw away a carry out of the msb.

If there's a carry out of msg, add 1 to get the correct result.
This is called "end-around carry" in hardware implementations.

One's Complement Addition examples

two positives

 00111 (+7)
 + 00101 (+5)

 01100 (+12)

two negatives
 111
 111110 (-1)
 + 111101 (-2)

 1 111011 (-4)
wrong!
 + 1

 111100 (-3)
right!

positive and negative

 00001 (+1)
 + 11100 (-3)

 11101 (-2)
right!

positive and
negative

 01001 (+9)
 + 11100 (-3)

 1 00101 (+5)
wrong!
 + 1

 00110 (+6)
right!

OVERFLOW
 1 11
 01011(11)
 + 01001 (9)

 10100(-12)
 overflow
the sign of the result
is opposite of the
sign of the operands

OVERFLOW
 1
 11011 (-4)
 + 10010 (-13)

 1 01101 (+13)
wrong!
 + 1

 01110 (14)
still wrong!
 overflow
the sign of the result
is opposite of the
sign of the operands

NO OVERFLOW
 11
 01101 (+13)
 + 11110 (-1)

 1 01011 (+11) wrong!
 + 1

 01100 (+12) right!
NO OVERFLOW
there is no overflow
if the two operands
have different signs

Two's Complement Addition

Rules for adding two Two's Complement values

a. Add integers of any sign.
b. Do unsigned addition.
c. Don't throw away a carry out of the msb.

If there's a carry out of msg, just ignore it.

Two's Complement Addition examples

two positives

 00111 (+7)
+ 00101 (+5)

 01100 (+12)

two negatives
 1111
 111111(-1)
+111110(-2)

 111101(-3)
right!

positive and
negative

 00001 (+1)
+11101 (-3)

 11110 (-2)
right!

positive and negative
 1
 01001 (+9)
 + 11101 (-3)

 00110 (+6)
right!

OVERFLOW
 1 11
 01011 (11)
 + 01001 (9)

 10100(-12)
wrong!
 overflow
the sign of the result
is opposite of the
sign of the operands

OVERFLOW

 11100 (-4)
 + 10011 (-13)

 01111 (+15)
wrong!
 overflow
the sign of the result
is opposite of the
sign of the operands

NO OVERFLOW
 1111
 01101 (+13)
 + 11111 (-1)

 01100 (+12) right!
NO OVERFLOW
there is no overflow
if the two operands
have different signs

Biased Integer Addition

Rules for adding two Bias-B values

1. Add integers of any sign.
2. Do unsigned addition and keep the carry out bit (for now).
3. Subtract the bias. This is done as unsigned subtraction.
4. If there's still a carry out of msg, overflow has occurred.

An alternative for students on homeworks and exams,
is to convert to some other number system (like decimal)
do the addition and reconvert to Bias-7.

This alternative method on homeworks/exams is only acceptable for Bias-
B numbers.

Examples with Bias-7 on 4-bit values

 11
 0011 (-4 in Bias-7) 0101 (-2 in Bias-7)
 + 1011 (+4 in Bias-7) + 0011 (-4 in Bias-7)
 ------ ------
 1110 (+7 in Bias-7) 1000 (1 in Bias-7)
 - 111 (7 in unsigned binary) - 111 (7 unsigned)
 ------ ------
 0001 (-6 in Bias-7) 0001 (1 in Bias-7)

Notice, that this system would not be easy to implement in computer
hardware.

Integer Subtraction

The subtraction of binary digits (bits) is performed in the same way as the
subtraction of decimal digits.
We just have to remember how each value in binary is represented.

02 - 02 = 02
12 - 12 = 02
12 - 02 = 12

102 - 12 = 12
02 - 12 = 12 if able to borrow

from next place in the value

Remember when you're subtracting one value from another, subtract at
each place starting from right to left. At each place, subtract the digits of
the second value from the corresponding digit of the first value. It may be
necessary to borrow from the place to the left.

Decimal Example

 must borrow at this place
 |
 849479
 - 90349

 759130 the final answer

This is the basic method for subtracting two values. It is used for each
representation, but there are some differences as well.

o unsigned subtraction
o sign-magnitude subtraction
o one's complement subtraction
o two's complement subtraction

Unsigned Subtraction

It only makes sense to subtract a smaller number from a larger one

 must borrow here
 |
 1011 (11)
 - 0111 (7)

 0100 (4)

Sign-magnitude Subtraction

Rules for subtracting two Sign-Magnitude values

1. Only subtract integers of the same sign.
(subtract two positive values or two negative values only)

2. If the signs are different, then change the problem to addition.

This is okay, since the following identities are true.
a - b is equal to a + (-b)
a + b is equal to a - (-b)

3. Compare the magnitudes of each value.
Subtract the smaller magnitude from the larger magnitude.
(do not subtract the sign bit)

4. The sign is the same if the order of operands stayed the same.
If the order was switched, the sign changes.

Sign-Magnitude Subtraction examples

If first operand has
the larger magnitude:

If second operand has the larger magnitude:

24 - 7
 0 11000 (+24)
 - 0 00111 (+7)

 0 10001 (+17)

6 - 28
 0 00110 (+ 6) switch order, 0 11100 (+28)
 - 0 11100 (+28) subtract and - 0 00110 (+ 6)
 -------------- change sign ---------------
 1 10110 (-22)

-24 - -2
 1 11000 (-24)
 - 1 00010 (-2)

 1 10110 (-22)

If second operand is the larger magnitude: -6 - -28
 1 00110 (- 6) switch order, 1 11100 (-28)
 - 1 11100 (-28) subtract and - 1 00110 (- 6)
 -------------- change sign ---------------
 0 10110 (+22)

One's Complement Subtraction

Try some examples on your own to figure this out!

Two's Complement Subtraction

Don't do subtraction at all.

Change the problem to an equivalent addition problem by taking the
additive inverse (two's complement) of the second operand.

a - b becomes a + (-b)

24 - 7 <==> -10 + -3
 011000 (24) 011000 (24)
-000111 (7) ===> + 111001 (-7)
 ------------- --------
 010001
(17)

-10 - +3 <==> -10 + -3

 10110 (-10) 10110 (-10)
 - 00011 (3) ===> + 11101 (- 3)
 ------------ -------
 10011 (-13)
 (throw away carry
out)

Second Example explained:

 10110 (-10)
 - 00011 (3) --> 00011
 ------------ |

 \|/
 11100
+ 1

 11101 (-3)

 so do

 10110 (-10)
 + 11101 (-3)

 10011 (-13)
 (throw away carry out)

Biased Integer Subtraction

Rules for subtracting two Bias-B values

a. Subtract integers of any sign.
b. Do unsigned subtraction.
c. Add the bias back in. This is done as unsigned addition.

An alternative for students on homeworks and exams,
is to convert to some other number system (like decimal)
do the subtraction and reconvert to Bias-7.
This alternative method on homeworks/exams is only acceptable for Bias-
B numbers.

Example with Bias-7 on 4-bit values

 0011 (-4 in Bias-7) 1001 (2)
 - 1001 (+2 in Bias-7) ==> - 0011 (-4)
 ------ ------
 0110 (-1)
 + 111 (add bias)

 1101 (6 inBias-7)

Notice, that is still hard to implement in computer hardware.

OVERFLOW

OVERFLOW DETECTION IN ADDITION

 unsigned -- when there is a carry out of the msb

 1000 (8)
 +1001 (9)

 1 0001 (1)

 sign magnitude -- when there is a carry out of the msb of the magnitude

 1 1000 (-8)
 + 1 1001 (-9)

 1 0001 (-1) (carry out of msb of magnitude)

 2's complement -- when the signs of the addends are the same, and the
 sign of the result is different

 0011 (3)
+ 0110 (6)

 1001 (-7) (note that a correct answer would be 9, but

 9 cannot be represented in 4-bit 2's complement)

Note: you will never get overflow when adding 2 numbers of opposite
 signs

OVERFLOW DETECTION IN SUBTRACTION

 unsigned -- never
 sign magnitude -- never happen when doing subtraction
 2's complement -- we never do subtraction, so use the addition rule
 on the addition operation done.

MULTIPLICATION of integers

 0 x 0 = 0
 0 x 1 = 0
 1 x 0 = 0
 1 x 1 = 1

 -- longhand, it looks just like decimal

 -- the result can require 2x as many bits as the larger operand

 -- in 2's complement, to always get the right answer without
thinking about the problem, sign extend both integers to
2x as many bits (as the larger). Then take the correct number
of result bits from the least significant portion of the result.
Note that the HW that implements multiplication does not
use this algorithm.

 2's complement example:

 1111 1111 -1
 x 1111 1001 x -7

 ---------------- ------
 11111111 7
 00000000
 00000000

 11111111
 11111111
 11111111
 11111111
 + 11111111

 1 00000000111
 -------- (correct answer underlined)

 WRONG ! Sign extended:
0011 (3) 0000 0011 (3)

 x 1011 (-5) x 1111 1011 (-5)
 ------ -----------

 0011 00000011
 0011 00000011
 0000 00000000
 + 0011 00000011
 --------- 00000011
 0100001 00000011
 not -15 in any 00000011
 representation! + 00000011

 1011110001

 take the least significant 8 bits
 11110001 = -15

more about integer multiplication.

 multiplicand
 x multiplier

 product

If we do NOT sign extend the operands (multiplier and multiplicand),
before doing the multiplication, then the wrong answer sometimes
results. To make this work, sign-extend the partial products
to the correct number of bits.

To ease our work, classify which do work, and which don't.

 + - + - (muliplicands)
 x + x + x - x - (mulipiers)
 ---- ---- ---- ----
 OK sign | |

 extend | take |
 partial | additive |
 products | inverses |

 - +
 x + x +
 ---- ----
 sign OK

 extend
 partial
 products

Example:

 without with correct
 sign extension sign extension

 11100 (-4) 11100
 x 00011 (3) x 00011
 ------------ ---------
 11100 1111111100
 11100 1111111100
 ------------ ---------------
 1010100 (-36) 1111110100(-12)
 WRONG! RIGHT!

Another example:

 without adjustment with correct adjustment

 11101 (-3) 11101 (-3)
 x 11101 (-3) x 11101 (-3)
 ------------- -------------
 11101 (get additive inverse of both)
 11101
 11101 00011 (+3)
 +11101 x 00011 (+3)
 ----------- -------------
 1101001001 (wrong!) 00011

 + 00011

 001001 (+9) (right!)

DIVISION of integers
 unsigned only in this class!
(Don't worry, you'll do lots of division in CS/ECE
552!)

 quotient

 divisor | dividend

 written as fractions: dividend

 divisor

 example:
 15 / 3 1111 / 011

 0101

 011 | 1111
 -0
 --
 11
 - 11

 01
 -0
 --
 11
 - 11

 0 (remainder)

another example:

 20 / 3 010100 / 011

 000110 (quotient = 6)

 011 | 010100
 -0

 01
 -0

 010
 -0

 0101
 - 011

 00100
 - 011

 0010
 - 0

 10 (remainder = 2)

Logical Operations

 All logical operations are done bitwise. This means
corresponding bits are compared and the single bit result goes
into the answer.

 All logical (and shift and rotate) operations are performed on
.word variables only.

 Each logical operation exists in SAL even though all operations
could be synthesized if only not & and were available.

 not z, x
 or z, x, y
 and z, x, y
 nor z, x, y
 nand z, x, y
 xor z, x, y
 xnor z, x, y

Shift Operations

 shift operations are used to change the
positions of bits.

 There are three types of shifting
 logical shifts of bits
 arithmetic shifts of bits
 rotate bits

Shift Left Logical (sll)

 bits are shifted to the left in the result
 ignore bit(s) that are shifted off left

(msb)
 add a zero to the least significant bit

 0 0 1 1 0 1 0 1
 / / / / / / /
 shift left logical by one 0 1 1 0 1 0 1 0

Shift Right Logical (srl)

 bits are shifted to the right in the result
 ignore bit(s) that are shifted off right

(lsb)
 add a zero to the most significant bit

 1 0 1 1 0 1 0 1
 \ \ \ \ \ \ \
 shift right logical by one 0 1 0 1 1 0 1 0

Shift Left Arithmetic (sll)

 same as shift left logical
 bits are shifted to the left in the result
 ignore bit(s) that are shifted off left (msb)
 add a zero to the least significant bit

 0 0 1 1 0 1 0 1
 / / / / / / /
 shift left arithmetic by one 0 1 1 0 1 0 1 0

Shift Right Arithmetic (sra)

 bits are shifted to the right in the result
 ignore bit(s) that are shifted off right

(lsb)
 sign extend the most significant bits

 1 0 1 1 0 1 0 1
 \ \ \ \ \ \ \
 shift right arithmetic by one 1 1 0 1 1 0 1 0

Rotate Left (rol)

 bits are shifted to the left in the result
 save bit(s) that are shifted off (msb)
 place “shifted” bit(s) into the least significant bit(s)

 1 0 1 1 0 1 0 1
 / / / / / /
 / / / / / /
 / / / / / /
 rotate left by two 1 1 0 1 0 1 1 0

Rotate Right (ror)

 bits are shifted to the right in the result
 save bit(s) that are shifted off right (lsb)
 place “shifted” bits into the most significant bits

 1 0 1 1 0 1 1 0
 \ \ \ \ \
 \ \ \ \ \
 \ \ \ \ \
 \ \ \ \ \
 rotate right by three 1 1 0 1 0 1 1 0

 What are logical, shift and rotate
operations used for?
 arithmetic operations (mult & div)
 to set and clear bits of a word that are

used as boolean (or other) values
 manipulate characters (bytes) in a

string of characters
 and…

Store a set of boolean
variables in a .word
 Number the bits so that we can refer to them
 We will use the little-endian bit numbering system
 Assign a meaning to each bit (or group of bits)

bit #:7 6 5 4 3 2 1 0
attrib: 1 1 0 1 0 0 0 1

 Bit 0: filled ball = 1 and outline only = 0
 Bit 1: bounces = 1 and doesn’t bounce = 0
 Bit 2,3,4: size is 0, 1, 2, 3 or 4 inches
 Bit 5,6,7: which of eight colors

Use masks and logical operations to
interpret a specific portion of a .word
variable



 Using some but not all bits of a word

attrib: 1 1 0 1 0 0 0 1

 What operation(s) and masks are needed to
determine:
 Is the ball filled or an outline? bit 0=1, so it is filled
 Does the ball bounce? bit 1=0, so it doesn’t bounce
 What size is the ball? bit 4,3,2=100, so size=4
 What color is the ball? bit 7,6,5=110, so color is 6

(or whatever color the code 6 represents).

Using Masks to Set/Clear bits

 All logical operations in SAL and MAL can only use
.word variables as operands.

 Masks are used with logical operations to set and/or
clear specific bits within a word.

 A mask can clear or set some or all bits.
 Some common uses and their masks

 or z, z, 0x43 (this will set bits 0,1, & 6 of z)
 and z, z, 0xffffffbc (this will clear bits 0,1, & 6 of z)
 or z, z, 0xffffffbc (this will set all bits except 0,1, & 6 of z)
 and z, z, 0x43 (this will clear all bits except 0,1, & 6 of z)

Manipulating characters in a string

 Characters of a string are stored next to each other
in memory.

 We can insert, delete and modify individual
characters by using logical and shift operations.

 This makes it possible to sort and perform other
high level types of character and strings edits.

Store four characters in a
.word of memory
 Can number bytes too. (Using big-endian this time)
 Each eight bits represent one character

4 chars: 0101 0111 0100 1111 0100 1111 0100 0100

 Byte 0: character ‘W’ = 0x57
 Byte 1: character ‘O’ = 0x4f
 Byte 2: character ‘O’ = 0x4f
 Byte 3: character ‘D’ = 0x44

 How can we change this to “WORD”?

Finally!

 Why not just use a different variable for each
attribute (or character), etc?

 To save space in memory for programs with many such
pieces of data.

 To speed up execution time, since less data must be
loaded from memory.
(remember: memory accesses are very slow.)

