Chapter 5: Integer Arithmetic

Integer Arithmetic

We will cover the following operations on integers:

- Integer Addition
- Integer Subtraction
- Integer Multiplication (see Karen's notes)
- Integer Division (see Karen's notes)
- Logical Operations (.words only) (see Karen's notes)
- Shifting Operations (.words only) (see Karen's notes)

Integer Addition

Arithmetic on integers is different for each of the integer representations discussed in Chapter 4.

All arithmetic in computers is performed with a fixed precision. The number of bits in each operand and the result is fixed.

The addition of binary digits (bits) is the same as the addition of decimal digits. We just have to remember how each value in binary is represented.

02	+	02				=	02
02	+	12				=	12
12	+	02				=	12
12	+	1_{2}				=	102
102	+	1_{2}				=	11_{2}
12	+	1_{2}		+	12	=	11_{2}
carry	in a	b		sum	car	ry	out
			-+-				
0	0	0		0	0		
0	0	1		1	0		
0	1	0		1	0		
0	1	1		0	1		
1	0	0		1	0		
1	0	1		0	1		
1	1	0		0	1		
1	1	1		1	1		

Remember when you're adding two values together, add each place starting from right to left. At each place, add the digits from each value. The *last* digit of that answer goes in the final result and the other digit(s) get carried over to the next place in the addition.

Decimal Example

10011 the digits that were carried over 849479 + 90349 ------939828 the final answer

This is the basic method for adding two values. It is used for each representation, but there are some differences as well.

- unsigned
- sign-magnitude
- one's complement
- two's complement

Unsigned Binary Addition

carry over bits $ ightarrow$			
	11	111 1	1111
a	0011	101101	00111010 (58)
+ b	+ 0001	+ 011101	+ 00001110 (14)
sum	0100	1 001010	01001000 (72)
		overflow	

Overflow of unsigned binary

If there is a carry over from the addition of the most significant bits, that digit is ignored (thrown away), and OVERFLOW has occurred.

Sign-magnitude Addition

Rules for adding two Sign-Magnitude values

- Only add integers of same sign. (add two positive values or two negative values only)
- 2. The sign of the result is the same as the sign of the operands (addends).
- 3. do unsigned addition on magnitudes only (do not carry into the sign bit)
- 4. throw away any carry out of the msb of the magnitude (be sure this is not recorded as the sign bit)

two positives two negatives positive and negative 111 0 0101 (+5) + 0 0011 (+3) 1 1101 (-13) + 1 0010 (-2) 0 01011 (+11) + 1 01110 (-14)_____ _____ _____ 1 1111 (-15) 0 100C (+8) don't add! don't add the sign bits! must do subtraction! OVERFLOW **OVERFLOW** 111 1 0 11011 (27) + 0 01110 (14) 1 11011 (-27) + 1 11000 (-24)_____ _____ 0 010C1 overflcw 1 10011 overflow don't carry over into the sign bit! don't carry over into the sign bit!

Sign-Magnitude Addition examples

One's Complement Addition

Rules for adding two One's Complement values

- 1. Add integers of any sign.
- 2. Do unsigned addition.
- 3. Don't throw away a carry out of the msb. If there's a carry out of msg, add 1 to get the correct result. *This is called "end-around carry" in hardware implementations.*

One's Complement Addition examples

two positives	two negatives 111 1111.10 (-1)	positive and negative	positive and negative
+ ()0101 (+5)	+ 1111.01 (-2)	+ 11100 (-3)	01001 (+9) + 11100 (-3)
01100 (+12)	1 111011 (-4) wrong! + 1 1111.00 (-3) right!	11101 (-2) right!	1. 00101 (+5) wrong! + 1
OVERFLOW 1 11 01011(11) + 01001 (9)	OVERFLOW 1 11011 (-4) + 10010 (-13)		
10100 (-12) overflow the sign of the result is opposite of the sign of the operands	1 01101 (+13) wrong! + 1 01110 (14) still wrong! overflow	+ 1 01100 (+12 NO OVERFLOW there is no overflow	-
	the sign of the result is opposite of the sign of the operands	if the two operands have different signs	

Two's Complement Addition

Rules for adding two Two's Complement values

- a. Add integers of any sign.
- b. Do unsigned addition.
- c. Don't throw away a carry out of the msb. If there's a carry out of msg, just ignore it.

Two's Complement Addition examples

two positives	two negatives	positive and negative	positive and negative
00111 (+7)	111111(-1)		01001 (+9)
+ 00101 (+5)	+111110(-2)	00001 (+1)	+ 11101 (-3)
		+11101 (-3)	
01100 (+12)	111101(-3)		00110 (+6)
	right!	11110 (-2)	right!
		right!	
OVERFLOW	OVERFLOW	NO OVERFL	OW
1 11		11	11
01011 (11)	11100 (-4)	01	101 (+13)
+ 01001 (9)	+ 10011 (-13) + 11	111 (-1)
10100(-12)	01111 (+15) 01	100 (+12) right!
wrong!	wrong!	NO OVERFI	LOW
overflow	overflow	there is no ov	erflow
the sign of the result	the sign of the result	if the two ope	rands
is opposite of the sign of the operands	is opposite of the sign of the operands	have different	signs

Biased Integer Addition

Rules for adding two Bias-B values

- 1. Add integers of any sign.
- 2. Do unsigned addition and keep the carry out bit (for now).
- 3. Subtract the bias. This is done as unsigned subtraction.
- 4. If there's still a carry out of msg, overflow has occurred.

An alternative for students on homeworks and exams, is to convert to some other number system (like decimal) do the addition and reconvert to Bias-7.

This alternative method on homeworks/exams is only acceptable for Bias-B numbers.

Examples with Bias-7 on 4-bit values	
11 0011 (-4 in Bias-7)	0101 (-2 in Bias-7)
+ 1011 (+4 in Bias-7)	+ 0011 (-4 in Bias-7)
1110 (+7 in Bias-7) - 111 (7 in unsigned binary)	1000 (1 in Bias-7) - 111 (7 unsigned)
0001 (-6 in Bias-7)	 0001 (1 in Bias-7)

Notice, that this system would not be easy to implement in computer hardware.

Integer Subtraction

The subtraction of binary digits (bits) is performed in the same way as the subtraction of decimal digits.

We just have to remember how each value in binary is represented.

```
02
  0_{2}
              0_{2}
                                   =
  1_{2}
              1_{2}
                                          0_{2}
         —
                                   =
  1_{2}
        _
              0_{2}
                                   =
                                          1_{2}
102
       -
             12
                                         1_{2}
                                  =
                                          1_2 if able to borrow
              1_{2}
  0_{2}
                                   =
        _
                               from next place in the value
```

Remember when you're subtracting one value from another, subtract at each place starting from right to left. At each place, subtract the digits of the second value from the corresponding digit of the first value. It may be necessary to borrow from the place to the left.

Decimal Example

```
must borrow at this place
|
849479
- 90349
-----
759130 the final answer
```

This is the basic method for subtracting two values. It is used for each representation, but there are some differences as well.

0	unsigned subtraction
0	sign-magnitude subtraction
0	one's complement subtraction
0	two's complement subtraction

Unsigned Subtraction

It only makes sense to subtract a smaller number from a larger one

```
must borrow here

|

1011 (11)

- 0111 (7)

------

0100 (4)
```

Sign-magnitude Subtraction

Rules for subtracting two Sign-Magnitude values

- Only subtract integers of the same sign. (subtract two positive values or two negative values only)
- 2. If the signs are different, then change the problem to addition.

This is okay, since the following identities are true.

а	– b	is equal to	a + (-b)
а	+ b	is equal to	a – (-b)

- Compare the magnitudes of each value.
 Subtract the smaller magnitude from the larger magnitude. (do not subtract the sign bit)
- 4. The sign is the same if the order of operands stayed the same. If the order was switched, the sign changes.

Sign-Magnitude Subtraction examples

If first operand has the larger magnitude:	If second operand has the larger	r magnitude:
24 - 7 0 11000 (*24) - 0 00111 (*7) 	6 - 28 0 00110 (⁺ 6) switch order, - 0 11100 (⁺ 28) subtract and change sign	0 11100 ([*] 28) - 0 00110 ([*] 6) - 1 10110 ([*] 22)
-242 1 11000 (-24) - 1 00010 (-2)	If second operand is the larger magnitude: ⁻⁶ - ⁻²⁸ 1 00110 (⁻⁶) switch order, - 1 11100 (⁻²⁸) subtract and change sign	1 11100 (⁻ 28) - 1 00110 (⁻ 6) - 0 10110 (⁺ 22)

One's Complement Subtraction

Try some examples on your own to figure this out!

Two's Complement Subtraction

Don't do subtraction at all.

Change the problem to an equivalent addition problem by taking the additive inverse (two's complement) of the second operand.

a – b becomes a + (-b)24 - 7 <==> 10 + 3 ⁻¹⁰ - ⁺3 <==> ⁻¹⁰ + ⁻³ 011000 (24) -000111 (7) ===> + 111001 (⁻7) 10110 (-10) 10110 (-10) - 00011 (3) -----_____ ===> + 11101 (- 3) 010001 10011 (-13) (17) (throw away carry out)

Second Example explained:

```
10110 (-10)
              --> 00011
- 00011 (3)
_____
                         \backslash | /
                   11100
                 + 1
                 _____
                   11101 (-3)
so do
   10110 (-10)
 + 11101 (-3)
  _____
   10011 (-13)
 (throw away carry out)
```

Biased Integer Subtraction

Rules for subtracting two Bias-B values

- a. Subtract integers of any sign.
- b. Do unsigned subtraction.
- c. Add the bias back in. This is done as unsigned addition.

An alternative for students on homeworks and exams, is to convert to some other number system (like decimal) do the subtraction and reconvert to Bias-7.

This alternative method on homeworks/exams is only acceptable for Bias-B numbers.

Example with Bias-7 on 4-bit values

0011 (-4 in Bias-7) - 1001 (+2 in Bias-7)	==>	1001 - 0011	. ,
		0110 + 111	(-1) (add bias)
		1101	(6 inBias-7)

Notice, that is still hard to implement in computer hardware.

OVERFLOW

OVERFLOW DETECTION IN ADDITION

unsigned -- when there is a carry out of the msb

1000 (8) +1001 (9) -----1 0001 (1)

sign magnitude -- when there is a carry out of the msb of the magnitude

1 1000 (-8) + 1 1001 (-9) _____ 1 0001 (-1) (carry out of msb of magnitude)

2's complement -- when the signs of the addends are the same, and the sign of the result is different

```
0011 (3)
+ 0110 (6)
------
1001 (-7) (note that a correct answer would be 9, but
9 cannot be represented in 4-bit 2's complement)
```

Note: you will never get overflow when adding 2 numbers of opposite signs

OVERFLOW DETECTION IN SUBTRACTION

unsigned -- never

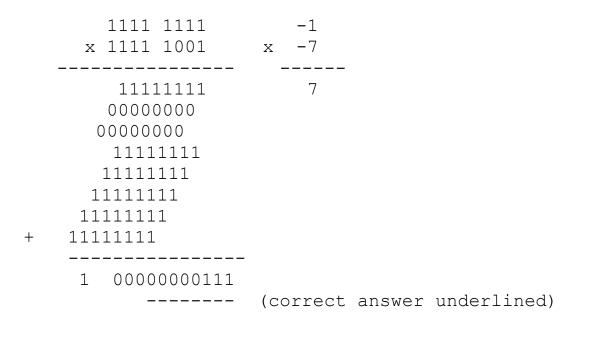
sign magnitude -- never happen when doing subtraction

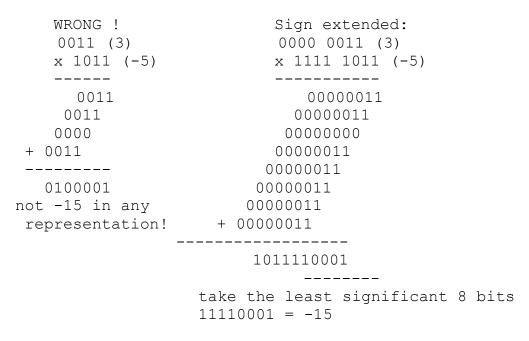
2's complement -- we never do subtraction, so use the addition rule on the addition operation done.

MULTIPLICATION of integers

- -- longhand, it looks just like decimal
- -- the result can require 2x as many bits as the larger operand
- -- in 2's complement, to always get the right answer without thinking about the problem, sign extend both integers to 2x as many bits (as the larger). Then take the correct number of result bits from the least significant portion of the result. Note that the HW that implements multiplication does not use this algorithm.

2's complement example:





more about integer multiplication.

multiplicand x multiplier product

If we do NOT sign extend the operands (multiplier and multiplicand), before doing the multiplication, then the wrong answer sometimes results. To make this work, sign-extend the partial products to the correct number of bits.

To ease our work, classify which do work, and which don't.

+	-	+	-	(muliplicands)
х +	x +	х -	х -	(mulipiers)
OK	sign extend	 take		
	partial	additive		
	products	inverses	I	
		_	+	
		x +	х +	
		sign extend partial products	OK	

Example: without sign extension 11100 (-4) x 00011 (3) ------11100 11100 ------1010100 (-36) WRONG!

Another example:

without adjustment with correct adjustment 11101 (-3) 11101 (-3)x 11101 (-3) x 11101 (-3) _____ _____ 11101 (get additive inverse of both) 11101 11101 00011 (+3) +11101 x 00011 (+3) _____ _____ 1101001001 (wrong!) 00011 + 00011 ----001001 (+9) (right!)

DIVISION of integers

unsigned only in this class! (Don't worry, you'll do lots of division in CS/ECE 552!)

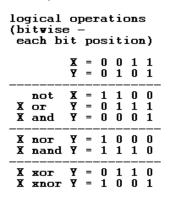
quotient _____ divisor | dividend written as fractions: dividend _____ divisor example: 15 / 3 1111 / 011 0101 _____ 011 | 1111 -0 ___ 11 - 11 ____ 01 -0 ___ 11 - 11 ____ 0 (remainder)

20 / 3 010100 / 011

```
000110 (quotient = 6)
       _____
011
     | 010100
      -0
     ___
       01
       -0
      ___
       010
        -0
       ___
       0101
      - 011
       ____
       00100
       - 011
        ____
         0010
        - 0
         ____
           10 (remainder = 2)
```

Logical Operations

- All logical operations are done bitwise. This means corresponding bits are compared and the single bit result goes into the answer.
- All logical (and shift and rotate) operations are performed on .word variables only.



- Each logical operation exists in SAL even though all operations could be synthesized if only not & and were available.
- \blacksquare not z, x
- or z,x,y
- and z, x, y
- nor z, x, y
- nand z, x, y
- xor z, x, y
- xnor z, x, y

Shift Operations

- shift operations are used to change the positions of bits.
- There are three types of shifting
 - logical shifts of bits
 - arithmetic shifts of bits
 - rotate bits

Shift Left Logical (sll)

- bits are shifted to the left in the result
- ignore bit(s) that are shifted off left (msb)
- add a zero to the least significant bit 0 0110101 ////// shift left logical by one 01101010

Shift Right Logical (srl)

- bits are shifted to the right in the result
- ignore bit(s) that are shifted off right (lsb)
- add a zero to the most significant bit 10110101 \\\\\\\\

shift right logical by one 0 1011010

Shift Left Arithmetic (sll)

- same as shift left logical
- bits are shifted to the left in the result
- ignore bit(s) that are shifted off left (msb)
- add a zero to the least significant bit

0 0110101

shift left arithmetic by one 01101010

Shift Right Arithmetic (sra)

- bits are shifted to the right in the result
- ignore bit(s) that are shifted off right (lsb)
- sign extend the most significant bits
 - 1011010<mark>1</mark> \\\\\\\

shift right arithmetic by one 110110 10

Rotate Left (rol)

- bits are shifted to the left in the result
- save bit(s) that are shifted off (msb)
- place "shifted" bit(s) into the least significant bit(s)

1 0 1 1 0 1 0 1 ////// ////// 1 1 0 1 0 1 **1 0**

rotate left by two

Rotate Right (ror)

- bits are shifted to the right in the result
- save bit(s) that are shifted off right (lsb)
- place "shifted" bits into the most significant bits

```
10110110
\\\\\
\\\\\\
\\\\\\
rotate right by three 11010110
```

What are logical, shift and rotate operations used for?

- arithmetic operations (mult & div)
- to set and clear bits of a word that are used as boolean (or other) values
- manipulate characters (bytes) in a string of characters
- and...

Store a set of boolean variables in a .word

- Number the bits so that we can refer to them
- We will use the little-endian bit numbering system
- Assign a meaning to each bit (or group of bits) bit #:7 6 5 4 3 2 1 0
 - attrib: 11010001
 - Bit 0: filled ball = 1 and outline only = 0
 - Bit 1: bounces = 1 and doesn't bounce = 0
 - Bit 2,3,4: size is 0, 1, 2, 3 or 4 inches
 - Bit 5,6,7: which of eight colors

Using Masks to Set/Clear bits

- All logical operations in SAL and MAL can only use .word variables as operands.
- Masks are used with logical operations to set and/or clear specific bits within a word.
- A mask can clear or set some or all bits.
- Some common uses and their masks
 - or z, z, 0x43 (this will set bits 0,1, & 6 of z)
 - and z, z, 0xfffffbc (this will clear bits 0,1, & 6 of z)
 - or z, z, 0xfffffbc (this will set all bits except 0,1, & 6 of z)
 - and z, z, 0x43 (this will clear all bits except 0,1, & 6 of z)

Use masks and logical operations to interpret a specific portion of a .word

Some but not all bits of a word

attrib: 11010001

- What operation(s) and masks are needed to determine:
 - \swarrow Is the ball filled or an outline? bit 0=1, so it is filled
 - Z Does the ball bounce? bit 1=0, so it doesn't bounce
 - What size is the ball? bit 4,3,2=100, so size=4
 - What color is the ball? bit 7,6,5=110, so color is 6 (or whatever color the code 6 represents).

Manipulating characters in a string

- Characters of a string are stored next to each other in memory.
- We can insert, delete and modify individual characters by using logical and shift operations.
- This makes it possible to sort and perform other high level types of character and strings edits.

Store four characters in a .word of memory

- Can number bytes too. (Using big-endian this time)
- Each eight bits represent one character

4 chars: 0101 0111 0100 1111 0100 1111 0100 0100

- Byte 0: character W' = 0x57
- Byte 1: character O' = 0x4f
- Byte 2: character 'O' = 0x4f
- Byte 3: character D' = 0x44
- How can we change this to "WORD"?

Finally!

- Why not just use a different variable for each attribute (or character), etc?
 - To save space in memory for programs with many such pieces of data.
 - To speed up execution time, since less data must be loaded from memory. (remember: memory accesses are very slow.)