	Type
	Values or largest positive*
	Size (bits)

	boolean
	true or false
	1

	char
	65,536 possibilities
	16

	byte
	127
	8

	short
	32,767
	16

	int
	2,147,483,647
	32

	long
	9,223,372,036,854,775,807
	64

	float
	±1038, 7 decimal digits
	32

	double
	±10308, 15 decimal digits
	64

	*largest negative is one higher than largest positive

	Operators
	Highest Precedence

	postfix
	expr++, expr

	unary
	++expr, expr, +expr, expr, ~, !

	multiplicative
	*, /, %

	additive
	+, 

	shift
	<<, >>, >>>

	relational
	<, <=, >, >=, instanceof

	equality
	==, !=

	bitwise AND
	&

	bitwise exclusive OR
	^

	bitwise inclusive OR
	|

	logical AND
	&&

	logical OR
	||

	conditional
	? :

	assignment
	=, +=, =, *=, /=, %=, &=, ^=, |=, <<=, >>=, >>>=

	
	Lowest Precedence

	http://java.sun.com/docs/books/tutorial/java/nutsandbolts/ expressions.html

	· && short circuits on false, || short circuits on true

· In division of two ints, fractional part is truncated.

· int % int returns remainder of integer division

	Casting

	· Numbers in expressions will automatically be cast up to a type with greater precision; if either is float/double, the other will be cast to float/double

· To cast down to a type with less precision, precede the number/result by “(type)”

	1D array
	2D array

	int[] arr = new int[3]; //int array

int lth = arr.length; //length of array

arr[0] = 1; // index = 0,..,lth-1, arr[index]

arr[1] = 3;

arr[2] = 5;

// equivalent to: arr = {1,3,5};

//reference type array

Object[] ob = new Object[4];
	// when every row has the same number of columns

int[][] arr2 = new int[# of rows][# of cols];

int r = arr2.length; // # rows of array

int c = arr2[2].length; // # cols in specific, say, 3rd row

// ragged array

int[][] arr3 = new int[# of rows][]; // leave second blank

arr3[0] = new int[# of cols in 1st row];
arr3[1] = new int[# of cols in 2nd row];

	Loops: conditions are boolean expression

	for
	while
	do while

	(run from starting to ending value with constant indrement/decrement)

int[] arr = {1,3,5}

// for(initialize; condition; update)

// statement

for(int i =0; i < arr.length; i++){

 //scope of int, i

 System.out.println(arr[i]); }
	(statements executed condition is false.)

// while(condition)
// statement
// while version of a for loop:
int i = 0;

while(i < arr.length){

 System.out.println(arr[i]);

 i++; //update}
	(always executed once)

//do{
// statements
//}while(condition);
do{
 System.out.println(…);

}while(condition);

	Branching: different actions depending on different conditions (can use boolean expressions)

	if(condition1){

 statement1;

}else if(condition2){

 statement2;

}…

else{

 statement;

}

e.g

if(richter >= 6.0)

 r= “heavily damaged”;

else if(richter >= 3.5)

 r= “lightly damaged”;

else if(richter >= 0)

 r= “ok”;
	switch-case: if/else if/ else when comparing single int or char values

int d;

string s = “ “;

switch(d){

 case 1: s= “one”; break; // d==1

 case 2: s= “two”; break; //d==2

 default: s= “na”; //otherwise }
/* “break” each case if alternatives are exclusive, otherwise excuted cumulatively. */
/* “continue” jump to the end of the loop body*/
	making comparisons
1) floating pt numbers: check that they are close enough, instead of equal.
final double EPS = 1E-15;
if(Math.abs(x-y) <= EPS){…};
2) strings

//if both refer to the identical object

if(string1==string2)

if(string1.equals(string2)) //if both equal

//dictionary order, compareTo return 0 if //equal, negative if string1 comes before //string2, positive otherwise:
if(string1.compareTo(string2) <0)

3) object : “==” tests whether references refer to the same object. Use equal method to compare the contents

	Common Syntax

	public static void main(String args[]){ }
accessSpecifier static final typeName variableName = value;

in method: final typeName variableName = value;

accessSpecifier enum TypeName { value1, value2, ... }

using enum: ClassName.TypeName.value

	Inheritance

· Allows the design of general class (super class) that can be specialized in more specific classes (sub class).

· The sub class extends the super class: public class SubclassName extends SuperClassName
· Only single inheritance for sub classes is allowed.

· Sub classes can override methods from the super class.
· If a super constructor is not called, the super constructor without parameter (one must exist) is called automatically.
· “this” refers to the current instance of the object; “super” refers to the parent class of the current subclass object.

	Polymorphism

· The ability of an object variable to take different forms.
· Also found in overloading of method and constructor names- return types must be the same but number of parameters and/or parameter types must be different.
· If a method called on an reference variable of superclass X that points to an object of subclass Y (that extends X), Y’s method will be called instead of X’s. Y’s method is then said to override X’s.

	Class Casting

· A superclass reference variable my point to a subclass object. Only methods in superclass X can be called on a reference variable of type X even if the reference points to a subclass that may have additional methods.
· If the object pointed to by a superclass reference variable is actually a subclass, the superclass reference variable can be cast to the subclass: SubClassName variableName = (SubClassName) superClassVariableName. Use “instanceof” to check that the object is the correct subclass

· Cannot cast between subclasses of the same superclass (siblings).

	Interfaces

· Outline for a class.

· Contains method signatures but does not tell how the methods are implemented.

· General form: public interface InterfaceName

· A class that implements an interface is required to implement all the methods listed in the interface.

· A class can implement more than one interface.

· General form: public class ClassName implements InterfaceName

	1. Throwing Exceptions:

General Format:

if (condition)

throw new exception_type(param0, param1, …);
Throws Clause:

public void method() throws exception_type1, exception_type2, ... {

//These exceptions are caught in the catch statement later on.

}
	General Format of try-catch block
try{
 Main_block_of_statements

}

catch (exception_type1 variable1){
 Block_of_statements

}

catch (exception_type2 variable2){

 block_of_statements2

}

//more catch blocks if necessary

finally{

/* Finally block is optional. Statements in this block are always executed When might you need a finally block? When you close a file reader.*/
}

	2. Catching Exceptions:

· Catch the most specific exceptions first, then broader exceptions.
· A while loop at the beginning a try-catch block is a good way to continuously prompt the user for input in case they enter the wrong information.

	

	3. Making your own Exceptions:

example:

if (amount > balance){

throw new InsufficientFundsException(

“withdrawal of “ + amount + “ exceeds balance of “ + balance);

Defining InsufficientFundsException class:

public class InsufficientFundsException extends RuntimeException{

 public InsufficientFundsException(){

 }

 public InsufficientFundsException(String message){

 super(message);

 }

}
	

	4. Checked vs. Unchecked Exceptions:

Checked exceptions must be handled by your program:

Exception(ClassNotFoundException, IOException(EOException, FileNotFoundException

Unchecked exceptions:

RuntimeException(NullPointerException, IndexOutOfBoundsException(ArrayIndexOutOfBoundsException

