
Type Values or largest positive* Size
(bits)

boolean true or false 1
char 65,536 possibilities 16
byte 127 8
short 32,767 16
int 2,147,483,647 32
long 9,223,372,036,854,775,807 64
float ±1038, 7 decimal digits 32

double ±10308, 15 decimal digits 64

*largest negative is one higher than largest positive

Operators Highest Precedence

postfix expr++, expr
unary ++expr, expr, +expr, expr, ~, !

multiplicative *, /, %

additive +,
shift <<, >>, >>>

relational <, <=, >, >=, instanceof

equality ==, !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

conditional ? :

assignment =, +=, =, *=, /=, %=, &=, ^=, |=, <<=,
>>=, >>>=
Lowest Precedence

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/
expressions.html
 && short circuits on false, || short circuits on true
 In division of two ints, fractional part is truncated.
 int % int returns remainder of integer division

Casting
 Numbers in expressions will automatically be cast

up to a type with greater precision; if either is
float/double, the other will be cast to float/double

 To cast down to a type with less precision, precede
the number/result by “(type)”

1D array 2D array
int[] arr = new int[3]; //int array
int lth = arr.length; //length of array
arr[0] = 1; // index = 0,..,lth-1, arr[index]
arr[1] = 3;
arr[2] = 5;
// equivalent to: arr = {1,3,5};
//reference type array
Object[] ob = new Object[4];

// when every row has the same number of columns
int[][] arr2 = new int[# of rows][# of cols];
int r = arr2.length; // # rows of array
int c = arr2[2].length; // # cols in specific, say, 3rd row
// ragged array
int[][] arr3 = new int[# of rows][]; // leave second blank
arr3[0] = new int[# of cols in 1st row];
arr3[1] = new int[# of cols in 2nd row];

Loops: conditions are boolean expression
for while do while
(run from starting to ending value with
constant indrement/decrement)
int[] arr = {1,3,5}
// for(initialize; condition; update)
// statement
for(int i =0; i < arr.length; i++){
 //scope of int, i
 System.out.println(arr[i]); }

(statements executed condition is false.)
// while(condition)
// statement
// while version of a for loop:
int i = 0;
while(i < arr.length){
 System.out.println(arr[i]);
 i++; //update}

(always executed once)
//do{
// statements
//}while(condition);
do{
 System.out.println(…);
}while(condition);

Branching: different actions depending on different conditions (can use boolean expressions)
if(condition1){
 statement1;
}else if(condition2){
 statement2;
}…
else{
 statement;
}
e.g
if(richter >= 6.0)
 r= “heavily damaged”;
else if(richter >= 3.5)
 r= “lightly damaged”;
else if(richter >= 0)
 r= “ok”;

switch-case: if/else if/ else when
comparing single int or char values
int d;
string s = “ “;
switch(d){
 case 1: s= “one”; break; // d==1
 case 2: s= “two”; break; //d==2
 default: s= “na”; //otherwise }
/* “break” each case if alternatives
are exclusive, otherwise excuted
cumulatively. */
/* “continue” jump to the end of the
loop body*/

making comparisons
1) floating pt numbers: check that they are
close enough, instead of equal.
final double EPS = 1E-15;
if(Math.abs(x-y) <= EPS){…};
2) strings
//if both refer to the identical object
if(string1==string2)
if(string1.equals(string2)) //if both equal
//dictionary order, compareTo return 0 if
//equal, negative if string1 comes before
//string2, positive otherwise:
if(string1.compareTo(string2) <0)
3) object : “==” tests whether references refer
to the same object. Use equal method to
compare the contents

Common Syntax
public static void main(String args[]){ }
accessSpecifier static final typeName variableName =
value;
in method: final typeName variableName = value;
accessSpecifier enum TypeName { value1, value2, ... }
using enum: ClassName.TypeName.value

Inheritance
 Allows the design of general class (super class) that can be specialized in more specific classes (sub class).
 The sub class extends the super class: public class SubclassName extends SuperClassName
 Only single inheritance for sub classes is allowed.
 Sub classes can override methods from the super class.
 If a super constructor is not called, the super constructor without parameter (one must exist) is called automatically.
 “this” refers to the current instance of the object; “super” refers to the parent class of the current subclass object.
Polymorphism
 The ability of an object variable to take different forms.
 Also found in overloading of method and constructor names- return types must be the same but number of parameters and/or

parameter types must be different.
 If a method called on an reference variable of superclass X that points to an object of subclass Y (that extends X), Y’s method

will be called instead of X’s. Y’s method is then said to override X’s.
Class Casting
 A superclass reference variable my point to a subclass object. Only methods in superclass X can be called on a reference

variable of type X even if the reference points to a subclass that may have additional methods.
 If the object pointed to by a superclass reference variable is actually a subclass, the superclass reference variable can be cast to

the subclass: SubClassName variableName = (SubClassName) superClassVariableName. Use “instanceof” to check that the
object is the correct subclass

 Cannot cast between subclasses of the same superclass (siblings).
Interfaces
 Outline for a class.
 Contains method signatures but does not tell how the methods are implemented.
 General form: public interface InterfaceName
 A class that implements an interface is required to implement all the methods listed in the interface.
 A class can implement more than one interface.
 General form: public class ClassName implements InterfaceName

1. Throwing Exceptions:
General Format:
if (condition)
throw new exception_type(param0, param1, …);
Throws Clause:
public void method() throws exception_type1, exception_type2, ... {
//These exceptions are caught in the catch statement later on.
}
2. Catching Exceptions:
 Catch the most specific exceptions first, then broader exceptions.
 A while loop at the beginning a try-catch block is a good way to

continuously prompt the user for input in case they enter the wrong
information.

3. Making your own Exceptions:
example:
if (amount > balance){
throw new InsufficientFundsException(
“withdrawal of “ + amount + “ exceeds balance of “ + balance);
Defining InsufficientFundsException class:
public class InsufficientFundsException extends RuntimeException{
 public InsufficientFundsException(){
 }
 public InsufficientFundsException(String message){
 super(message);
 }
}

General Format of try-catch block
try{
 Main_block_of_statements
}
catch (exception_type1 variable1){
 Block_of_statements
}
catch (exception_type2 variable2){
 block_of_statements2
}
//more catch blocks if necessary
finally{
/* Finally block is optional. Statements in this
block are always executed When might you
need a finally block? When you close a file
reader.*/
}

4. Checked vs. Unchecked Exceptions:
Checked exceptions must be handled by your program:
ExceptionClassNotFoundException, IOExceptionEOException, FileNotFoundException
Unchecked exceptions:
RuntimeExceptionNullPointerException, IndexOutOfBoundsExceptionArrayIndexOutOfBoundsException

	Lowest Precedence

