Type Values or largest positive* Size Operators Highest Precedence
(bits) postfix expr++, expr—
boolean true or false. _ 1 unary expr, —expr, texpr, —expr ~ 1
char 65,536 possibilities 16 —— o
multiplicative .1, %
byte 127 8 Idi
short 32,767 16 additive -
int 2,147,483,647 32 shift <<, S>>, >>>
long 9,223,372,036,854,775,807 64 relational <, <=, >, >=, instanceof
float £1038 7 decimal digits 32 equality — =
double 4 0308, 15 decimal digits 64 b%tw%se AND . &
*largest negative is one higher than largest positive bitwise exclusive OR i
Casti bitwise inclusive OR |
2Tne - - - - logical AND &&

e Numbers in expressions will automatically be cast -

up to a type with greater precision; if either is logical OR Il

float/double, the other will be cast to float/double conditional ?:
e To cast down to a type with less precision, precede assignment =, 4=, —=, *=, /=, Y%=, &=, =, |=, <<=,

the number/result by “(type)” S>= >>>=
Common Syntax Lowest Precedence
public static void main(String args[]){ } http://java.sun.com/docs/books/tutorial/java/nutsandbolts/
accessSpecifier static final typeName variableName = expressions.html

value;
in method: final #ypeName variableName = value; .
accessSpecifier enum TypeName { valuel, value2, ... } .

using enum: ClassName.TypeName.value

e && short circuits on false, || short circuits on true
In division of two ints, fractional part is truncated.
int % int returns remainder of integer division

1D array

2D array

int[] arr = new int[3]; //int array

int Ith = arr.length; //length of array
arr[0] = 1; // index = 0,..,1th-1, arr[index]
arr[1]=3;

arr[2] =5;

// equivalent to: arr = {1,3,5};
/Ireference type array

Object[] ob = new Object[4];

// when every row has the same number of columns
int[][] arr2 = new int[# of rows][# of cols];

int r = arr2.length; // # rows of array

int ¢ = arr2[2].length; // # cols in specific, say, 3" row

// ragged array

int[][] arr3 = new int[# of rows][]; // leave second blank
arr3[0] = new int[# of cols in 1* row];
arr3[1] = new int[# of cols in 2" row];

Loops: conditions are boolean expression

for while do while

(run from starting to ending value with | (statements executed condition is false.) (always executed once)

constant indrement/decrement) // while(condition) //do{

int[] arr = {1,3,5} /! statement /I statements

// for(initialize; condition; update) // while version of a for loop: //}while(condition);

// statement inti=0; do{

for(int i =0; i < arr.length; i++){ while(i < arr.length){ System.out.println(...);
//scope of int, i System.out.println(art[i]); }while(condition);
System.out.println(art[i]); } i++; //update}

Branching: different actions depending on different conditions (can use boolean expressions)

if(condition1){ switch-case: if/else if/ else when
statementl; comparing single int or char values
}else if(condition2){ int d;
statement2; string s = *;
.. switch(d){
else{ case 1: s= “one”; break; / d==
statement; case 2: s= “two”; break; //d==
} default: s= “na”; //otherwise }

e.g
if(richter >= 6.0)

r= “heavily damaged”;
else if(richter >= 3.5)

= “lightly damaged”;
else if(richter >= 0)

= “ok™;

loop body*/

/* “break” each case if alternatives
are exclusive, otherwise excuted
cumulatively. */

/* “continue” jump to the end of the

making comparisons

1) floating pt numbers: check that they are
close enough, instead of equal.

final double EPS = 1E-15;
if(Math.abs(x-y) <= EPS){...};

2) strings

//if both refer to the identical object
if(string==string2)
if(string1.equals(string2)) //if both equal
//dictionary order, compareTo return 0 if
/lequal, negative if string] comes before
//string2, positive otherwise:
if(stringl.compareTo(string2) <0)

3) object : “==" tests whether references refer
to the same object. Use equal method to
compare the contents

1. Throwing Exceptions:

General Format:

if (condition)

throw new exception_type(param0, paraml, ...);

Throws Clause:

public void method() throws exception_typel, exception_type2, ... {
//These exceptions are caught in the catch statement later on.

}

2. Catching Exceptions:

e Catch the most specific exceptions first, then broader exceptions.

e A while loop at the beginning a try-catch block is a good way to
continuously prompt the user for input in case they enter the wrong
information.

3. Making your own Exceptions:

example:

if (amount > balance){

throw new InsufficientFundsException(

“withdrawal of “ + amount + “ exceeds balance of *“ + balance);

Defining InsufficientFundsException class:

public class InsufficientFundsException extends RuntimeException {
public InsufficientFundsException(){

public InsufficientFundsException(String message){
super(message);
H
H

General Format of try-catch block

try{
Main_block of statements

H

catch (exception_typel variablel){
Block of statements

¥

catch (exception_type2 variable2){
block of statements2

§

/lmore catch blocks if necessary

finally {

/* Finally block is optional. Statements in this

block are always executed When might you

need a finally block? When you close a file

reader.*/

}

4. Checked vs. Unchecked Exceptions:
Checked exceptions must be handled by your program:

Exception€<ClassNotFoundException, IOException &< EOException, FileNotFoundException

Unchecked exceptions:

RuntimeException € NullPointerException, IndexOutOfBoundsException € ArrayIndexOutOfBoundsException

Inheritance

Only single inheritance for sub classes is allowed.
Sub classes can override methods from the super class.

Allows the design of general class (super class) that can be specialized in more specific classes (sub class).
The sub class extends the super class: public class SubclassName extends SuperClassName

If a super constructor is not called, the super constructor without parameter (one must exist) is called automatically.
“this” refers to the current instance of the object; “super” refers to the parent class of the current subclass object.

Polymorphism
e The ability of an object variable to take different forms.

e Also found in overloading of method and constructor names- return types must be the same but number of parameters and/or

parameter types must be different.

e [famethod called on an reference variable of superclass X that points to an object of subclass Y (that extends X), Y’s method

will be called instead of X’s. Y’s method is then said to override X’s.

Class Casting

e A superclass reference variable my point to a subclass object. Only methods in superclass X can be called on a reference
variable of type X even if the reference points to a subclass that may have additional methods.

e Ifthe object pointed to by a superclass reference variable is actually a subclass, the superclass reference variable can be cast to
the subclass: SubClassName variableName = (SubClassName) superClassVariableName. Use “instanceof” to check that the

object is the correct subclass
e Cannot cast between subclasses of the same superclass (siblings).

Interfaces
Outline for a class.

General form: public interface InterfaceName

A class can implement more than one interface.
General form: public class ClassName implements InterfaceName

Contains method signatures but does not tell how the methods are implemented.

A class that implements an interface is required to implement all the methods listed in the interface.

	Lowest Precedence

