Defin Complex fraction -

Types of Complex fractions 1. Single termed -

. (a)

6

2. Multiplied term

(d)

Method Simplifying Single termed Complex fractions

$$\begin{array}{c|c}
\hline
2 & \times \\
\hline
 & \times + y \\
\hline
 & \times^2 \\
\hline
 & 2 \times + 2y
\end{array}$$

Method Simplifying Multiple termed Complex fractions

- The same of
- 2.
- 3.

$$(E_g)$$
 $\frac{2}{5} + \frac{1}{4}$ $\frac{1}{2} + \frac{1}{3}$

Method 2

1.

2.

3.

$$\begin{array}{c} (2) \quad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\$$
\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\\\ \\\\ \end{array}\\ \end{array}\\\\\\ \end{array}\\\\\\ \end{array}\\\\\\ \end{array}\\

$$\frac{3}{\frac{1}{x} + \frac{2}{x-1}}$$

Chapter 7.6 Equations W/ Rat. Expr

Defin Rational Equation -

Method Solving Rational Equations

- .
- 2.
- 3.
- 4.
- 5.

$$0 \frac{2m-3}{5} - \frac{m}{3} = -\frac{6}{5}$$

②
$$\frac{2}{p^2-2p} = \frac{3}{p^2-p}$$

$$3 \frac{8r}{4r^2-1} = \frac{3}{2r+1} + \frac{3}{2r-1}$$

$$4 + \frac{1}{5} = \frac{2}{5(x^2-4)}$$

$$\frac{6}{5a+10} - \frac{1}{a-5} = \frac{4}{a^2-3a-10}$$

$$6) \frac{2a-1b}{4(a+1)} + \frac{a}{2a+2} = \frac{a-3}{a+1}$$

[Method] Solving for a given Variable

1

2,

3.

4.

Eg Solve for
$$E$$
:
$$I = \frac{KE}{R}$$

O Solve for q:
$$\frac{3}{k} = \frac{1}{p} + \frac{5}{q}$$

Chapter 7.7 Applications of Real Numbers

Recall problem solving strategy 1 2 3 4 5

Number Type problems

1

2

Eg. A certain number is added to the numerator and subtracted fro the denominator of 5/8. the new number equals the reciprocal of 5/8. Find the number.

4,6,8

Motion Problem Types (Solving problems with d=rt)

1

2

3

Eg. At the 2002 Olympics, Casy Fitzgerald of the United States won the 500-m speed skating event for men in 69.23 sec. What was his rate (to the nearest hundredth of a second)?

<u>Problem</u>: In 1973, the Indianapolis 500 race was only 332.5 mi. Gordon Johncock won with a rate of 159.036 mph. What was his time (to the nearest hundredth of an hour)?

Eg. A boat can go 10 mi against a current in the same time it can go 30 mi with the current. The current flows at 4 mph. Find the speed of the boat with no current.

#20, 22, 24

Solving Work Type Problems:

Use the fact: the rate of work is 1/t job per unit of time

2

3

Eg. Al and Mario operate a small roofing company. Mario can roof an average house alone in 9 hr. Al can roof a house alone in 8 hr. How long will it take them to do the job if they work together?

#32, 34, 36

Chapter 7.8 Variation

Direct Variation Means: A. B. Definition: **Solve Direct Variation Problems:** 2 3 4 5 Eg. If z varies directly as t, and z = 11 when t = 4, find z when t=32. Class: The circumference of a circle varies directly as the radius. A circle with a radius of 7cm has a circumference of 43.96cm. Find the circumference if the radius is 11cm Direct variation with Power 2

Eg. B varies directly as the cube of C. When B = 12, C is 2. What is the value of B when C is 6?

3

Indirect variation Means: A В Eg. A car travels 40mi. Definition: **Solve Indirect Variation problems:** 2 3 4 5 Eg. Z varies indirectly as a and when a = 15, z = 6. Determine what z is when a = 4. **Indirect Variation with a Power** 1 2 3 Eg. Suppose y varies inversely as the square of x. If y=5 when x=2, find y when x=10. 1. B varies indirectly as the cube of C. when B=12, C is 2 What is the value of B when C is 6? 2. If the cost of producing pairs of rubber gloves varies inversely as the # of pairs

produced, and 5000 pairs can be produced for \$.50 per pair, how much will it cost to

produced 10,000 pairs?