Research Statement Denis Gopan 1

The second half of the twentieth century saw the birth anghtbiferation of computers from one per nation to several
per household. Today, computers have become an inseppeabte our lives, and we routinely entrust them sensitive
information, such as, for instance, credit card numberd,emen with handling of human well-being. Accordingly,
the necessity to ensure that computers, and the softwayeieeute, behave properly has become a very important
problem. Simple programming errors may have grave consegsean out-of-bounds array access may lead to your
identity being stolen, a floating-point conversion erroryniead to a spacecraft explosion (Ariane 5 crash, 1996), a
division by zero may incapacitate an entire Navy ship (US&tvn, 1997). My research interests lie in the area of
program analysis and understanding, and more specificathye area of numeric program analysis, which is dedicated
to the detection of such errors.

Background.

There are many different approaches to discovering andrediing software errors. They range from testing, in which
the program'’s functionality is exercised by an extensige seite, to program analysis, in which the program in never
executed explicitly — instead, the source code of the pragsaanalyzed to ensure the absence of errors.

To check whether a program has an error, an analysis musnsgstally explore all possible program executions.
The termprogram stateis often used to refer to a snapshot of program executiomelfset of program states that
arise in all possible program executions (referred teeashable stat@sdoes not contain states that constitute errors
(referred to aserror state3, the analysis may conclude that the program is correct.ddew computing the set of
reachable program states is by no means trivial: numerialias may take infinitely many values, dynamic memory
allocation precludes the analysis from knowaqgyiori the set of memory locations that must be tracked, and rexursi
allows program functions to be invoked in an unbounded nurabeontexts. In fact, computing the set of reachable
states is in general undecidable.

Program analysis sidesteps undecidability by approximgagets of reachable states by larger sets that are both
decidable and effectively representable in a computers&loger-approximations are callatstractions Since ab-
stractions contain all possible reachable states, prograatysis issound That is, if a program has an error, program
analysis will identify it. However, abstractions may cdntatates that the program does not reach in reality. If these
extra states satisfy error conditions, program analysiegges spurious error reports (also knowffedse positives
The central problem of program analysis is searching fotrabons that are both computationally efficient and pre-
cise (that is, produce a low number of false positives). @dlyeno single abstraction can work well for all programs.
Thus a large number of abstractions, each of which is talltoe specific set of properties, has been designed.

Logically, a program analyzer consist of two componentsitasiract domaimmpproximates sets of reachable states
and manipulates these approximations (referred takestract statesto reflect the effects of program statements;
an analysis engingoropagates abstract states through the program. The twpamnts are connected through a
generic interface. Mathematically, abstract domains &s thought of as partial orders, where order is given by
set containment: the smaller the set, the more precise ialibiact state. Two properties of abstract domains are
of particular interest: an abstract domain is said tallstributive if no information is lost when the abstract states
computed along multiple program paths are combined; amadtstomain satisfies thescending chain conditioifiit
is impossible to construct an infinite sequence of absttatésthat have strictly decreasing precision. If an abttra
domain possess both properties, than any analysis engaideto compute the optimal results with respect to that
abstraction.

My research is centered arumeric program analysesnalyses that discover numeric properties of a program.
A simple example of numeric analysis is one that discoveenge of values that a variable may have at a particular
program location. A more involved example is an analysisdiscovers numeric relationships that hold among values
of program variables, e.g., establishing that the relatiqpu = 4 x b + ¢ always holds among the values of variables
a, b, andc at a certain program point. Such numeric properties canreettli used to identify program errors, such as
out-of-bounds array accesses, integer overflow, and divisy zero. While seemingly simple, such errors account for
the majority of known security vulnerabilities accordimg@ERT.

The origins of numeric program analysis date back to thegd®T0s. Over the years a rich set of numeric abstrac-
tions has been developed. These abstractions range froptesimes likeintervals which only keep track of upper
and lower bounds for each variable, to relational ones,fdidghedra which are able to establish linear relationships
among variables, to automata-baseneric decision diagramsvhich can represent arbitrary Presburger formulas.
These abstractions exhibit varying precision/cost traffie-and have been successfully used in practice. However,
most of these numeric abstractions are distributiveand do not satisfy thascending chain conditiomhis makes
obtaining precise results somewhat of a black art.

Research Statement Denis Gopan 2

Many program analyses, even those that are not directlyscord with numeric behavior of a program, often rely
on numeric program-analysis techniques. To list a few exasap

— Low-level code analysis, such as analysis of x86 binargeguintessential for the fields of security and reverse
engineering. In low-level code, typically, there are noletpvariables; rather, variables correspond to offsets
from the beginning of an activation record or the beginnifighe data section. Numeric operations are used
to manipulate these offsets. Thus, a sophisticated nurassitysis is required just to determine which memory
locations are accessed by each instruction.

— Shape analysjsan analysis that establishes properties of heap-allddiateed data structures, may use numeric
quantities to represent some aspects of shape abstrasidnas the length of a linked-list segment, or the depth
of atree.

— Memory-cleanness analysan analysis that checks for memory-safety violationss useneric quantities to track
the amount of memory allocated for each buffer, the offseéfomters within the corresponding buffers, and the
lengths of C-style zero-terminated strings.

Thesis Contributions.

In my thesis, | develop a suite of techniques with the comnaai gf improving the precision of numeric analysis. The
techniques address various aspects of numeric analysis,asuhandling dynamically-allocated memory, analyzing
array operations, and regaining precision lost to exti@m and non-distributivity. In my research, | did not at

to create new abstractions; instead, | designed intelligays to use existing abstractions to obtain greater benefit
In a program analyzer, my techniques fit in-between the atisttomain and the analysis engine, and thus, can be
viewed asprogram analysis middlewaré tried hard to make the techniques independent from spedtifstractions
and specific analysis engines. As a result, my techniquedbearasily incorporated into existing program-analysis
tools and should be readily compatible with new abstrasttorbe introduced in the future. Furthermore, even though
they were inspired by numeric-analysis issues, the teciesigan be used to improve the precision of non-numeric
abstractions, as well.

Summarizing abstraction€Existing numeric abstractions are only able to keep track ffed, finite set of numeric
variables. However, if a program manages memory dynargj¢h# set of variables that the analysis must keep track
of may change as the program executes, and may not be djaboainded. For instance, keeping track of values
stored in a linked list poses a problem to existing numerayaes because it is impossible to model each individual
list element. A typical approach that pointer analyses astetl with dynamically allocated memory is to partition
memory locations into a fixed, finite set of groups and reagmutlocations in each group collectively. Partitioning
can be as simple as grouping together all memory locatiosated at a particular allocation site, as is done by
many pointer-analysis algorithms; or as complex as maiimgiafluid partitioning that changes in the course of the
analysis, as is done by state-of-the-art shape analyseg\do, existing numeric abstractions cannot be used in this
setting because they are incapable of such collective né@agso

As part of my research, | designed a framework for automifitititiing standardnumeric abstractions to support
reasoning about potentially unbounded groups of numeri@bkes: instead of establishing numeric properties of
individual variables, lifted abstractions captuneiversalproperties of groups of variables [1]. For instance, adifte
polyhedral abstraction can capture the property that theevaf each element in an array of unbounded size is equal
to its index times two. Lifting is done by assigning a nomstard meaning to the existing abstraction. The sound
and precise transformers for the lifted abstraction areraatically constructed from the transformers for the owagi
abstraction. | used the above ideas to add numeric suppdilté\, a state-of-the-art shape-analysis framework. |
also collaborated with Bertrand Jeannet (IRISA, Francejistilling these ideas into a novel relational abstractan
functions [6, 7].
Array analysis.Arrays are simple data structures that are heavily usedictige due to their simplicity and efficiency.
However, arrays pose a major challenge to program anabsisy operations are rarely implemented for arrays of
fixed size; instead, the size of an array is specified syméilblicThus, the goal of the analysis is to establish that
the operation behaves properly for arrays of any possibte Siurthermore, to successfully analyze array operations
the analysis must be able to capture relationships betweensttucture of an operation and the properties of array
elements. For instance, to handle a simple array-iniititm loop, the analysis must be able to maintain the prgpert
that array elements with indices that are less than the \dltlee induction variable have been initialized, while the
rest of the elements have not.

| addressed the problem of array analysis by using a conibmaf canonical abstractionan abstraction that
dynamically partitions memory locations into groups basadheir properties, with my summarizing numeric ab-

Research Statement Denis Gopan 3

stractions [4, 5]. Numeric relationships among indicesrofyaelements and values of variables that index into the
array are used to partition array elements into groups. Tingenic relationships among groups of array elements are
established with the use of summarizing numeric abstnastié prototype implementation of the analysis was able to
successfully analyze a number of array-initialization aoding routines.

Extrapolation. Many existing numeric abstractions require the usextfapolation(also referred to awidening.

The idea behind extrapolation is to guess a program inviabiambserving the changes in program properties that
are discovered early in the analysis. Extrapolation exioelprograms with simple behavior. However, for programs
whose behavior is harder to predict, extrapolation tendsge a lot of precision. This precision loss makes the use
of extrapolation very tricky in practice: the famous adageg “If you widen without principles, you converge with
no precision!” A number oadhoctechniques for reclaiming lost precision have been pragoser the years. These
mostly rely on invariant guesses supplied by either a prograr or an external analysis.

As part of my research, | designed a frameworkdardingthe state-space exploration performed by the analysis
and used this framework to improve the precision of extrafpah [2]. The main idea is to restrict the analysis to parts
of the program that have simpler behavior than the entirgnara, and thus, can be analyzed with more precision. After
the analysis of a particular program part completes, thé prexgram part is revealed to the analyzer. The framework
is parametrized by a selection mechanism that identifiegrpro parts to be analyzed. The selection mechanism that
works best for extrapolation is one that applies analysisach individual program phase in separation. | showed
how to implement this particular instantiation of the framoek efficiently in a way that easily integrates into exigtin
analyzers.

Interprocedural analysis.Recently, Weighted Push Down Systems (WPDSs) emerged atraatige engine for
performing interprocedural program analysis. In WPDSsghts capture the effect of program statements on pro-
gram state. Algebraically, weights have strong similasitio abstractions. The existing techniques for model éhgck
WPDSs guarantee precise results if weights are both disirédband satisfy the ascending chain condition. Most nu-
meric abstractions, however, do not possess either of {hregerties. As part of my research, | experimented with
using WPDSs for numeric program analysis. My primary coneeas the precision loss due to non-distributivity of
numeric abstractions.

Library summarization.Program analysis works best when it operates on the entigrgm. However, in practice,
large parts of a program’s functionality is hidden in libes: Often, these libraries come from third-party software
vendors, and their source code is not available. In pradticeerform the analysis, a collection stiibsthat emulate
the behavior of library functions is created. Usually, thebs are created manually — a process that is both error
prone and lengthy.

| applied the numeric analysis techniques that | developethé problem of automatic derivation of library-
function summaries [3]. Each function summary consists sétaof error triggers (that is, numeric conditions that,
if satisfied at the function callsite, imply program failudering function invocation) and a transformer that indésat
how to transform program state at the callsite of the fumctiothe program state at the return. The technique applies
directly to library implementations (x86 binary code, a thoment). CodeSurfer/x86, a tool for binary-code analysis
is used to perform initial analysis of the binary. The resalte used to generate a numeric program, which is then fed
into a WPDS-based numeric program analyzer to produce g&iggers and library-function transformers.

Future Research Directions.
| anticipate low-level code analysis to be of particular artance in the near future. Today, a simple click of a mouse
in a web-browser window may lead to software being downldadestalled, and executed on a computer (without
the user’s explicit knowledge) to display, for instancensomedia content. The same software may steal the user’s
private information from the hard drive, or use the compatepart of a botnet for launching distributed cyber-attacks
As a result, educated users are forced to forgo the first soefthhe convenience), to avoid the second scenario (the
insecurity). An attractive goal for static program anadyisito automatically establish that a particular execetél.,
the one downloaded from the net) is going to behave accotditit first scenario, but not according to the second.
Low-level code poses a number of challenges to program sisatiere are no explicit variables, type informa-
tion is not available, bitwise operations are often usedetdgsm numeric operations (and vice versa), requiring the
analysis to model program behavior on a bit level, etc. Furttore, intruders (and attackers) are allowed to be as
creative as possible, whereas program analysis is founaéaeoconcept of modeling “the common case” precisely
and losing precision on “creative” programs. An interggtinsearch question is whether it is possible to construct
scalable abstractions that are capable of modeling botleriamnd bit-vector properties of numeric variables.

Research Statement Denis Gopan 4

Another topic that captures my interesgigided state-space exploratiomany useful abstractions (numeric ab-
stractions, in particular) are not distributive and thus ghiecision of the analysis depends heavily on the order in
which the program is presented to the analyzer. A numbadbbctechniques that derive benefit from guiding the
state-space exploration exifizy abstractiongxplore the program in a way that avoids performing jottcolic
(conaete+symblic) techniques perform analysis along a particular execyttaih to generate test cases that exercise
alternative program paths; some techniques for concupegram analysis use program under-approximations to
reduce the number of interleavings that have to be congidereny work, | used a sequence of specially-constructed
syntactic program restrictions to improve the precisiowifening. An interesting research direction is to atteropt t
generalize the above techniques into a single frameworgating state-space exploration.

References

1. D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numedmeains with summarized dimensions.Timols and Algorithms

for the Construction and Analysis of Systepeges 512-529, 2004.

D. Gopan and T. Reps. Lookahead wideninglninConf. on Computer Aided Verificatiopages 452—-466, 2006.

D. Gopan and T. Reps. Low-level library analysis and suriration. Submitted for review, 2007.

4. D. Gopan, T. Reps, and M. Sagiv. Numeric analysis of arpagyations. Tech. Rep. 1516, Comp. Sci. Dept., Univ. of Wisag
September 2004.

5. D. Gopan, T. Reps, and M. Sagiv. A framework for numeridyais of array operations. 18ymp. on Princ. of Prog. Lang.
pages 338-350, 2005.

6. B.Jeannet, D. Gopan, and T. Reps. A relational abstrafdidunctions. Inint. Workshop on Numerical and Symbolic Abstract
Domains, 2005.

7. B.Jeannet, D. Gopan, and T. Reps. A relational abstraftticfunctions. InStatic Analysis Symppages 186-202, 2005.

