
Research Statement Denis Gopan 1

The second half of the twentieth century saw the birth and theproliferation of computers from one per nation to several
per household. Today, computers have become an inseparablepart of our lives, and we routinely entrust them sensitive
information, such as, for instance, credit card numbers, and even with handling of human well-being. Accordingly,
the necessity to ensure that computers, and the software they execute, behave properly has become a very important
problem. Simple programming errors may have grave consequences: an out-of-bounds array access may lead to your
identity being stolen, a floating-point conversion error may lead to a spacecraft explosion (Ariane 5 crash, 1996), a
division by zero may incapacitate an entire Navy ship (USS Yorktown, 1997). My research interests lie in the area of
program analysis and understanding, and more specifically,in the area of numeric program analysis, which is dedicated
to the detection of such errors.

Background.
There are many different approaches to discovering and eliminating software errors. They range from testing, in which
the program’s functionality is exercised by an extensive test suite, to program analysis, in which the program in never
executed explicitly – instead, the source code of the program is analyzed to ensure the absence of errors.

To check whether a program has an error, an analysis must systematically explore all possible program executions.
The termprogram stateis often used to refer to a snapshot of program execution. If the set of program states that
arise in all possible program executions (referred to asreachable states) does not contain states that constitute errors
(referred to aserror states), the analysis may conclude that the program is correct. However, computing the set of
reachable program states is by no means trivial: numeric variables may take infinitely many values, dynamic memory
allocation precludes the analysis from knowingapriori the set of memory locations that must be tracked, and recursion
allows program functions to be invoked in an unbounded number of contexts. In fact, computing the set of reachable
states is in general undecidable.

Program analysis sidesteps undecidability by approximating sets of reachable states by larger sets that are both
decidable and effectively representable in a computer. These over-approximations are calledabstractions. Since ab-
stractions contain all possible reachable states, programanalysis issound. That is, if a program has an error, program
analysis will identify it. However, abstractions may contain states that the program does not reach in reality. If these
extra states satisfy error conditions, program analysis generates spurious error reports (also known asfalse positives).
The central problem of program analysis is searching for abstractions that are both computationally efficient and pre-
cise (that is, produce a low number of false positives). Generally, no single abstraction can work well for all programs.
Thus a large number of abstractions, each of which is tailored to a specific set of properties, has been designed.

Logically, a program analyzer consist of two components: anabstract domainapproximates sets of reachable states
and manipulates these approximations (referred to asabstract states) to reflect the effects of program statements;
an analysis enginepropagates abstract states through the program. The two components are connected through a
generic interface. Mathematically, abstract domains are best thought of as partial orders, where order is given by
set containment: the smaller the set, the more precise is theabstract state. Two properties of abstract domains are
of particular interest: an abstract domain is said to bedistributive if no information is lost when the abstract states
computed along multiple program paths are combined; an abstract domain satisfies theascending chain conditionif it
is impossible to construct an infinite sequence of abstract states that have strictly decreasing precision. If an abstract
domain possess both properties, than any analysis engine isable to compute the optimal results with respect to that
abstraction.

My research is centered onnumeric program analyses: analyses that discover numeric properties of a program.
A simple example of numeric analysis is one that discovers a range of values that a variable may have at a particular
program location. A more involved example is an analysis that discovers numeric relationships that hold among values
of program variables, e.g., establishing that the relationshipa = 4 ∗ b + c always holds among the values of variables
a, b, andc at a certain program point. Such numeric properties can be directly used to identify program errors, such as
out-of-bounds array accesses, integer overflow, and division by zero. While seemingly simple, such errors account for
the majority of known security vulnerabilities according to CERT.

The origins of numeric program analysis date back to the early 1970s. Over the years a rich set of numeric abstrac-
tions has been developed. These abstractions range from simple ones likeintervals, which only keep track of upper
and lower bounds for each variable, to relational ones, likepolyhedra, which are able to establish linear relationships
among variables, to automata-basednumeric decision diagrams, which can represent arbitrary Presburger formulas.
These abstractions exhibit varying precision/cost trade-offs and have been successfully used in practice. However,
most of these numeric abstractions are notdistributiveand do not satisfy theascending chain condition. This makes
obtaining precise results somewhat of a black art.



Research Statement Denis Gopan 2

Many program analyses, even those that are not directly concerned with numeric behavior of a program, often rely
on numeric program-analysis techniques. To list a few examples:

– Low-level code analysis, such as analysis of x86 binaries, is quintessential for the fields of security and reverse
engineering. In low-level code, typically, there are no explicit variables; rather, variables correspond to offsets
from the beginning of an activation record or the beginning of the data section. Numeric operations are used
to manipulate these offsets. Thus, a sophisticated numericanalysis is required just to determine which memory
locations are accessed by each instruction.

– Shape analysis, an analysis that establishes properties of heap-allocated linked data structures, may use numeric
quantities to represent some aspects of shape abstraction,such as the length of a linked-list segment, or the depth
of a tree.

– Memory-cleanness analysis, an analysis that checks for memory-safety violations, uses numeric quantities to track
the amount of memory allocated for each buffer, the offsets of pointers within the corresponding buffers, and the
lengths of C-style zero-terminated strings.

Thesis Contributions.
In my thesis, I develop a suite of techniques with the common goal of improving the precision of numeric analysis. The
techniques address various aspects of numeric analysis, such as handling dynamically-allocated memory, analyzing
array operations, and regaining precision lost to extrapolation and non-distributivity. In my research, I did not attempt
to create new abstractions; instead, I designed intelligent ways to use existing abstractions to obtain greater benefits.
In a program analyzer, my techniques fit in-between the abstract domain and the analysis engine, and thus, can be
viewed asprogram analysis middleware. I tried hard to make the techniques independent from specific abstractions
and specific analysis engines. As a result, my techniques canbe easily incorporated into existing program-analysis
tools and should be readily compatible with new abstractions to be introduced in the future. Furthermore, even though
they were inspired by numeric-analysis issues, the techniques can be used to improve the precision of non-numeric
abstractions, as well.

Summarizing abstractions.Existing numeric abstractions are only able to keep track ofa fixed, finite set of numeric
variables. However, if a program manages memory dynamically, the set of variables that the analysis must keep track
of may change as the program executes, and may not be statically bounded. For instance, keeping track of values
stored in a linked list poses a problem to existing numeric analyses because it is impossible to model each individual
list element. A typical approach that pointer analyses use to deal with dynamically allocated memory is to partition
memory locations into a fixed, finite set of groups and reason about locations in each group collectively. Partitioning
can be as simple as grouping together all memory locations created at a particular allocation site, as is done by
many pointer-analysis algorithms; or as complex as maintaining afluid partitioning that changes in the course of the
analysis, as is done by state-of-the-art shape analyses. However, existing numeric abstractions cannot be used in this
setting because they are incapable of such collective reasoning.

As part of my research, I designed a framework for automatically lifting standardnumeric abstractions to support
reasoning about potentially unbounded groups of numeric variables: instead of establishing numeric properties of
individual variables, lifted abstractions captureuniversalproperties of groups of variables [1]. For instance, a lifted
polyhedral abstraction can capture the property that the value of each element in an array of unbounded size is equal
to its index times two. Lifting is done by assigning a non-standard meaning to the existing abstraction. The sound
and precise transformers for the lifted abstraction are automatically constructed from the transformers for the original
abstraction. I used the above ideas to add numeric support toTVLA, a state-of-the-art shape-analysis framework. I
also collaborated with Bertrand Jeannet (IRISA, France) ondistilling these ideas into a novel relational abstractionfor
functions [6, 7].

Array analysis.Arrays are simple data structures that are heavily used in practice due to their simplicity and efficiency.
However, arrays pose a major challenge to program analysis:array operations are rarely implemented for arrays of
fixed size; instead, the size of an array is specified symbolically. Thus, the goal of the analysis is to establish that
the operation behaves properly for arrays of any possible size. Furthermore, to successfully analyze array operations,
the analysis must be able to capture relationships between the structure of an operation and the properties of array
elements. For instance, to handle a simple array-initialization loop, the analysis must be able to maintain the property
that array elements with indices that are less than the valueof the induction variable have been initialized, while the
rest of the elements have not.

I addressed the problem of array analysis by using a combination of canonical abstraction, an abstraction that
dynamically partitions memory locations into groups basedon their properties, with my summarizing numeric ab-



Research Statement Denis Gopan 3

stractions [4, 5]. Numeric relationships among indices of array elements and values of variables that index into the
array are used to partition array elements into groups. The numeric relationships among groups of array elements are
established with the use of summarizing numeric abstractions. A prototype implementation of the analysis was able to
successfully analyze a number of array-initialization andsorting routines.

Extrapolation. Many existing numeric abstractions require the use ofextrapolation(also referred to aswidening).
The idea behind extrapolation is to guess a program invariant by observing the changes in program properties that
are discovered early in the analysis. Extrapolation excelsfor programs with simple behavior. However, for programs
whose behavior is harder to predict, extrapolation tends tolose a lot of precision. This precision loss makes the use
of extrapolation very tricky in practice: the famous adage goes: “If you widen without principles, you converge with
no precision!” A number ofadhoctechniques for reclaiming lost precision have been proposed over the years. These
mostly rely on invariant guesses supplied by either a programmer or an external analysis.

As part of my research, I designed a framework forguidingthe state-space exploration performed by the analysis
and used this framework to improve the precision of extrapolation [2]. The main idea is to restrict the analysis to parts
of the program that have simpler behavior than the entire program, and thus, can be analyzed with more precision. After
the analysis of a particular program part completes, the next program part is revealed to the analyzer. The framework
is parametrized by a selection mechanism that identifies program parts to be analyzed. The selection mechanism that
works best for extrapolation is one that applies analysis toeach individual program phase in separation. I showed
how to implement this particular instantiation of the framework efficiently in a way that easily integrates into existing
analyzers.

Interprocedural analysis.Recently, Weighted Push Down Systems (WPDSs) emerged as an attractive engine for
performing interprocedural program analysis. In WPDSs, weights capture the effect of program statements on pro-
gram state. Algebraically, weights have strong similarities to abstractions. The existing techniques for model checking
WPDSs guarantee precise results if weights are both distributive and satisfy the ascending chain condition. Most nu-
meric abstractions, however, do not possess either of theseproperties. As part of my research, I experimented with
using WPDSs for numeric program analysis. My primary concern was the precision loss due to non-distributivity of
numeric abstractions.

Library summarization.Program analysis works best when it operates on the entire program. However, in practice,
large parts of a program’s functionality is hidden in libraries. Often, these libraries come from third-party software
vendors, and their source code is not available. In practice, to perform the analysis, a collection ofstubsthat emulate
the behavior of library functions is created. Usually, the stubs are created manually — a process that is both error
prone and lengthy.

I applied the numeric analysis techniques that I developed to the problem of automatic derivation of library-
function summaries [3]. Each function summary consists of aset of error triggers (that is, numeric conditions that,
if satisfied at the function callsite, imply program failureduring function invocation) and a transformer that indicates
how to transform program state at the callsite of the function to the program state at the return. The technique applies
directly to library implementations (x86 binary code, at the moment). CodeSurfer/x86, a tool for binary-code analysis,
is used to perform initial analysis of the binary. The results are used to generate a numeric program, which is then fed
into a WPDS-based numeric program analyzer to produce errortriggers and library-function transformers.

Future Research Directions.
I anticipate low-level code analysis to be of particular importance in the near future. Today, a simple click of a mouse
in a web-browser window may lead to software being downloaded, installed, and executed on a computer (without
the user’s explicit knowledge) to display, for instance, some media content. The same software may steal the user’s
private information from the hard drive, or use the computeras part of a botnet for launching distributed cyber-attacks.
As a result, educated users are forced to forgo the first scenario (the convenience), to avoid the second scenario (the
insecurity). An attractive goal for static program analysis is to automatically establish that a particular executable (e.g.,
the one downloaded from the net) is going to behave accordingto the first scenario, but not according to the second.

Low-level code poses a number of challenges to program analysis: there are no explicit variables, type informa-
tion is not available, bitwise operations are often used to perform numeric operations (and vice versa), requiring the
analysis to model program behavior on a bit level, etc. Furthermore, intruders (and attackers) are allowed to be as
creative as possible, whereas program analysis is founded on the concept of modeling “the common case” precisely
and losing precision on “creative” programs. An interesting research question is whether it is possible to construct
scalable abstractions that are capable of modeling both numeric and bit-vector properties of numeric variables.



Research Statement Denis Gopan 4

Another topic that captures my interest isguided state-space exploration: many useful abstractions (numeric ab-
stractions, in particular) are not distributive and thus the precision of the analysis depends heavily on the order in
which the program is presented to the analyzer. A number ofadhoctechniques that derive benefit from guiding the
state-space exploration exist:lazy abstractionsexplore the program in a way that avoids performing joins;concolic
(concrete+symbolic) techniques perform analysis along a particular executionpath to generate test cases that exercise
alternative program paths; some techniques for concurrent-program analysis use program under-approximations to
reduce the number of interleavings that have to be considered. In my work, I used a sequence of specially-constructed
syntactic program restrictions to improve the precision ofwidening. An interesting research direction is to attempt to
generalize the above techniques into a single framework forguiding state-space exploration.

References

1. D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with summarized dimensions. InTools and Algorithms
for the Construction and Analysis of Systems, pages 512–529, 2004.

2. D. Gopan and T. Reps. Lookahead widening. InInt. Conf. on Computer Aided Verification, pages 452–466, 2006.
3. D. Gopan and T. Reps. Low-level library analysis and summarization. Submitted for review, 2007.
4. D. Gopan, T. Reps, and M. Sagiv. Numeric analysis of array operations. Tech. Rep. 1516, Comp. Sci. Dept., Univ. of Wisconsin,

September 2004.
5. D. Gopan, T. Reps, and M. Sagiv. A framework for numeric analysis of array operations. InSymp. on Princ. of Prog. Lang.,

pages 338–350, 2005.
6. B. Jeannet, D. Gopan, and T. Reps. A relational abstraction for functions. InInt. Workshop on Numerical and Symbolic Abstract

Domains., 2005.
7. B. Jeannet, D. Gopan, and T. Reps. A relational abstraction for functions. InStatic Analysis Symp., pages 186–202, 2005.


