Consensus as a Service

Lecture 10
CS 739
Spring 2012

3/13/12

Notes from reviews

Consensus

* How does it help?
— Strong guarantees about properties
 Elect a master
* Discover a master
 Find other replicas (membership)
* How should it be exposed?
— Client Library
— Paxos service (acceptors)
— Lock service

Paxos as a library

¢ How use?
— Clients manage their own replicas
— Invoke paxos to pass proposals
— Manage an internal state machine using Paxos
« E.g. alog, election protocol, etc.
* Benefits:
— No extra machines
« Drawbacks:
— Client code must be written as state machine
— Client code must have enough replicas to run paxos (enough for majorities)
— Clients must be reliable enough to paxos to be efficient (rare failures)
— Must be few enough clients for paxos to be efficient

— Clients must have a good place to store state quickly
« Log of actions

Paxos as a service

* Run a paxos service
— Set of acceptors to vote & record outcomes

— Distinguished proposer/learner to accept requests &
provide replies

* Benefits:

— Unreliable clients

— Integrate with more code
* Drawbacks:

— Doesn’t address when state can change, how it
changes, who knows it changed, who can change it

Consensus as Locks

Lock service

— Use consensus to make strong consistency
guarantees

Benefits

— Can protect data held elsewhere (if ordering
respected)

— Fits programmer model of locking
Drawbacks
— Doesn’t store data on its own




Chubby

* QUESTION: What is goal?

— Expose a consistency service for applications
* Abstraction:

— name space of small files

— Strongly consistent operations on files

— Advisory locks (only enforced by lock operations,
not by file operations)

— Notifications (synchronization)

3/13/12

Chubby Service

* Single master + replicas,
— Paxos for consistent leader elections
— Operations replicated to all replicas
— Consistency enforced at master

— QUESTION: Why so many single masters?

* write throughput doesn’t improve with multiple
masters

* Read operations get less consistent
* Caching makes read performance less important

Chubby Design

* Why a file system?
— Applications that want consistency often have to store
data related to consistency
« avoids need for separate service
— Hierarchical names space easier to manage across a
cluster
* Why a service and not a library?
— Asingle client can get consistency without 5 replicas
for availability (chubby provides extras)

— Locks easier to reason about that consensus as a
programming model (e.g. not deal with replicated
state machines)

Chubby design goals

* Extreme scalability

— 1000’s of machines, 10,000 processes connected

— Frequent checks by client code
« polling if something changed, accessing shared state

— Infrequent, coarse grained lock acquisition
« Fine grained inherently too slow/expensive/failure prone
« Allows stronger consistency during failures

— can allow locks to be maintained across server failures

« Often locks held by a primary/master, only changes
ownership on failure

Granularity of consensus

Fine grained
— Used for updating individual objects (e.g. a single file)
* Coarse grained
— Used for rare events (e.g. electing a leader)
* Which to use?
— Observation: can use coarse-grained to provide fine
grained with lower
* Partition fine-grained operations to different masters
« Store partitions in Chubby
« Detect failures using notifications
« Try to take over for failed node
— Observation: fine grained operations always scale poorly
and perform poorly

Chubby servers

* Essentially paxos

— Single master runs paxos to update data

— Election protocol when master fails

What data is replicated with paxos?

— Data in file system

— Locks held

* Who services request
— Reads: use a distinguished learner (the leader)
— Writes: run paxos




Chubby operations

* What is needed for consistency?

— Lock acquire/release

— Data read/write

— Stat: has anything changed (polling)

— Compare-and-swap: allows updates without locks
* How use for leader election:

— All clients try to get excusive lock, only one wins,
then writes name in data

3/13/12

Efficient locking

* Leases: alock with a timeout
— Works if clocks are similar
— Server gives lock to client for a fixed period of time
— Client must renew lock or else it goes away
— Handles case of client / server failure automatically
« Client failure: server reclaims lock
+ Server failure: client loses lock
— Provides failure detection
« Client must renew lock periodically
— Provides piggy-back opportunity for other messages
* Attach other messages to renew message
¢ How handle server failure:
— Would like to keep lock across server failure
— Solution: grace period
* Allows lock to be held but not used while server restarts
* If get new lease before grace period over, don’t need to release it

Scaling servers

* How reduce load from client checking polling
or checking on things?

— Sessions: aggregate all client state to piggyback all
messages at once

— Container for what goes away on failure

— Enables caching, because client guaranteed to
receive invalidations when session is alive

* Keep-alives provide fast failure notification

Chubby consistency mechanism

* Problem: use chubby to sequence operations to some
other service (e.g. not chubby files)
— may have reordering of chubby lock/unlock with
operations in other service under failure
« e.g. client grabs lock, issues request, then fails
* Another client grabs lock, issues another request
— first request could arrive after second
* Solution: sequencer; evidence that a lock is held
— client grabs lock, gets sequencer, issues request, fails
— next client grabs lock, gets sequencer issues request, fials

« server verifies sequencer of first client, chubby says lock no loner
held & reject

Event notification

* Think: like condition variables
— Clients can be notified of useful events to avoid
polling
« file changed

« file added to directory (perhaps representing new
replica)

* Lock acquired — new primary elected
— Events delivered after the fact

« state may not be true any more

* Guaranteed to not see old state

Chubby Caching

How do you cache?
— Leases: record how long you can use a lock without contacting server
« removes read requests
— Aggregate with sessions: renew all leases on a session at a time
+ renew requests O(1) not O(cache size)
— Negative caching: cache when open() fails
+ removes polling for non-existent files
— Open files
« repeatedly opening doesn’t re-open file at server
— Locks
+ don’t release locks when done, but allow chubby to reclaim
Result: traffic at Chubby server largely mutations
— who owns lock
— changes of file data




Failover

* What happens when a master fails?

— Other servers detect

— Elect one as leader (paxos...)

— Clients learn of new master from DNS or
someplace like that

— Clients send keep alives to new server to establish
session

* Must provide lock handles

3/13/12

Consensus as a service

* Challenges
— Caching failures can overwhelm servers

— Client response to server failure
* Why would clients restart on server failure?




