Lecture 2: Intro to DS structure and Grapevine
1. Terminology
a. Internet == interconnected LANs. Only connects one company, not whole world
2. Notes from reviews:
a. Contributions:
i. list of lessons
b. Flaws:
i. failures scales with size of system — more nodes, more likelihood of failure
1. they note this with link length
ii. Writing? need more illustrations?
iii. Was consistency model too weak? Does it need strong consistency?
iv. Scaling by dividing roles (messaging vs naming) limiting
v. Not discuss security — is this a writing flaw or a technical flaw?
vi. Need admin to tolerate some flaws, such as corrupt disk
3. My flaws:
a. Nested groups make some things harder, like checking membership. Also need to
prevent loops
b. Should provide stronger consistency guarantees to admins, such as session guarantees
that they will see the effect of their edits or tell them they may not (e.g. do binding)
c. Use of ACL caching makes distribution lists hard to use for security, since cannot revoke
access immediately (e.g. when you fire someone)
d. Remailing solution (make user handle it) could be better — could provide efficient bulk
transfer for moving an entire mailbox.
i. shows challenge of relying on high-level abstractions for a use outside their
goal; they can be too expensive

Overview of distributed systems
e. Desirable Properties
i. Fault-Tolerant: It can recover from component failures without
performing incorrect actions.

ii. Highly Available: It can restore operations, permitting it to resume
providing services even when some components have failed.

iii. Recoverable: Failed components can restart themselves and rejoin the
system, after the cause of failure has been repaired.

iv. Consistent: The system can coordinate actions by multiple components
often in the presence of concurrency and failure. This underlies the ability
of a distributed system to act like a non-distributed system.

v. Scalable: It can operate correctly even as some aspect of the system is
scaled to a larger size. For example, we might increase the size of the
network on which the system is running. This increases the frequency of
network outages and could degrade a "non-scalable" system. Similarly,
we might increase the number of users or servers, or overall load on the
system. In a scalable system, this should not have a significant effect.

vi. Predictable Performance: The ability to provide desired responsiveness

Vii.

in a timely manner.
Secure: The system authenticates access to data and services [1]

f. Failure Types

Vi.

Vii.

g.

Halting failures: A component simply stops. There is no way to detect the
failure except by timeout: it either stops sending "I'm alive" (heartbeat)
messages or fails to respond to requests. Your computer freezing is a
halting failure.

Fail-stop: A halting failure with some kind of notification to other
components. A network file server telling its clients it is about to go down
is a fail-stop.

Omission failures: Failure to send/receive messages primarily due to lack
of buffering space, which causes a message to be discarded with no
notification to either the sender or receiver. This can happen when
routers become overloaded.

Network failures: A network link breaks.

Network partition failure: A network fragments into two or more disjoint
sub-networks within which messages can be sent, but between which
messages are lost. This can occur due to a network failure.

Timing failures: A temporal property of the system is violated. For
example, clocks on different computers which are used to coordinate
processes are not synchronized; when a message is delayed longer than a
threshold period, etc.

Byzantine failures: This captures several types of faulty behaviors
including data corruption or loss, failures caused by malicious programs,
etc. [1]

Eight fallacies: Generally, LAN conditions don't always exist
a. The network is reliable.

What if network is 5 nines reliable — 99.999%. If you send a gigabit of
data

Network can fail for a variety of reasons: backhoes, operators, software
failures

How often is our department cut off from the Internet, or are you at
home?

b. Latency is zero.

"But | think that it’s really interesting to see that the end-to-end
bandwidth increased by 1468 times within the last 11 years while the
latency (the time a single ping takes) has only been improved tenfold. If
this wouldn’t be enough, there is even a natural cap on latency. The
minimum round-trip time between two points of this earth is
determined by the maximum speed of information transmission: the
speed of light. At roughly 300,000 kilometers per second, it will always
take at least 30 milliseconds to send a ping from Europe to the US and

back, even if the processing would be done in real time."
ii. Matters most when waiting for a response (round-tripd elay)
c. Bandwidth is infinite.
iii. Getting better, definitely
iv. Problem comes not from a single client, so much, but from many clients
acting simultaneously (e.g. refreshing every X minutes)
v. Wide-area bandwidth limited by TCP/IP and losses
1. At 40 msec RTT and 0.1% (1 in 1000 packet) loss, TCP/IP capped at
6.5 Mbps.
2. To reach 500 Mbps, need 3x10” error rate
d. The network is secure.
vi. Example: FTP sends password, username in cleartext
vii. E.g. MS Windows RPC did not validate format — assume correct.
Malformed packet would crash server
viii. Attacks:
3. IP injection
Snooping
Denial of service
Dictionary attacks
Malware on client desktops (see Google in China), means firewalls
aren't enough
e. Topology doesn't change.
ix. Machines move, to different networks, different routes
Xx. Can't statically say how to route things, where servers are, etc.
xi. So:use names for indirection (e.g. dns, not ip addresses)
xii. So: use discovery: ask a service for the best server to use
f. There is one administrator.
xiii. Cannot change everything at once
xiv. Cannot change everything at all — e.g. could change server settings but
not all client settings
g. Transport cost is zero.
xv. Network is not free — provided in this department, but for real systems
someone must pay for it
h. The network is homogeneous.
xvi. Latencies, reliability, distances vary
xvii. E.g.: DSL, dialup, LAN clients, mobile
xviii. Different speeds, latencies, prices

No vk

4.

Grapevine
a. Name server & email system
i. Like Windows Active Directory + Exchange email system
1. Actually, almost identical design

ii. Name server maps user names to mailboxes and groups to members
(other groups or users)
1. Key piece of almost any distributed system —how do you name
the entities on the system so programs & users can refer to them
2. What a name means is an important question
a. ltitan address where you can send messages
b. Isitanindirection that can be used to look something up?
¢. What are uniqueness properties? E.g. within a domain or
globally unique?
d. Can they change?
i. What if used for access-control lists?
ii. What if used in distribution lists?
iii. If they can change, typically have an unchanging
internal version (e.g. user ID in Unix, SID in
Windows)
iii. Email system buffers and delivers messages to inbox, where user
downloads them
iv. Note: these are separate services that can be used independently
1. name system can use email message delivery for replication
2. email can use name system for looking up where to deliver things
3. File systems can use name system for access control &
authentication
v. Separate admins in each registry (domain)
b. What is the scale of this system? An enterprise
i. 10,000 users
ii. 30servers
iii. Adozen sites
iv. QUESTION: Is it reasonable to assume a limit to how big you want
something to scale?
c. QUESTION: What is envisioned environment?
i. Internet (interconnected LANSs) at a single large organization with single
management
ii. Mix of high speed (lan, 56 kb, 8kb links)
d. What are goals?
i. Scale to many users
ii. Scale by adding machines, not bigger machines
1. “fixed size” does not mean never buy larger, but not assume you
can scale by buying bigger machines
iii. User can always send a message
iv. Tolerate failures of any machine
v. Decentralized administration
vi. Large range of user sets —small to very large
e. QUESTION: What problem does this solve?
i. How to scale a service horizontally (adding more machines) rather than

vertically (bigger machines)
ii. How?
1. Replicate for reliability
2. Hierarchically partition data (names, users) to different machines
3. Avoid global state
4. Avoid rigid consistency

a. Write things in one place, replicate later

b. Don't replicate message contents

c. QUESTION : Why does this work?

i. Humans involved can handle inconsistency
ii. Programs must be coded to not expect
inconsistency
iii.
iii. What state doesn't do this?
1. Set of machines —replicated globally
2. Originally, members of a distribution list

a. Why not?

b. Interactions of users are not local — more users indicates
bigger lists, bigger groups of users

iv. Assystem grows, what makes it scale?
1. Admin must decide how to partition things, where to add servers,
how to incorporate hierarchy into big groups
2. Admins may relocate users, add new servers, etc.
v. How make it reliable?
1. Replicate services
2. Focus on high availability when needed: sending messages

a. Not everything is high availability — all mail may not always

be available
3. QUESTION: Is replication enough?

a. ANSWER: No: need capacity to tolerate added load after a
failure, or need to shed load (drop requests) to make up
for lost capacity

f. QUESTION: What do they give up to make this work?
i. Guarantees: latency can be long
ii. Consistency: may make an update that is not immediately visible, may
have duplicate messages delivered
g. QUESTION: What are the lessons for distributed systems?
i. Load can scale beyond capability of a single machine (or a set) leading to
congestion collapse
ii. All state should be partitioned/replicated, avoid global state or having to
have all of anything somewhere
iii. Remote monitoring, local logging helps debug distributed problems
iv. Makes things fail in an understandable way
1. Example: file system. Better to have whole directories unavailable

than some files in a directory. Lets users work around
2. Example: reload/stop button on web browser
v. Replication help hardware reliability but not software reliability
1. Single software bug can get passed to all machines — client
repeatedly connects to servers and infects them
2. Similar to Amazon datacenter collapse last year — software had a
retry bug causing congestion collapse.
vi. Design for on-line maintenance
1. In a high-availability system, cannot take system offline for
debugging.
2. Should be able to repair a single machine while rest of system
keeps working.
h. High-level solutions

i. Relax consistency
1. can have actions that were just performed disappear if go to a
different replica
2. Guarantees eventually, given a quiescent functioning system, all
values will converge
3. Why does this work?
a. Humans can work around
4. What other stronger (slightly) could you make?
a. Session guarantees: while connected to a server, all
requests will observe the effect of all previous requests.
(local causality)
b. Causality: anybody you connect to will see the effect of
your previous requests, no matter where they were sent
(causal consistency)
ii. Partition work
1. E.g. hierarchical groups
2. Indistributed systems, some knowledge is global. Handle by:
a. Keep it small and static (slowly changing), loosely
consistent
iii. Replicate for availability
1. Full copies of naming database
2. Handling conflicting updates:
a. Last-writer-wins most of the time — fits model of how
humans think in this environment
b. Not always works — creating a new name
i. want first-creator wins
iv. Move data closer to work — not done, but proposed
1. When sending message to group with users stored on remote
computer, could move message to a close message server and do
fast, local communication instead of remote communication

2. For expanding large groups; make it multiple groups on different
machines that do local expansion (layer of indirection)
v. Caching
1. Used for repeated access checks —don’t need to perform same
user/group lookups
vi. Alternate data structures for more efficient access
1. Store flattened version of nested groups
2. Like index in database
3. Partitioning
a. Database of users is split into registries, each registry can
be stored on different machines
b. Names partition users based on registry name
i. Spreading load
1. Put users mailboxes on different machines to avoid hot spots
2. Put backup mailboxes for users on a single primary on different
machine to avoid overload on failure
PROBLEM: need to manually rebalance users in some case
4. WHAT IS THE ISSUE:
a. Need to move their entire mailbox - - lots of state
b. Issue: can be hard to recover from a bad placement
choice, and moving data impacts ongoing load
c. SO:don’t move users just on a failure; only if machine
really dies or need to really rebalance.
viii. Locality / traffic patterns
1. Try to put users that share email on a single machine
2. Try to optimize delivery to send messages over slow links only
once
3. Try to put users of a group near the servers hosting that group
X. ldempotent operations
1. Allow duplicate messages; avoids cost of expanding groups
completely in delivery
2. Postmark in message allows duplicate detection in mailbox;
adding same message multiple times doesn’t do anything more
3. Can avoid expensive sorting, duplicate detection algorithms
x. Delta encoding
1. Distribution lists originally propagated entirely then merged
a. WHY?
i. All other objects were done that way, distribution
lists were objects
2. Changes to group memberships sent as deltas (add / remove
member) instead of new membership (entire list of members)
3. Removes need to merge large data objects; just apply change
xi. Expose internals

\

w

1. Naming convention dictates whether a name on an ACL is a user
or group; allows for faster lookups because don’t need to expand
users

xii. Input throttling to reduce overload
1. Servers reject messages when disks are full
2. Can lead to deadlock

xiii. Indirection:

1. Add layer of indirection for group membership to make it faster —
not have to lookup all members.

2. PROBLEM: what does this make hard?

a. ANSWER: need to prevent loops (not easy)
b. ANSWER: slow to figure out if a user is a member of a
group
i. socache flattened list
How address the fallacies?
i. Pretty much took into account every one

