Scaling services
1.Giant scale services
a. Questions from reviews
i. Uptime vs recovery time?
ii. Unhelpful focus on read-only services
iii. Are systems more network-bound than disk bound?
1. Itis when you introduce caching
iv. How does harvest relate to non-search systems?
1. Reduce amount of data for adds, recommendations
2. Precision of # of messages in mailbox
3.
b. Background:
i. Eric Brewer and some grad students founded inktomi as a search engine
using a google-style architecture: commodity workstations and networks
(myrinet cluster)
ii. We read his papers because he writes about his experiences (few others
do) and writes for our community
c. What problems addressed in this paper?
i. Basic architecture
1. Load-balancing front end, back-end nodes:, separate data store

Client Client
Client Client
Single-site server
Load
manager
Optional
backplane
Persistent data store

2. Best-effort service
3. Where not appropriate?
a. E-commerce: want to store orders, credit card transactions
4. Why clusters?
Only way to scale to the whole planet
Cheap to buy
Incrementally scalable
d. Independent failures of small components
5. Cluster architecture:
a. Use "symmetric design" —really means homogeneous
ii. Load management: LARD & consistent hashing type approaches

0T o

iii. High availability
d. Availability
i. Metrics
1. MTTF/MTBF = time between failures
2. MTTR = time to repair
a. Restart app after app crash
Reboot after system crash
Repair /replace hardware after hardware crash
Move workload to another machine
QUESTION: Which should you try to improve — MTTR or
MTTF?
i. Depends on how long computations run for — if
short, then little is lost from a failure
3. Availability/uptime = (MTBF-MTTR)/MTBF = fraction of time you
are available to serve data
a. Inasetting with multiple data centers and independent
failures, what does this mean?
i. What a single user sees?
1. If the internet goes down on their side, they
see zero
ii. Aggregate: of all requsts/ what fraction served?
4. Yield = # queries completed / # queries offered
a. Aggregate availability
b. QUESTION: How define for google docs or gmail?
5. Harvest = data available (how much data used for query) /
complete data
a. Q: how use in email?
i. What fraction of inbox/total messages available?
b. Q: how use in ecommerce?
i. Reduce number of suggestions
c. Q:how usein ebay?
i. Simplified rendering of pages, fewer suggestions or
data per page
d. Q: how use in new york times online?
i. Simplified pages, less dynamic content

®oo o

e. Architectures for availability:
i. Replication: store multiple copies of data
1. Q: what happens on failure?
a. Yield goes down — fewer servers to answer results
b. Harvest stays same (all data still available)
ii. Partition: split data into smaller chunks
1. Q: what happens on failure?
a. Harvest goes down — cannot see all data

b. Yield stays same (copies of other data stay same)
iii. QUESTION: What does consistent hashing /LARD do?
1. Mostly partitioning, replication only for super-hot data
iv. NOTE: everybody does both
v. Replication and read/write data
1. For read-only data, replication adds scalability — can serve more
than possible on a single machine
2. For read/write data, write throughput limited to what a single
machine can handle
a. Must write to all machines, so replication does not
improve throughput
b. Must partition to the point where load can be handled by
a single machine
f. Scalability
i. DQ principle
1. Data per query X queries per second = constant for a given
cluster/architecture
a. This is the amount of data you need to process per second,
driven by number of machines, disk throughput, network
throughput, memory capacity (for caching)
2. DQ of a cluster is a capacity metric
a. DQ of a workload is the demand on the cluster. You hope
the DQ of the cluster is higher than the DQ of the demand
ii. How do replication/partitioning and failures affect DQ?
1. Replication: increase # of queries per second by having more
machines answer each query
a. Failure leads to fewer queries per second
2. Partitioning: increase amount of data by having more machines
store data
a. Failure leads to less data per query
3. Result: a failure in either case reduces aggregate capacity the same

way
Table I. Overload due to failures.
Failures Lost capacity Redirected load Overload factor
1 l 1 n
n n-1 n-1
k E k n
4 n n—k n -k
5. What happens to the load? Must send it somewhere else (with
replication)

a. Iflose 1/n machines, then each other machine must add
1/(n-1) more capacity (with replication)

i. 5 machines, 1 crashes -> each machine has % more
capacity (divide 1 machine over 4)
b. Other machines have n/(n-1) load (5/4 in our example)

g. What happens at overload?
i. Overload can happen when unexpected failures (data center) or
unexpected workloads (Slashdot effect)
ii. What bad thing happens?
1. Congestion collapse: latencies get so long everybody times out and
retries
iii. How can you handle?
1. Must reduce DQ of the load
a. Queries per second: admission control
i. Fail low-priority queries
b. Data per query: incomplete answers
i. Fewer email messages displayed (in email)
ii. Fewer tail search results
iii. Fail complex queries early (lower average data per
query)
iv. Stale data (more caching)
h. Online evolution
i. Cannot take down an internet service (although AOL used to go down for
a few hours every week
ii. Key question: can versions co-exist?
iii. Solutions:
1. Fast reboot: reboot all machines at the same time during off peak
hours
a. Avoid incompatibilities
2. Rolling upgrade: upgrade in waves, take down 1/#waves at a time
a. Longer latency, lower impact
b. Need to support co-existence of versions
3. Big flip
a. Do half the machines at a time, switch from old to new
with network switch
iv. Must support lowered throughput during upgrade, or do during off-peak
hours
i. Whyread
i. See how load balancing fits into picture
ii. See how make service infinitely scalable
1. Replicate, partition
2. Plan for added load after failure
iii. See fault tolerance techniques
1. MTTR vs MTTF
iv. Seeissues

2.Dynamo

1. Upgrades
2. Capacity (throughput) = DQ

a. Questions from reviews?

Gossip-based protocol

1. Does it limit size? They say they have a size limit elsewhere

b. Why read this paper?

Introduction to a ton of ideas

1. merkle trees

quorum protocols
gossip protocols

vector clocks
Anti-entropy replication
6. CAP theorem

vk wnN

c. Looks at issues of partitioning & replication & fault tolerance & load specifically
d. What are key ideas

Vi.

Define the appropriate service
1. key-value store vs RDBMS
Define the appropriate consistency metric
1. Generally, what is the loosest thing your application can handle?
a. Dynamo:
i. No lost data or silent overwrites
ii. Always writeable
Partition your data
1. Hash on the key of an object
2. Assign servers to hash buckets explicitly (consistent hashing)
3. Virtual servers to spread load more evenly
Replicate your data
1. Write data to some number of nodes
2. Read from some number of nodes
3. If you can guarantee they overlap, then you have consistency
4. Assign a coordinator among top N replicas
a. helps with consistency because it knows of previous
versions of data
Handle failures
1. Send reads/writes somewhere else
a. hinted handoff
2. Propagate changes back on recovery
a. merkle trees & anti-entropy for detecting missing changes
Keep track of members
1. Explicit add/remove of nodes by admins
a. permanently changes the home of data
2. Failure detector & periodic retry for temporary outages
a. Temporarily sends reads/writes to next nodes down ring

vii. Locate data
1. Load balancer to ring member for dumb clients
a. adds layer of indirection but removes complexity of client
2. Smart clients know which servers to contact
a. reduces latency at a complexity cost
e. Bigidea:
i. Build the simplest useful system
1. Reduce the guarantees to the ones you cannot provide at a higher
level
a. write availability
2. Push complexity out of the service to client when feasible
a. Managing conflicts
3. Leverage centralization when possible
a. assignment of tokens to servers
b. Seeds

