Lecture 5
Replication

Primary/Backup
Gifford weighted Quorum Consensus
Demers Epidemic Algorithms
Bayou

Questions from Reviews

Note: used when replicating to lots of machines
Scalability to large databases, high request rates
— Compare to other alternatives: you still have to move the data...
Is it good enough? Not guaranteed...
— Compare to alternatives in the presence of failures
Global time?
— How accurate does it need to be?
— NTP is good to < 1ms on a network
Handle server addition/removal?
Why need to combine rumor with anti-entropy?
— Rumor good for fast distribution, quiescent when no updates

— Anti-entropy good for completely spreading things after a failure —
fixing residue

2/9/12

2/9/12

Problem with epidemic

* Doesn’t scale: need to know membership
— Too much work to push out frequent updates
— Can have less information about distant machines —
just one of the machines in a distant group
* Can add domains
— Frequent gossip within local domain
— Infrequent across domains
— Alternative to distance metric

* Alternative: DNS
— Highly available small set of machines
— Hierarchy to partition names

Paper issues

* Protocol papers are like algorithm papers

— They don’t have to be implemented in a real
system

Why replicate?

Data replication: common technique in distributed systems
Reliability

— If one replica is unavailable or crashes, use another

— Protect against corrupted data

Performance

— Scale with size of the distributed system (replicated web
servers)

— Scale in geographically distributed systems (web proxies)

Key issue: need to maintain consistency of replicated data
— If one copy is modified, others become inconsistent

CS677: Distributed OS

Challenges: Fault Tolerance

The goal is to have data available despite
failures

If one site fails others should continue
providing service
* How many replicas should we have?

It depends on:

— How many faults we want to tolerate
— The types of faults we expect

— How much we are willing to pay

2/9/12

Challenges: Data Consistency

* We will study systems that use data
replication

* Itis hard, because data must be kept
consistent

* Users submit operations against the logical
copies of data

* These operations must be translated into
operations against one, some, or all physical
copies of data

Design Considerations for Replicated
Services

Where to submit updates?
— A designated server or any server?
When to propagate updates?
— Eager or lazy?
How to propagate updates?
— Ring, tree, Random, topologically sensitive ...
* How consistent?
— strict
— eventual
* How many replicas to install?

2/9/12

Example of Data Inconsistency

* Client operations:
write(x = 5)
read (x) //should return 5 on a single-server system
* On areplicated system:
write (x = 5)
Primary responds to client

Primary crashed before propagating update to
other replicas

A new primary is selected

read (x) // mayreturnx #5, the new primary does not
know about the update to x

Strict Consistency

* Any read always returns the result of the most
recent write
— Implicitly assumes the presence of a global clock
— A write is immediately visible to all processes

* Difficult to achieve in real systems (network delays can be
variable)

* Nearly all existing approaches follow a ROWA(A)
approach:

— Read-one-write-all-(available)

— Update has to be (eventually) executed at all replicas
to keep them consistent

— Read can be performed at any replica

CS677: Distributed OS

2/9/12

Eventual Consistency

* Assume a replicated database with few updaters and many
readers

* Eventual consistency: in absence of updates, all replicas
converge towards identical copies

— Only requirement: an update should eventually propagate to all
replicas

— Cheap to implement: no or infrequent write-write conflicts
— Things work fine so long as user accesses same replica
* Requirement:

— Conflicts have a deterministic resolution
e Ensures everybody who sees multiple updates converges to the same final version
e E.g. last-writer wins
* E.g. one node reconciles conflicts and writes it back (like dynamo)

CS677: Distributed OS

Eventual Consistency

* Many systems: one or few processes perform updates

— How frequently should these updates be made available to
other read-only processes?

* Examples:
— DNS: single naming authority per domain

— Only naming authority allowed updates (no write-write
conflicts)

— How should read-write conflicts (consistency) be
addressed?

— NIS: user information database in Unix systems
* Only sys-admins update database, users only read data
* Only user updates are changes to password

CS677: Distributed OS

2/9/12

2/9/12

Synchronous Replication

Basic scheme: connect each client (or front-end) with every replica: writes go to all
replicas, but client can read from any replica (read-one-write-all replication).

How to ensure that each replica
sees updates in the “right” order?

client A client B

Problem: low concurrency, low availability, and
: high response times.

Partial Solution: Allow writes to any N replicas
replicas (a quorum of size N). To be safe, reads must
also request data from a quorum of replicas.

Asynchronous Replication

Idea: build available/scalable information services with read-any-write-any
replication and a weak consistency model.

- no denial of service during transient network partitions
- supports massive replication without massive overhead
- “ideal for the Internet and mobile computing” [Golding92]

replica A
o . Problems: replicas may be out of date,
may accept conflicting writes, and may
client A : receive updates in different orders.
G—0 /\ o———o
client B g asynchronous state = client C
propagation
replica B replica C

Primary-Backup Replication (PB)

Replicated Servers

Client |+—

<o

g rimary

If the primary fails, a
backup takes over,

backup

<>

backup

becomes the primary

Also known as passive replication

Where to Submit Updates?

* Primary Copy

— Choose one replica of data item to be the primary copy.
* Site containing the replica is called the primary site for that data

item

* Different data items can have different primary sites

— When a transaction needs to lock a data item Q, it
requests a lock at the primary site of Q.

* Implicitly gets lock on all replicas of the data item

— Benefit

* Concurrency control for replicated data handled similarly to
unreplicated data - simple implementation.

— Drawback

* If the primary site of Q fails, Q is inaccessible even though other

sites containing a replica may be accessible.

2/9/12

PB Replication with Eager Updates

NP

The client sends the request to the primary
There is no initial coordination
The primary executes the request

The primary coordinates with the other replicas by
sending the update information to the backups

The primary (or another replica) sends the answer to
the client

Problems:
* Primary is a bottleneck, may be far from some clients
* Delay in failing over when primary fails

Where to Submit Updates

* Update Everywhere:

— Both read and write operations can be submitted
to any server

— This server takes care of the execution of the
operation and the propagation of updates to the

other copies T1:r(x)w(y) T2:r(y)w(y)

2/9/12

Majority Protocol (Cont.)

In case of replicated data

— If Qis replicated at n sites, then a request message must
be segt to more than half of the n sites in which Q is
stored.

— The transaction does not operate on Q until it has
obtained a lock on a majority of the replicas of Q.

— When writing the data item, transaction performs writes
on all replicas.

Benefit
— Can be used even when some sites are unavailable

* details on how handle writes in the presence of site failure later
Drawback

— Need to talk to half of replicas for all read/write
operations

Quorum Consensus

Goal: prevent partitions from from producing
inconsistent results.

Quorum: subgroup of replicas whose size
gives it the right to carry out operations.
Quorum consensus replication:

— Update will propagate successfully to a subgroup
of replicas.

— Other replicas will have outdated copies but will
be updated off-line.

2/9/12

10

Quorum Consensus Protocol

A generalization of both majority and biased protocols

Each site is assigned a weight.

— Let S be the total of all site weights

Choose two values read quorum Q, and write quorum Q,,

— Suchthat Q,+Q,>S and 2*Q,> S

— Quorums can be chosen (and S computed) separately for each item
Each read must lock enough replicas that the sum of the site
weights is >= Q,

Each write must lock enough replicas that the sum of the site
weights is >=Q,,

— Any two write quorums must share a member

For now we assume all replicas are written

— Extensions to allow some sites to be unavailable described later

Weighted Voting [Gifford] 1

Every copy assigned a number of votes
(weight assigned to a particular replica).

Read: Must obtain R votes to read from any
up-to-date copy.

Write: Must obtain write quorum of W before
performing update.

2/9/12

11

Weighted Voting 2

W > 1/2 total votes, R+W > total votes.

Ensures non-null intersection between every
read quorum and write quorum.

Read quorum guaranteed to have current
copy.
Freshness is determined by version numbers.

QUESTION: What if rules above not hold?
— not consistent, but still available

Weighted Voting 3

* Onread:

— Try to find enough copies, ie, total votes no less than
R. Not all copies need to be current.

— Since it overlaps with write quorum, at least one copy
is current.

* On write:

— Try to find set of up-to-date replicas whose votes no
less than W.

— If no sufficient quorum, current copies replace old
ones, then update.

2/9/12

12

Weighed voted challenges

* What if set of nodes change?
— May have no node with up-to-date data

When to Propagate Updates?

* Eager:
— Within the boundaries of the transaction for
replicated databases
— Before response is sent to client for non-
transactional services
* Lazy:

— After the commit of the transaction for replicated
databases

— After the response is sent to client for non-
transactional services

— QUESTION: How spread updates?

2/9/12

13

Direct Mail

* Each update is immediately sent from its entry site to
all other sites.

* When a node receives an update, it checks the
timestamp of update with local timestamp. Newer
updates win

— Timely — updates are sent immediately

— Efficiency — reasonable. Number of messages proportional
to number of updates and average hop count

— Problems:
* Nodes do not know about all replicas
* Mail is not reliable delivery mechanism

Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 27

Epidemic Protocols

* Based on theory of epidemics (spreading
infectious diseases)
— Upon an update, try to “infect” other replicas as
quickly as possible
— Pair-wise exchange of updates (like pair-wise
spreading of a disease)

— Terminology:
* Infective store: store with an update it is willing to spread
* Susceptible store: store that is not yet updated

* Many algorithms possible to spread updates

CS677: Distributed OS

2/9/12

14

Why epidemics?

* Use randomness to get probabilistic guarantees

— Exchange reliability guarantees for better scalability
* May increase time to converge
* Decreases complexity/coordination
* Can improve fault tolerance/performance: fixed amount of load
per cycle rather than continuously retrying
— The achievement of strong reliability in practical
distributed systems requires expensive mechanisms
* to detect missing messages and initiate retransmissions.

» overhead of message loss detection and reparation, protocols
offering such strong guarantees do not scale over a couple of
hundred processes

* Use mathematical models to determine quality &
performance

Anti-entropy

* Entropy - amount of entropy is a measure of the
disorder, or randomness, of a system. (from
thermodynamics — Encyclopedia Britannica)

* Updates available in few sites — high entropy.
Anti-entropy tries to restore order back into the
system

* Every site regularly chooses another side at
random and exchanges database contents with it
and resolves any different between the two

Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing

2/9/12

15

Anti-entropy

» Differences are resolved using:
— Push: infective -> susceptible

— Pull: susceptible -> infective

— Push-Pull: depending on the time stamps, updates are
either pushed or pulled

* Common case: Pull or push-pull preferred

* Reliable, but high overhead because have to
“diff” the databases

Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 31

Anti-Entropy

Assume that
= Site s’ is chosen uniformly at random from the set S

= Each site executes the anti-entropy algorithm once per
period

It can be proved that
= An update will eventually infect the entire population

= Starting from a single affected site, this can be achieved in
time proportional to the log of the population size

2/9/12

16

2/9/12

Anti-entropy — Push and Pull

Push Pull

. Susceptible node
. Infectious node

CS598IG Epidemics 02/09

Anti-Entropy

At each site s periodically execute:

Forsomes €S

ResolveDifferencels, s’]

Three ways to execute ResolveDifference:
Push

If s.Valueof.t > s’.Valueof.t

s’.ValueOf < s.ValueOf
Pul

I
If s.Valueof.t < s’.Valueof.t
s’.ValueOf < s.ValueOf

Push-Pull

s.Valueof.t > s’.Valueof.t = s’.ValueOf < s.ValueOf
s.Valueof.t < s’.Valueof.t = s.ValueOf < s’.ValueOf

34

17

Pull > Push
p; — Probability that a node is susceptible after the it" round
2
Piv1= P pull
1 n(1-p)
pi—i—l:pi(l_;) Push

* For push, suscep = prob suscep * prob no infected site contacted it

* Pull converges faster than push, thus providing better delay
— Prob still not have update = prob not have in round i * prob of
contacting someone who didn’t have it
— Easier for a susceptible node to find an infectious node near the end
than vice versa

CS598IG Epidemics 02/09

Anti-entropy: Optimizations

* Maintain checksum, compare databases if
checksums unequal

* Maintain recent update lists for time T,
exchange lists first

* Maintain inverted index of database by
timestamp; exchange information in reverse
timestamp order, incrementally re-compute
checksums

CS598IG Epidemics 02/09

2/9/12

18

2/9/12

Problems with Anti Entropy

e Can still take a while to converge
— Many rounds after an update is introduced

* Requires constant traffic to disseminate
updates

Complex Epidemics

* Optimizations of simple epidemic algorithms
(anti-entropy, rumor mongering)

* “Complex” epidemics have simple
implementations!

* Example: Each infectious node loses its ability
to “infect” with a probability of 1/k in each
cycle

CS598IG Epidemics 02/09

19

Complex Epidemic terminology

 Site holding an update it is willing to share
“infective”

 Site that has not received an update
“susceptible”

 Site that has received an update but not willing
to share it “removed”

— Anti-entropy: sites are always susceptible or infective

Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 39

Complex Epidemics: Rumor Spreading

* There are n individuals initially inactive (susceptible)

* We plant a rumor with one person who becomes active (infective),
phoning other people at random and sharing the rumor

* Every person bearing the rumor also becomes active and likewise
shares the rumor

* When an active individual makes an unnecessary phone call (the
recipient already knows the rumor), then with probability 1/k the
active individual loses interest in sharing the rumor (becomes
removed)

* We would like to know:

— How fast the system converges to an inactive state (no one is
infective)

— The percentage of people that know the rumor when the inactive
state is reached

40

2/9/12

20

Rumor mongering

 Sites are initially “ignorant”
* When site receives new information, it becomes a “hot
rumor”

— Periodically chooses another site at random and ensures
that the other site has seen the update

— When a site has tried to share a hot rumor with too many
sites that have already seen it, the site stops treating the
rumor as hot and retains the update without propagating
it further

— 1/k probability : k=1, 20% and k=2, 6% will miss updates

— There is a chance that an update will not reach all sites
(backup anti-entropy process)

Feb 7, 2001 CSCI {4,6}900: Ubiquitous Computing 41

Methods for spreading updates:

Rumor cycles can be more frequent that anti-
entropy cycles, because they require fewer
resources at each site, but there is a chance
that an update will not reach all sites

2/9/12

21

Criteria to characterize epidemics

Residue

The value of s when i is zero, that is, the remaining susceptible when the
epidemic finishes

Traffic

m = Total update traffic / Number of sites

Delay

Average delay (t,,,) is the difference between the time of the initial injection
of an update and the arrival of the update at a given site averaged over all
sites

The delay until (t,,) the reception by the last site that will receive the update
during an epidemic

43

Variants of Epidemic Algorithms

* Blind vs. Feedback

— Feedback: Loss of interest with probability 1/k
only when recipient already knows the rumor

* Counter vs. Coin

— Counter: Lose interest completely after k
unnecessary contacts

— Coin: Lose interest with probability 1/k for every
unnecessary contact

* Push vs. Pull

CS598IG Epidemics 02/09

2/9/12

22

Simple variations of rumor spreading

Push vs. Pull
Pull converges faster

If there are numerous independent updates, a pull
request is likely to find a source with a non-empty
rumor list

If the database is quiescent, the push phase ceases to
introduce traffic overhead, while the pull continues to
inject useless requests for updates

Counter, feedback and pull work better

45

Optimizations

Minimization
Use a push and pull together, if both sites know the update, only the site with
the smaller counter is incremented

Connection Limit

A site can be the recipient of more than one push in a cycle, while for pull, a
site can service an unlimited number of requests

With limit, only one contact per cycle

Push gets better: if the limit kicks in, the site still gets the update (acts llke
HORII)

Pull gets worst: if limit kicks in, site does not get update at all

46

2/9/12

23

Removing Data

* Deletion of data items is hard in epidemic
protocols

* Example: server deletes data item x
— No state information is preserved
* Can’t distinguish between a deleted copy and no copy!
 Solution: death certificates

— Treat deletes as updates and spread a death
certificate
* Mark copy as deleted but don’t delete
* Need an eventual clean up
— Clean up dormant death certificates

CS677: Distributed OS

Deletion and Death Certificates

* Absence of item does not spread; On the
contrary, it can get resurrected!

* Use of death certificates (DCs) — when a node
receives a DC, old copy of data is deleted

* How long to maintain a DC?

* Use Chandy and Lamport snapshot algorithm
to ensure all nodes have received

* Simpler strategy — hold DC for fixed amount of
time

CS598IG Epidemics 02/09

2/9/12

24

The CAP Theorem

Theorem: You can have at
most two of these invariants
for any shared-data system

Partition tolerance:

No failures less than total network
failure cause the system to respond
incorrectly

Consistency Availability

Availability: respond within a time
frame

Tolerance to network

Partitions

The CAP Theorem

Theorem: You can have at
most two of these invariants
for any shared-data system

Consistency Availability

Corollary: consistency
boundary must choose A or P
Think: what happensin a
partition case? A or C?

Tolerance to network

Partitions

2/9/12

25

Why?

* Consider cases:
— Primary/backup replication?
— Eager replication with quorums?
— Lazy replication (e.g. epidemic)?

N4 Ny

N2 N2 N2

B & o B o
7] 7] 5]

A\vailability

Examples
Distributed locking
— If lock held on other

side, no availability
Majority protocols

— If don’t have
majority, cannot
access

Traits
Pessimistic locking

Make minority
partitions
unavailable

2/9/12

26

Forfeit Consistency

Examples
Grapevine

Web caching
NFS

Traits
Update-anywhere
Lazy replication
Conflict resolution

— Allow inconsistency but
detect

Eventual consistency

Forfeit Partitions

Tolerance to network

Partitions

Examples
Single-site databases
— Partition causes failures

Traits
2-phase commit
Primary/backup

What happens on
partition?

— Can either can
inconsistency (both sides
can access and see out of
date data) or
unavailability (

2/9/12

27

Beating CAP

* What can you do?
— Have knobs to tune C,A,P
* E.g. quorum sizes for replication
— Have normal & failure modes
* Consistent normally, but in partition fall back

* E.g. normally direct mail/eager, but fall back to anti-
entropy

Work-arounds

* What if you don’t provide C, A and P at the
same time?

— Queue requests, use old data

— Defeats goal of clients not having to be aware of C
or A.

2/9/12

28

Problems with Demers’ Epidemics

* Only works for last-writer wins

* Clients may see inconsistent results depending
on which server they communicate with
* Solution: Bayou
— Same people, same company, more problems
— Propagate updates, not objects
— Detect conflicting updates & merge them
— Provide session guarantees

Update propagation

* Why not replicate objects?

— Hard to tell how to merge updates
* E.g. merge two bank withdrawals

— Large (entire object)
* Alternative: update operations

— “Withdraw $3” “Reserve a room at 1 pm”
* Benefits:

— Now know individual operations, can merge
conflicting operations

2/9/12

29

Detecting conflicts

Version vectors
— Keep a vector V[1..#nodes] with each object

— On update at node j:
o VINi]=VI[ilifil=j
o VT i]=VI[i]+1ifi==]
Suppose you are node 1 and have vector V=[3,3,3]

— You receive object with vector V=[2,3,4] from node 2
— You can tell: node 2 did not see your last update

Conflicting updates:

— If exists V'[j] < V[j] and V’[i] > V[i]
Happens before:

— Forallilf V'[i] <= V[j] and exists j V'[j] < V[]]

Resolving conflicts

Dynamo: return all versions of data to client
Alternative: provide a per-object-type merge
procedure on writes

— Detect conflicts as above, run merge procedure
Why?

— Allows determining final value of a write even if
nobody reads it

2/9/12

30

Session guarantees

» Suppose a client wants to guarantee:
— Reads following a write will see the write

— Reads following a read will see only that or newer
data

— Writes are ordered (like a log)
* How provide?
— Record object version vectors in client session

— Client sends version vectors from session to server
with operations

— Server rejects operations when its versions are too old

2/9/12

31

