Lecture 6: Logical Time
1. Question from reviews
a.
2. Key problem: how do you keep track of the order of events.
a. Examples: did a file get deleted before or after | ran that program?
b. Did this computers crash after | sent it a message?
c. QUESTION: Why is this a problem?
i. Clocks may be different on different machines
1. E.g. processorsin a multiprocessor system
2. Machines in a cluster
ii. QUESTION: How different do they have to be?
1. More than the minimum time to send a message (1 ms), which is
not much
iii. Relativity: given different computers executing simultaneously and
sending messages asynchronously, how can you tell?
d. QUESTION: what do we really care about?
i. If one thing happened at time X, and another at time X+delta, and they
never communicate, does it matter?
ii. Focus on “happens before” relationship
iii. Don’t need real clocks for many uses; since we are more interested in the
order of events then in when the actually happened
e. Examples:
i. What kind of clock is good for security logs?
1. Wall clock —want to correlate with human-scale events
2. Absolute time — coordinate with outside world
ii. What kind of clock is good for figuring out which machines
communicated and when?
1. Logical clock: want to be able to order the communication from
different machines (relative order)
f. QUESTION: Is there an application to computer games?
i. E.g.inadistributed environment, you can tell where another player is
logically?
3. CONTEXT FOR SOLUTION
a. General approach of theoretical papers: strip out all practical concerns not
relevant to the problem, as they can be layered on afterwards if you get the
basics right

b. Example: ignore message loss, reordering on a link
i. Easy to solve with TCP/IP
c. Example: Ignore process/link failure
i. Hard to solve, but need a separate protocol and this system works fine
between times
d. QUESTION: Why?
i. Addressing all these concerns is orthogonal to the problem in many
cases, clutters paper
ii. Note: real clocks and message delay are relevant, so they are incldued
4. Happens before
a. Intuitive idea:
i. Eventsin asingle process are ordered (they are sequential)
ii. A message send always precedes the receipt of that message (no
speculation!)
b. Fortwo events a, b, a happens before b (a --=2 b) if:
i. Aandb are eventsin the same process and a occurred before b, or
ii. Aisasend event of a message m and b is the corresponding receive
event at the destination process, or
iii. A-- candc-->b for some event c (transitive)
c. Indicates causal relationship; a can affect b
5. Concurrent events:
a. Nota--bandnotb-- a

el1 el12 e13 el4
P1 O A ~ Oo— e11 and e21 are concurrent
e14 and e23 are concurrent
P2 @ o @ @ e22 causally affects e14
b e21 e22 e23 e24

c. Space time diagrams: time moves left, space is vertical (rotated from paper)
d. Note: this is a partial order
i. Not all events are ordered, some are before others (or after), but some
are not.
ii. QUESTION: in a distributed system, do you need a complete order or a
partial order?
6. Logical clock: any counter that assigns times to events such that
a. Clock condition: A -2 B implies C(a) < C(b)
7. Lamport Logical Clocks
a. Each process Pi maintains a register (counter) C

b. Each event ain Piis timestamped Ci(a), the value of C when a occurred

c. IR1: Ciisincremented by 1 for each event in Pi

d. IR2:If ais the send of a message m from process Pi to Pj, then on receive of m:
i. Cj=max(Cj, Ci(a)+1)

el1 el12 e13 e14 el5 e16 el7
(1) (2) \ () (4) / (5) (6) (7
Mm@ (3) (4) (7)
P2 O O O O O
e21 e22 e23 e24 e25
e.
AG-A10: receiver's clock is unaffected
because it is “running fast™ relative to sender
C35: LC update advances receiver's clock
if it is “running slow™ relative to sender.
c @ @ @ >
0 1 5 6 7 8
f. DRAW TICK LINES
(connect zeroes, 1s, etcO
Al A2
A —@— @ ——+—0—>
A4 AS
Bl B2 B3 B4
B—@ 4 @ t L *—
Al<B2<(C3
Bi=ad c1 C3 c4
C3<AS —@ - L >C
g.

8. Notes on logical clocks:

a. It provides the guarantee that a - b implies C(a) < C(b)

b. But, C(a) < C(b) does not imply a - b: see events e24 and e15 above

c. C(a)==C(b) implies a and b are concurrent, but not vice versa (see e24, e14)
9. IN LOOKING AT TICK LINES:

a. Must be line between two concurrent events

b. Must be line between send and receipt of a message

10. QUESTION: What happens with failures? How does that affect ordering
11. Total order
a. What if you need to agree on a total order for events?
b. Use logical clocks and break ties deterministically: using process ID or node ID as
a tie breaker
c. QUESTION: is this really a total order?
i. Real thing: an agreed upon order consistent with reality for happens-
before
d. QUESTION: What happens with failures?
12. Use of logical clocks
a. Suppose everybody broadcasts updates
b. How do you impose a fixed order on updates?
c. Do themin logical time order (assuming you wait forever...)
13. BIG QUESTION:
a. How useful is this?
i. When you care about order?
ii. When you don't have synchronized time
1. Sensors
2. Loosely coupled machines
iii. When you cannot afford a common time base
1. Multiprocessors
14. Physical clock extensions
a. Similar rule, but advance time according to clock received + minimum possible
delay
b. Need clock to be monotonic increasing
c. Isthe basis for NTP —send multiple messages to learn the minimum delay in
each direction, use that to sync clocks to bounds tighter than delay
15. Vector clocks (also used as Version Vectors)
a. Extension of logical clocks to capture more information
b. Suppose A sends to B, D at time 2 (A changes object, sends it out)
i. TimeofBis3
ii. TimeofDis3
iii. DthensendstoB
1. At B: has D seen A’s message yet? Does the copy of the object
from D include A’s change?
2. Cannot answer with logical clocks
a. C(Dsend) > C(A send) does not imply D send logically
occurs after A sends

c. Solution: “vector clocks”

i
ii.
iii.
iv.
V.

Vi.

Vii.

viii.

iX.

Keep one logical clock per process, only incremented with local events
Maintain a local vector clock tracking received timestamps
Transmit all logical clock values you have seen
Set local vector clock to pairwise max(received vector, local vector)
So:
1. Ci[i] = Pi’s own logical clock
2. Ci[j] = Pi’s best guess of logical time at Pj
a. Or: latest thing that Pj did that Pi knows about directly or
indirectly
Implementation rules:
1. Events A and B in the same process: Ci[i] for a = Ci[i] for b + delta
2. Send vector clock Tm on all messages M
3. If Ais sending and B is receiving of a message M from Pi to Pj:
a. For all K, Cj[k] = max(Cj[k], Tm[k]

Example:
C..) C..)
Pj . 2 -
e €3
() C..)
P, A é
i € €2y
(.
P3
Al A2 (4.3.0) (5,3,3)
A—e ° ® ° -
(1,0,0) (2,0,0) A4 AS
Bl B2 B3 B4
B o 3 @ ® @ >
(0,1,0) (1.2.0) (1,3.0) (1,4,0)
Question: what if | have two
updates to the same data item,
and neither timestamp dominates C1 C2 C3 C4
the other? -9 @ @ *— C
(0,0, 1) (1,2,2) (1,2,3) (1,2, 4)

d. Rules for comparison:

+ Vector timestamps can be compared in the
obvious way:
— =7 iff Vi #[i] = P[]
e iff 3 e[= 2]
—m<p iff Vi A[i] < P[]
—<p iff (<P ArED)
» Impoortant observation:
~ Vi, Y 1 Clil = CJli]

ii. So:
1. Equalif all elements equal
2. Not equal if at least one element not equal
3. Ta<=Tbf all elements less or equal
4. Ta<TbifTa<=TbandTa!=Tb

a. Means must be at least one element where Ta[k] < Tb[k]

iii. Causally related events with vector clocks:

1. A->BifandonlyifTa<Tb
iv. Concurrent with vector clocks:

1. TalcTbandTh < Ta

2. Consider past example: (A changes an object, sends it out)

a. Suppose A sends to B, D at time 2
i. TimeofBis3
ii. TimeofDis3
iii. DthensendstoB
1. At B: has D seen A’s message yet?
2. Cannot answer with logical clocks
a. C(Dsend) > C(A send) does not imply
D send logically occurs after A sends
A (1,0,0) sendstoBand D
B receives at (0,3,0), sets clock to (1,3,0)
D receives at (0,0,2), sets clock to (1,0,3)
D sends to B at (1,0,4)
B receives when clock is (1,4,0)
i. Bknows that D has received A’s message, because
it has a 1 for A’s clock

0 o0 T

e. lIssues with vector clocks
i. How big are vectors?
1. Same size as the number of machines

ii. What if the set of machines changes? Can you get rid of elements
1. Only if you are sure it will never come back
iii. When used?
1. Good for replication (multiple copies of an object)
a. Can modify at multiple points
b. Can exchange updates pairwise
c. Want to know if the other side saw an update you saw

Vector clock example

Time
A : »
A:0 A:3
B:3
C:3
B
: *o
B:0 85 &q‘,’
&
C n
A:2||A:2
B:3 B:5||B:5
C:0 C:3 C:4|C:5

1.

Replicated state machine: Using logical clocks:
a. Real problem: want a set of nodes to see same set of state transitions

i. E.g.lock requests, acquires, releases.
b. Problem:
i. Want to have a group of nodes perform the same set of actions on a set
of messages
ii. General approach: each node implements a state machine
1. Has local state
2. Receives messages causing it to update state, send reply message
3. In some cases, must receive messages in same order at every
node
4. Or, states must be commutative (can receive out of order without
changing outcome)
iii. For example: a distribute service storing your bank balance

1.

Send messages to deposit/withdraw to multiple copies, want
outcomes to be the same

iv. For example: decide who gets to modify a shared object (e.g. access

shared storage)

1.
2.
3.
4.

Send request to access to all nodes

All nodes agree on an order of who gets to access next
When it is your turn, do the access

When done, send message to release access

c. How it works for mutual exclusion:

i. Rules we want to implement:

1.

A process granted the resource must release it before anyone else
can access it (safety)

Grants of the resource are made in the order the requests are
made

If every grant is eventually release, then every request eventually
granted (liveness)

ii. What if we use a central scheduler? (assuming asynchronous messages)

1. PO has resource

2. P1sends a message to P1 requesting resource, then P2

3. P2receives P1’s message, then sends a request to PO asking for
resource

4. PO receives P2’s request before P1s (violation condition 2)

iii. Assume:

1. PO starts with resource

2. FIFO channels

3. Eventual delivery (no failures)

iv. Solution:

1. Each process maintains a local request queue initialized to TOPO
(because PO requests resource at time T0)

2. Torequest the resource, process Pi sends a RequestResource
message Tm:Pi to all other processes and places it in its own
request queue

3. When process Pj receives a request resource message, it places it
in its request queue and sends a (timestamped) ack message back
to Pi

4. Torelease a resource, Pi remove the RequestResource message

for Pi from its own queue and sends a Tm:Pi Release Resource
message to all other processes (old Tm:Pi)

5. When process Pj receives a release message, it removes Tm:Pi, it

removes any Tm:Pi request resource message from its queue
a. Note: this must be after the request and after the ack

6. Process Piis granted the resource when:

a. There is a Tm:Pi RequestResource message in its queue
when Tm < any other Tm (assuming a total order for
messages)

b. Pihas received a message from every other process with a
time >Tm

v. Why works?

Vi.

Vii.

viii.

1. Condition b in part 6 above (Pi has received messages) ensures

that Pi would have heard about any other request from any other
process with a timestamp < Tm

Messages not deleted until granter sends a release message, so it
will be in everyone’s queue

Overall, don’t take resource until everyone else ACKs and you
know you are the least. On release resource, as soon as you get a
release, you can go next, because you know everybody else
agrees you will go next

QUESTION: What happens if there is a failure (message lost, time out

etc)?
1.

Need to retry on a link-to-link basis

NOTE: relies on common knowledge

1. When you get the acks from everyone else, a process has
common knowledge that everyone knows of its request, and they
know that Pi knows of their requests when they see the ack

Example:

1. For processes: PO, P1, P2, P3

2. P1,P2send “request messages”, P1 at local time 1, P2 at local
time 2

3. PO-P3 put P1:1 and P2:2 in their queue and ack

4. PO sends release message

5. P1 takes over. When done, sends release

6. P2 takes over

release

VAN

NN

]
7.
2. Benefits of state machine approach

a. Everybody decides on right thing to do locally, knows everybody else will make
the same decision (common knowledge)

b. If everybody has the same initial state (e.g. lock release at low time) and sees the
same sequence of messages in the same order, they will compute the same
result in a distributed fashion

i. Basis for lots of mechanisms —replication

c. Note: Given protocol pretty unrealistic — it really is an example of how it could

work

d. But basics of protocol are used — e.g. chubby lock servers use similar replicated
state machines

Snapshots
3. Questions from Reviews
a. N squared complexity?

4. Context
a. Lastlecture: talked about how global time wasn't that meaningful, couldn't
talk about what happens at one particular time.
b. Now: what if you want to know the state of a system? How do you know the
state
c. Problem:
i. State of system =
1. State of processes +
2. State of network (channels
ii. Cannot capture all simultaneously (no global time with this accuracy)
iii. QUESTION: How many network channels are there?
1. What does this imply about the number of messages you need?
d. Need to tell each process what to record and when
e. Need to record contents of channels properly
i. Cannotignore channels or deliver all messages

ii. Delivery a message can trigger more sends, which would have to be
delivered, which ...
f. Cannot pause entire system
i. This makes it too easy, or causes too much performance loss
g. Would like to be able to test properties of the state
i. We'll call them "stable properties” - once true, are always true.
5. When are snapshots useful?
a. Deadlock detection: is there a circular waits-for graph?
b. Debugging: has an invariant been violated
i. E.g.sum of the tokens in a system =n
c. Checkpoint: can save state and resume later
d. QUESTION: What if the state you want to check is not stable - it can vary over
time
i. Isthere anyway to snaphot in an asynchronous system that will
capture it?
ii. Do you need consistency in that sense?
iii. So you see the property is true/false at an instant in time - then what?
1. Is this meaningful?
6. Assumptions
a. Fifo channels
b. Processes form a strongly connected graph (path from every node to every
other node)
c. Messages delivered in finite time
i. QUESTION: Why? Needed for liveness to algorithm finishes
d. No outside world
i. So can capture complete state
7. What kinds of snapshots are there?
a. "instantaneous snaphot" - global state of everything at some point (real
world time)
i. But cannot do - each process can only see local state
ii. Have random network delays preventing tight synchronization
iii. QUESTION: What is it good for?
1. Loads on system, transient effects like delays
b. "Consistent snapshot” - looks like an instantaneous snapshot (could have
happened legally), but not at one time
i. Good enough in some cases
ii. Is same as real snapshot up to start of snapshot, and after termination
of snapshot
iii. Snapshot is state at some point in of a legitimate execution during the
snapshot (but may not have actually occurred)

First snap,

Instantaneous
Snapshot s
Reordered
portion

iv. Last report
c. What are snapshots used for?
i. Stable properties: if property P of a global state S becomes true, it is
true for all states reachable from S
ii. E.g.: deadlock
iii. E.g.termination of a distributed algorithm (all processes waiting for
another process to send a message to work on)
8. Models/definitions:
a. "causally consistent global state" - no even in state caused by something not
in state
i. cannot have receipt without send being captured
ii. Cannot have eventj captured in a process without eventk, k < j
b. System model:
i. Local state = each process
1. Processes move between states (s ->s') on events
2. Events are sending message, receiving message, internal event
3. Receiving pops message off queue, send pushes message on
queue
4. Events advance state of process Si to Si+1
ii. Global state advances on event in one process at a time
1. Evente = (p,s,s',c,m) = processes p was in state s and is now in
state s' having sent message m on channel c (outgoing c) or
received message m on channel ¢ (incoming c)
2. Can execute an event if a process p is in state s and has a
message m at the head of the queue for channel ¢ (or message
M, channel c are NULL)
3. Can have nondeterminism: multiple next events could happen
a. One of two processes can go next
b. Process can do internal event or receive a message
4. BUT: sequence has a total order (unlike Lamport clock model)
c. How does this relate to other models?
i. COMPARE to Lamport partial order
1. Instead has total order of global states
ii. Assumes reliable network, fifo delivery (unlike Lamport clocks)
9. Terminology

a. CUT = line through each process separating each one into a PAST and a
FUTURE
b. CONSISTENT CUT = line such that
i. No future messages received in past
ii. Preserves causal order: future can not have causal effect on past
iii. SHOW EXAMPLE OF CONSISTENT AND INCONSISTENT CUT from
below - Cand C’
10. How do you snapshot?
a. Given space-time diagram (event e in C, everything after event e is also in C)

Finding C such that (e < C) /\(e" —e) > e & C

2
e
1 t1
p1 (send)
e3
2
p2
p3
N N (receive)
p4
C ’
b.
c. Keyidea: nodes take snapshots, record incoming messages as channel state

i. Use markers to indicate beginning/end of snapshot process
d. PROBLEMS TO SOLVE:
i. When should a process save its state?
ii. What messages should it store as channel state?
1. Any message sent before snapshot must be recorded either in
process state (as received) or channel state (as in flight)
2. Any message sent after snapshot must not be recorded in
either way
e. Algorithm:
i. General model: a diffusion algorithm
1. Send message out to all nodes (like flooding) until everybody
has received it
ii. When uninvolved process i receives snap;input:
1. Snaps Aj's state.
2. Sends marker on each outgoing channel, thus marking the
boundary between messages sent before and after the snap;.
3. Thereafter, records all messages arriving on each incoming
channel, up to the marker.

Incoming Outgoing
message Process State message

4. 5y »
= = —>
—(_‘J— L1 Q 1y

[—— Local
Marker tj filesystem
(a)
4

iii. When process i receives marker message without having received
snapi:
1. Snaps Aj’s state, sends out markers, and begins recording
messages as before.
2. Channel on which it got the marker is recorded as empty.

N> » »
a bHe > Q { am» O Lo
LY »> ™ »> »

iv. So:
1. Initiator saves its state, then saves messages received along
each channel until it receives a marker back
a. Ensures messages sent after one node snaps but before
other are captured as channel state
2. When receive a marker, don't need to record anything on that
channel, but must record other channels until get a marker
back.
v. QUESTION: what if a process delays between snapping and sending
markers?

f. Terminates:

g.

i. Strongly connected, so will eventually reach all nodes, and will receive
marker along all channels
ii. Finite delivery time ensures finite termination for finite network

QUESTION: How do you use the snapshot state to detect a stable property?

i. E.g.deadlock
1. QUESTION: What is state?
a. Lookat Lamport locks
b. Queue of messages at each node
c. Internal state of who holds each lock
2. QUESTION: What is channel state

a. Message to request/release/ack
3. HOW DO YOU DETECT DEADLOCK
a. Circular graph of nodes holding locks and requests for
other locks.
ii. E.g.total money in a bank system - see below
1. Add up money in each process + money in channels
h. Why it works:
i. No message sent after maker on a channel will be recorded; marker
makes the cut
ii. When a process receives a message that precedes the marker:
1. Ifit has not taken the snapshot, the message is processed and
is part of its state
2. Ifit has taken a snapshot, then the message is recorded as
being inflight and part of channel state (the cut crosses the
send/receive of the message)
iii. Proofthatitis a legitimate state between two global states
1. Can swap concurrent events in the real sequence to get to the
recorded state and from the recorded state to a real state
2. Swapping order has no impact because they are concurrent
3. Swap prerecording events with post recording events
a. cannot be on same node or with communication
between nodes or
i. Example:

 Distributed bank, money
sent in reliable messages. 5 10

o
(4

* Audit problem:

. S«
- Count the total money in the X
bank.

- While money continues to
flow around.

wy
o0

- Assume total amount of
money is conserved (no
deposits or withdrawals).

]k. In picture below, start snap at first bar:
i. Node 1 has $5
ii. Node 2 has $0
iii. Node 3 has $10
iv. Channel 2->1 has $10
v. Channel 1-0>2 has $5

 Distributed bank, money

$10 $10 $10

sent in reliable messages. NS5 $10
e Audit problem: =\
- Count the total money in the A4
bank.
- While money continues to
flow around. §8
Vo

- Assume total amount of

1.

money is conserved (no
deposits or withdrawals).

m. In Chandy-Lamport snapshot:

i
ii.
iii.
iv.
V.

Node 1 records $5

Node 2 records $5

Node 3 records $2

Node 1 records 2->1: $10
Node 2 records 3->2 $8

n. Why is this reordering correct?

I

il

iii.

iv.

Vi.

vii.

Problem: process could change state asynchronously (internal events)
before the markers it sends are received by other sites
Has same events, can get from to this state with same events (in
different order) from input
Can get from this state to same output event with same events (in
different order)
Key idea:
1. Reorder events in total order so that all pre-snapshot events
happen, then snapshot, then post-snapshot events
Notion:
1. Actual states = global states that occurred
2. Feasible states = states that could occur according to local state
machine at each process
Based on logical time: can reorder logically concurrent events in the
total order and get an equivalent output
EXAMPLE:
1. Real order:
1 sends 2 $5 - PRE
2 sends 1 $5 - PRE
1 sends 3 $4 - POST
2 receives $5 from 1 - PRE
1 receives $10 from 2 - POST
3 sends $8 to 2 - PRE
2 receives $8 from 3 - POST

@Woo a0 o

h. 3receives $4 from 1 - POST
2. So canreorder
a. Move up d, f- could happen at any time
b. REDRAW!
viii. Suppose we could not reorder:
1. Means there is a "happens before" relationship between the
things being reordered
2. Implies either
a. They are in the same process -> but not reordering
anything in a single process
b. There is a line of causal communication between them
3. If causal communication, then must have been a message
a. Would have an earlier (but post-snapshot) event
followed by a later (but pre-snapshot) event with
communication
b. But by rule, always send marker after snapshot, so
recipient (pre-snapshot) would have had to snapshot,
c. CONTRADICTION!

o. Effectively picks a "virtual time" for snapshot, moves all events to be before
or after that event by stretching/compressing timelines
i.
11. FLAWS:
a. State external to the system not captured (e.g. clients of a distributed service)
12. Using snapshots
a. Still useful today?
i. We have synchronized clocks, but networks are much faster.
1. In 1 ms of skew, could have 1-10 megabits (100k-1mb data)
b. Use in bank balance:
i. Can detect invariants (is the amount of money constant)
1. Sum balances + in-flight transfers
2. Only one node should hold a lock at a time
ii. Can detect deadlock
1. See what each process is waiting for
2. Look at what "wake up" message have been sent
3. Ifcircular waiting and no wake-up message after waiting, then
will deadlock
c. What about non-stable properties?
i. Can detect them, but may be false positives (as would be true perhaps
in any system), as they could go away
13. FLAWS:
a. State external to the system not captured (e.g. clients of a distributed service)

