| mplementation and Evaluation of Exact and
Approximate Dynamic Bayesian Networ k I nference Algorithms

-- CS731 Term Project

Hongfei Guoguo@cs.wisc.edu Wei Luduo@cs.wisc.edu

Abstract

Particle filtering is currently an area of interesistudy. Because it is a sampling algorithm, plarfitering can
be used easily with hybrid and continuous Dynanagdan Network (DBN)s. However, particle filterirgnot
a panacea for all dynamic Bayesian networks. Is fitioject, we implemented three alternative infeeen
algorithms for DBNs, namely, unrolling with genetiariable elimination, unrolling with customizedrizble
elimination (customized algorithm), and particlkefing. We designed and conducted a series ofraxpats
using those alternatives respectively on diffesymthetic networks, of which the complexity is ed@gd by two
parameters: one is the number of state varialestter is the average number of parents. Basedtiborough
analysis of the experiment results, we reacheaconclutions, which fit well with a quatitively anyasis of each
algorithm: (1) The number of samples needed is eaptial to the number of state variables, and ébiselated
with the belief state distribution skewness; Ini# correlated to the average number of parentshiorstate
varaibles. (2) The efficiency of particle filterimpcreased sharply as the number of samples irese@ The
efficiency of the customized algorithm decreasesplly with the increase of the average number oémqta of
the state variables; It is not sensitive to the n@mof state varaibles. And hence (4) Particleerihg
outperforms the customized algorithm for networkswhich state variables have more than 4 parents in
average; For networks with large number of statabbes yet a small average number of parents,2.the
customized algorithm is the ideal choice.

1 Introduction

Bayesian network can be used to represent the depeies among variables and to give a concise
specification of the full join distribution. In theontext of a static world, in which each randomialzle has a
single fixed value, Bayesian network techniqueuificent for probabilistic reasoning. However,rimany real-
world domains, a complex situation evolves overetiffor example, a patient's vital signs in an irgise care
unit, a complex freeway traffic scene with movinghicles, a robot's location in a complex environtiignor
operons in gene expression that transcribing frome tto time[4,5]. This technique can be awkward
representing and reasoning in such dynamic wonhdg/hich some state variables can have differeniesmat
different time slice. Instead, dynamic Bayesianvaek technique is developed for stochastic dynasggtems
that allows us to represent such complex systerasiompact and natural way [2].

in

Of course, the purpose of building a DBN modeloidé able to infer with it. There are four basiteience
tasks in a generic temporal model [2], as follows:

« Filtering or monitoring: This is the task of comimgt the posterior distribution over the currentestaiven
all evidence to date. That is, R{&.).

» Prediction: This is the task of computing the paetedistribution over the future state, givenaidence to
date. That is, P(%|E:.) for some k>0.

» Smoothing or hindsight: This is the task of compgtthe posterior distribution over a past stateemiall
evidence up to the present. That is, i) for 0 <=k <t.

» Most likely explanation: Given a sequence of obagowns, to find the most likely sequence of stabed
generated those observations. That is maRQ<E;.).

Among those, filtering or monitoring is of most comn interest. Intuitively, given a series of eviderup to
current state, it is very useful to monitor thetritimition of current state, or to predict the disition of a state
in a future time point.

How can we solve this problem? At first glancemiay be trivial. Indeed, a dynamic Bayesian netwisri
Bayesian network. So it seems that all we haveots dinrolling, that is, to construct the full Bajen network
representation of a DBN by replicating slices untie network is large enough to accommodate the
observations. The rest of the work can be triviglhne by one of those inference techneques in Bayes
networks. Unfortunately, a naive application of alimg would not be particularly efficient. The sex
approach is to customize variable elimination, ngkadvantage of the special structure of DBNs, Wwigcalso
called recursive estitimation in [2]. [2] showsttige can achieve constant space and time peiiriidfferpdate in
this way. We are not done yet. It turns out that“¢onstant” for the per-update time and space ¢exity is,

in almost all cases, exponential in the numbentatesvariables. In most systems, the complexitthefbelief
state, that is, p(¥€:...E), grows unboundedly, preventing any closed-forpresentation [1]. This leads us to
the third approach: approximate inference techrigue family of algorithms called particle filterings
designed to do just this.

Thus, a second question follows: Should we simgheroour arms for particle filtering, deserting exac
inference algorithms? Surprisingly, the answerds tnivally YES. To motivate, for the umbrala mbda],
while particle filtering runs 580ms with 0.009 armeasured in KL-distance for an observed evideiaen
length 1000, our customized variable eliminationsrwonly 184ms with exact answers! In this projeeas,
implemented three alternative inference approaétie®BNs, in addition, DBNUnrolling, an auxilliartool
which take a DBN as input, and automatically uniblinto a Bayesian network. Then we designed and
conducted a series of experiments using synthetidefs. Based on that, we did a thorough performance
comparison study, trying to answer the followingsfions:

. For particle filtering , how big should the sampiee be?
* When does customized variable elimination outpenfparticle filtering?
* When does particle filtering outperform customixadiable elimination?

Unrolling with generic variable elimination is mjirused as a reference group.

The rest of the paper is structured as followsti8e@ gives out some related work. In section 8,give an
overview of dynamic Basian networks and modelstdriest. Section 4 illustrates the implementatibthree
algorithms: unrolling with generic variable elimtiza, unrolling with customized variable eliminatioand
particle filtering. In section 5, we show our expgnts methodology. Section 6 presents our expeisne
results and analysis. We conclude in section 7.

2 Related Work

Particle filtering is currently an area of interesistudy. Many variants and improvements have beepoged
and the number of applications is growing rapiddany researches emphysize the application of gerti
filtering to certain domains. However, to our knedde, there is no work done in comparing the pevémce
of particle filtering and customized exact inferermgorithmw.r.t. different DBN models. [8] used particle
filtering to tracking complex motion patterns irdeb and [9] applied it to predicting the stock nedrkn [1],
Koller and Lerner studied the number of samplesthacerror bound of particle filtering with two ¢gr DBNS,
one is the discrete BAT network, and the other ligylarid network benchmark. Different from those owe
focused on a thorough comparison study of custamizgiable elimination and particle filtering, arexng
guestions: (1) Which factors affect the numberarhgles needed and which factors do not? (2) Wheualdh
one use customized variable elimination and whewlshone use particle filtering?

3 Overview of Dynamic Bayesian Networks

A dynamic Bayesian network or DBN is a Bayesiarnwoek that represents a temporal probability modiak
process of change can be viewed as a series oflstap each of which describes the state of thddvaira
particular time. Each snapshor or time slice coista set of random variables, some of which arerobble
and some of which are not. We will u§eto denote the set of unobservable state variatléme t and=t to
denote the set of observable evidence variablesobkervation at time t 5 = E; for some set of values Et.
The semantic meaning of the interval between titives deponds on the problem itself. However,tfa
model per se, we can conveniently assume fixedtefimterval. This means that times can be labeligd
integers. We will assume that everything starts=a0, so that times are nongegative integersrdercto bound
the number of conditional probability tables, adlwe the number of parents of each variable, tsgumptions
are adopted. First, we assume that changes in ¢kl wtate are caused by a stationary processt-isha
process of change that is governed by laws thatoidhemselves change over time: For any evidendahle
E, P(Ej|Parents(B) is the same for all t.

The second problem is solved by making Markov aggiam, that is, that the current state dependsrinp &
finite history of previous states, of which the pigst yet most commonly used is the first-order koar
process, in which the current state depends onlthenprevious state and not on any earlier stateghis
project, we only consider first-order Markov progethe reason is that it is not trivial to genelparticle
filtering to handle higher order Markov processeTdorresponding conditional independence assestates
that, for all t,

P(Xt[Xg.t-1) = P(X¢[Xt.2)

The laws describing how the state evoles over tangecalled the transition model. In addition totniesthe
parents of the state variabl¥$, we must also restrict the parents of the eviderariablesE;. Typically, we
will assume that the evidence variables at timepethd only on the current state:

P(E: Xo:t, Eoit.1) = P(E¢ | Xy)
The conditional distributioP(E; | X,) is called the sensor model.

In this project, although we restrict our models#disfy the transition model and the sensor maulel results
can be generalized to general models.

4 Inference Algorithmsfor DBNs

In this section, we illustrate how to apply aforeitiened three inference algorithms to dynamic Beyes
networks, namely, unrolling with generic variablengnation, unrolling with customized variable elmation,
and particle filtering. They all share the sameauirgnd output.

I nput:
A DBN, which is determined by the prior probald# of the state variables, the transition moder ;P
and the sensor model CPTs,
* A series of observations,E
* The query time slice n, where n > =t.

Output:
» Joint distribution of query state n, P(Xn | EO:t)
. Marginalized distribution of each state variablatthe query time slice, P(Xn | EO:t)

Among those three algorithms, the first two bothpkm inference techniques developed for Bayesian
networks. The basic idea is two steps. Step 1,llum@inputed DBN into a Bayesian network. Teclaflig the
DBN is equivalent to the semi-infinite network olbtd by unrolling for ever. However, slices addeydnd

the query time slice have no effect on inferencitBimthe time periord of interest and can be orenhitStep 2,
apply generic or customized variable eliminatiortlos Bayesian network.

51 Unrolling with Generic Variable Elimination

The generic variable elimination algorithm worksstivay. Given the CPTs in BN as initial potentiepeat
until only query variables remain:

» Choose the next variable to eliminate

* Multiply all potentials that contain the variable

» If no evidence for the variable then sum the vdeialut and replace original potential by the nesuit.
Else, remove variable bases on evidence.

After that, normalize remaining potential to get fimal distribution over the query variables.

In our implementation, we used two techniques tprowe the performance. First, we used a heuffigtiction
to choose a variable to eliminate. Each time weoshahe variable that appear in the least numb&Rdfs.
This is a tradeoff between time and space. Ther @tlernative is to choose the variable which |éasteased
the total size of the potentials. This heristicegiws the least size of intermidiate potencialsjtyleas worse
time complexity. Our least number of potentialsdiion only requires a scan of the variable indeRjcw is
O(N) in time complexity, where N is the number afiables. For comparison, for each candidate visiabe
latter also need to compare all the variables ajpme# involed potentials to be able to figure ol result
potencial size. Thus it has O)Nime complexity.

Second, we built two hash indexes. One is the piateéndex. Given a potential ID as a key, the xdeturns
the potencial object in constant time. The otherthis variable index. Its key is a variable nameg th
corresponding entry is a list of potentials in whitie variable appears. Figure (?) shows an examjth
current potentials and according indexes.

AlB | C

221,3,5] id: 1 ﬂ

E3s - Blcle]
id: 3

variableindex potential index

Figure 1: An example of potential index and variableindex state

5.2 Unrolling with Customized Variable Elimination

Dynamic Bayesian network is a special kind of Bémesetwork, so we can skip the expensive procedfire
choosing the variable in the elimination, in othwrds, we can eliminate the variables with a fisequence:

(1) For filtering we can eliminate all the stateighles at time 0, then all the evidence variabtesme 1, then
all the state variables at time 1, and proceed tirdie are only state variables at time t left.

(2) For prediction, the procedure is almost the esaas (1), but the condtition for stopping the Jaea
elimination should be that there are only statéatédes at time t+k left (k > 0), and we do not hawv@ences to
eliminate between time t and time t + k.

(3) For smoothing, we should elimate from two etal¢he middle: from time 0O to time k (forward), afrdm
time t to time k (backward).

53 Particle Filtering

Particle filtering is a general purpose Monte Catheme for tracking in dynamic systems. It maigahe
belief state at time t as a bag of particles{Xvhere X is a full instantiation ofX; ldeally, we want to sample
PXw1 | X, &). However, this distribution is rarely one that wen compute efficiently. Hence we use
importance sampling: We use the samples themsealsemn approximate representation of the currem¢ sta
distribution, and use an importance weight to magkéor the difference. The algorithm is roughlyfalfows:

First, a population of N samples is created by dsmgrom the prior distribution at time ®(X). Then the
update cycle is repeated for each time step:

. Each sample is propagated forward by sampling &x state value,.; given the current valux, for
the sample, using the transition moB€X.; | X;).

. Each sample is weighted by the likelyhood it assignthe new evidencB(E;.; | Xt+1).

* The population is resamples to generate a new ptipalof N samples. Each new sample is selected
from the current population; the probability thaparticular sample is selected is proportionalt$o i
weight. The new samples are unweighted.

The algorithm is shown in detail in Figure 2. [2osvs that this algorithm is consistent, but isfftcent?
Recall for each time slice, we need to generatamptes each with M data point, where N is the nunabe
samples and M is the number of state variablegjriee complexity is O(MN). In our implementationewsed
binary search in resampling step. Hence the coritpletresampling is O(N log N). Therefore, whersN M,
the total time complexity for particle filtering ®(N log N). Is this good or bad? We shall intetgteby
experiment result analysis in section 6.

Function ParticleFilering(E, N, dbn) returns a set of sanples for the next time step
I nputs: E, the new incomi ng evidence
N, the nunber of sanples to be nuintained
dbn, a DBNwith slice 0 variables X0 and slice variable X1 and El1
static: S, a vector of weight of size N
| ocal variables: W a vector of weights of size N

IF Eis enpty THEN
FOR i=1 to N DO
S[i] <-sample from P(Xy)
ELSE DO
FOR i=1 to N DO
S[i] <-sample fromP(X; | X=9[i])
Wi] <-P(E| X1=5[1])
S <- WeightedSanpl eWthRepl acenent (N, S, W
Return S

Figure 2: Particlefiltering algorithm

5 Experiments M ethodol ogy

51 Test Bed

We run all experiments on CS department machine @3/ Sun OS, 384M memory, 300 MHz CPU'’s clock
rate, 100 MHz memory’s clock rate.

5.2 Synthetic Models

In this project, we used systhetic models instehthemchmarks. There are mainly two reasons. Fihgt,
purpose of our experiments is to study for whatllah models particle filtering works better, and ¥ehat kind
of models unrolling with customized variable elimiion works better. Therefore, we need the fleitibilo

adjust the model structures, which can not be gexviby any benchmarks. Second, our imprementatiolys
supports DBNs that satisfy transit model and sengmiel, since our results can be easily generatzeegneral
models. However, we could not find any benchmahlas $atisfy such assumptions.

There are two parameters of a model. First, thebhaunof state variables. Second, the average nuwiber
parents of a state variable. By adjust these twampaters, we can adjust the complexity of our DBbUeais.
Figure 3 shows a DBN model example we used in rpements.

Time O Time 1

D o=

OO0
Figure 3: A sample DBN network with 4 state varesbhnd average parents ea

53 Error Metrics

We used Kullback-Leibler distance as error metfifs KL-distance for two distributions p(X) and g(Xs
defined as follows:
)

D =) I p(Xi
(plla) ; P(x) | 9 0) |

Intuitively, KL-distance measures how similar thag® distributions are to each other. The logariiBnused
to assign the same scale of weight to point paitis the same degree of divergence, regardlesseobtttter of
the pair in the division. For example, the degredivergence between 10 and 1 should be the sataebe 1
and 10. With the logarithm, we have log (1/10)3ef(10/1) = 1. They get the same scale of weighisdlute
values of each divergence are used to avoid theahaancelling of the positive divergnce with thegative
ones.

We computed the error on both the entire jointriigtion and the average error on the marginaklidghe state
variables. Lety(X) be the exact joint distribution, q(X) the approaie joint distribution, then

q(xi) |

oint = I
joint error (p) ;q(x.)l °d p(x)

We define the average error on the marginalizetidisution as follows: (N is the nhumber of varlalstates)

D" joint error (p(x;))
maginal error (p) = =

N

6 Experiment Resultsand Analysis

First we compared the performance of the generidabte elimination with the customized variable
elimination. In this experiment, the average nundfgrarents for the state variables was fixed, taedhnumber

of state variables varied. Figure 4 shows thelteBhe customized algorithm dominates as the nurobstate
variables increases. For our network with 8 stadables (the average number of their parents ,igh®)
customized algorithm needs 304 ms, but the geragorithm needs 10130 ms! Clearly, the customized
elimination order for DBNs is a big win. Two factoslow down the generic variable elimination: (Lhéeds
additional O(N) time in deciding the elimination order, and (2eTheuristic method cannot always find the
best variable for elimination.

w
(8]

@ generic variable
elimination

w
o

g
&

N
o
|

15
10 A

Performance normalized to
customized al

2 4 8

State variables

Figure 4: Performance of generic algorithm normalized to customized algorithm, #parents=2

Customized variable elimination is an exact aldwnit while particle filtering is a sampling algonith Quite
often, there is a trade off between an exact dlgoriand an approximate algorithm: the former isagfisv
accurate but might be slow; the latter is faster mmight be less accurate. Is this the case foretho®
algorithms in question?

Figure 5 shows the relationship between the emdrtee humber of samples used. The curve abovesstimv
KL-distance of joint distribution, while the cunleelow shows the KL-distance of marginalized disttibn.
Both curves have similar shape: the error dropgshanitially and then the improvements become kenand
smaller. So we have to increase the number of sipwe want to decrease the KL-distance, but whis
increase the running time. Thus there is a tradeQifviously, estimating the marginals is much eashan
estimating the full joint distribution, thereforeet error of marginalized distribution is always #erathan that
of joint distribution for the same data set. Weyoobnsider the joint distributions in our other exments
below.

Figure 6 shows the effects of the number of statéables on the number of samples needed. Forreaober
of state (2, 4, and 8), we fixed the average nunalbgrarents of state variables while varying thenbar of
state variables. The result shows that the curveesiapward in an exponential order of the numbestate
variables. This is easy to understand: The numbesamples needed is propotional to the humber ekthtes
in the full joint table, which in turn is exponegitto the number of state variables.

Surprisingly yet reasonably, the skew of the bedigite distributions moves the curve downward (fEgr).
The reason is as follows: For a uniform distribotaf the belief state, it is very possible to getazsamples for

0.3 S 034
—e— Full joint 2 —e—#states =2
© 025 | : 2 025
2 P 7 — B —#states =4
3 —m— Marginalized 2
2 02 T 02 # states =8
ks =
¥ 0.5 - 2 015
<
A o
@ 0.1 g 01
2 &
< 0.05 '_\. % 0.05
e]
0 T T T T T Qj 0 ‘ -]
0 2 4 6 8 10 0 2 4 6 8 10
Samples (10000)
Samples (10000)
Figure5: Error of particlefiltering, Figure6: Error of particlefiltering, #parents=1

#state varible = 8, #parents =1

some joint states even when the number of samplaéady large. And such error is magnified by Khe
distance calculation.

We have two control experiments. First, the nundfestate variables was fixed and the number of thaients
was varied, our result shows that it is not cotezlao the number of sample needed. Second, tig¢hleri the
observed evidence chain was varied when the nuoitstate variables and the number of their paremie
both fixed. Again, the chain length is not correthto the number of sample needed. See Figure 8.

Next, we conducted two groups of experiments to pame the performance of particle filtering and the
customized algorithm. In our experiments, we chbgenumber of samples for particle filtering subhttthe

error is bounded to 0.86.03.

In our first group of experiments, we fixed the @age number of parents to 2 and varied the numbstate
variables. When the number of state variablesems®d from 2 to 8, the customized algorithm in@éas
roughly 3 times, while the other increased aboud #fhes. For every number of state variables, garti
filtering algorithm always needs more time thantooszed variable elimination, and the differencer@ases
sharply when the number of state variable incre@Sgsire 9). The reason is that more samples (exptially

S 03 5 0.04

3 —e— skewed distribution S 0035 mlength =8

‘T 0.25 = ’ mlength = 16

2 —&—uniformed % 0.03 | Olength = 24

T 02 5

€ = 0.025 -

£ 015 ©

< f_i 0.02 -

o 0.1 © 0.015 -

£ = 0.01

£ 005 g 001

5 5 0.005 1

v O < 0

1000 3000 10000
Samples (10000) # Samples
Figure7: Error of particlefiltering on skewed | Figure 8: Error of par_ticlefilteri_ng on different
and uniformed distribution, observed evidence chain length,
#statevarible = 8, #parents=1 #istate varible = 4, #parents =2

18000 450000

16000 A Hcustomized 400000 ||Oparticle filtering]
variable .
~ 14000 - elimination o 350000 4/Ecustomized
€ 12000 Oparticle filtering £ 300000 || Vvariable elimination
8 10000 - S 250000
g &
£ 8000 - £ 200000
£ 6000 - £ 150000 -
& 4000 & 100000 A
2000 - 50000 - |—|
0 _I_I —_ 0 M : | : : 1
2 4 8 1 2 3 4
State variables Average number of parents
Figure 9: Performance comparison between Figure 10: Perfor mance comparison between

customized algo. and particlefiltering, #parents=2 customized algo. and particlefiltering, #state= 12

increased) are needed to keep the error withinsdree bound for particle filtering, while the cusipeadl
variable elimination does not suffer from this gdesh. For a network with 8 state variables and ayera
parents, we need about 50000 samples to get aageverror of about 0.075, which takes more thardQ813,
while customized algorithm only need about 300ms.

In our second group of experiments, we fixed theiner of state variables to 8 and varied the avenageber
of parents. When the average number of parentgased from 1 to 4, the performance of particleritig
remained almost the same, while the other incre22&d times. The reason is that the cost of myitipl
potentials increases sharply for variable elimmatlgorithm if some nodes in the network have maargnts,
while particle filtering algorithm is not affecté¢Bigure 10). For a network with 8 state variabled average 4
parents, we need about 50000 samples to get aageverror of about 0.075, which takes only 18s,levhi
customized algorithm needs about 430s.

7 Conclutions

As a sampling algorithm, particle filtering can beed easily with hybrid and continuous DBNSs. In the
literature, much research has put emphysis onmipartance of particle filtering. However, partidlgering
should not be blindly applied to any DBN withoukitay into account its characteristcs. In this pobj we
implemented three alternative inference algorithfos DBNs, namely, unrolling with generic variable
elimination, unrolling with customized variable ralnation (customized algorithm), and particle filbg. We
designed and conducted a series of experimentg tsirse alternatives respectively on synthetic ogtg; of
which the complexity is adjusted by two parameterg is the number of state variales, the otht#rdsaverage
number of parents. Our experiment results show (thaThe number of samples needed is exponentitiieo
number of state variables, and it is correlatedh whie belief state distribution skewness; It is catrelated to
the average number of parents for the state vasil?)The efficiency of particle filtering decredssharply as
the number of samples increases. For a network 8vidstate variables and average 2 parents, we riead a
50000 samples to get an average error of aboubpWHhich takes more than 18000ms, while customized
algorithm only need about 300ms. (3) The efficientythe customized algorithm decreases sharply thi¢h
increase of the average number of parents of thie stariables; It is not sensitive to the numberstate
varaibles. And Therefore (4) Particle filtering petforms the customized algorithm for networks dfick
states variables have more than 4 parents in aseFay networks with large number of state varighlet a
small average number of parents, e.g. 2, the custahalgorithm is the ideal choice.

References:

[1]

2]
[3]
[4]

[5]

[6]

[7]
(8]

9]

Daphne Koller and Uri Lerner, “Sampling in Factofgghamic Systems”, A book chapterSequential
Monte Carlo Methodsin Practice, A.DoucetJ.F.G De Freitas, and N. Gordon, Eds., Sprinter-Verlag
2000.

S. Russell and P. Norvig, “Probabilistic Reasoromgr Time”, A book chapter dratft.

S. Russell and P. Norvig, “Probabilistic Reasorthygtem”, A book chapter draft.

Ireng M. Ong, David Page, “Inferring Regulatory R@ays in E. Coli using Dynamic Bayesian
Networks”, Computer Sciences Technical Report No. 1426, University of Wisconsin-Maison, May 2001
Ireng M. Ong, Jeremy D. Glasner and David Page,d#&liog Regulatory Pathways in E. coli form Time
Series Expression ProfilesProceedings of the 10™ International Conference on Intelligent Systems for
Molecular Biology (ISMB 2002), edmonton, CA, Auguest 2002

Dean, T. and Kanazawa, K. “A model for Reasoninguaipersistence and causatio@gmputational
Intelligence 5(3): 142-150, 1989.

Cover, T. and Thomas, J. Elements of Informatioadr, Wiley, 1991.

Michael Isard, Andrew Blake: Contour Tracking bp@&itastic Propagation of Conditional Density.
ECCV (1) 1996: 243-356

N. de Freitas, A. Doucet, M. Niranjan and A. GB8&bal optimization of neural network models via
sequential samplingAdvancesin Neural Information Processing Systems (NIPSL1). Pages 410-416. MIT
Press, 1999.

.10.

