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Abstract 
 
Particle filtering is currently an area of intensive study. Because it is a sampling algorithm, particle filtering can 
be used easily with hybrid and continuous Dynamic Baysian Network (DBN)s. However, particle filtering is not 
a panacea for all dynamic Bayesian networks. In this project, we implemented three alternative inference 
algorithms for DBNs, namely, unrolling with generic variable elimination, unrolling with customized variable 
elimination (customized algorithm), and particle filtering. We designed and conducted a series of experiments 
using those alternatives respectively on different synthetic networks, of which the complexity is adjusted by two 
parameters: one is the number of state variales, the other is the average number of parents. Based on a thorough 
analysis of the experiment results, we reached our conclutions, which fit well with a quatitively analysis of each 
algorithm: (1) The number of samples needed is exponential to the number of state variables, and it is correlated 
with the belief state distribution skewness; It is not correlated to the average number of parents for the state 
varaibles. (2) The efficiency of particle filtering decreased sharply as the number of samples increases. (3) The 
efficiency of the customized algorithm decreases sharply with the increase of the average number of parents of 
the state variables; It is not sensitive to the number of state varaibles.  And hence (4) Particle filtering 
outperforms the customized algorithm for networks of which state variables have more than 4 parents in 
average; For networks with large number of state variables yet a small average number of parents, e.g. 2, the 
customized algorithm is the ideal choice.  
 
 
1 Introduction 
 
Bayesian network can be used to represent the dependencies among variables and to  give a concise 
specification of the full join distribution. In the context of a static world, in which each random variable has a 
single fixed value, Bayesian network technique is sufficient for probabilistic reasoning. However, in many real-
world domains, a complex situation evolves over time. For example, a patient's vital signs in an internsive care 
unit, a complex freeway traffic scene with moving vehicles, a robot's location in a complex environment[1], or 
operons in gene expression that transcribing from time to time[4,5]. This technique can be awkward in 
representing and reasoning in such dynamic worlds, in which some state variables can have different values at 
different time slice. Instead, dynamic Bayesian network technique is developed for stochastic dynamic systems 
that allows us to represent such complex systems in a compact and natural way [2]. 
 
Of course, the purpose of building a DBN model is to be able to infer with it. There are four basic inference 
tasks in a generic temporal model [2], as follows: 
 
• Filtering or monitoring: This is the task of computing the posterior distribution over the current state, given 

all evidence to date. That is, P(Xt|E1:t). 
• Prediction: This is the task of computing the posterior distribution over the future state, given all evidence to 

date. That is, P(Xt+k|E1:t) for some k>0. 
• Smoothing or hindsight: This is the task of computing the posterior distribution over a past state, given all 

evidence up to the present. That is, P(Xk|E1:t) for 0 <= k < t. 
• Most likely explanation: Given a sequence of observations, to find the most likely sequence of states that 

generated those observations. That is maxX1:t P(X1:t|E1:t). 
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Among those, filtering or monitoring is of most common interest. Intuitively, given a series of evidence up to 
current state, it is very useful to monitor the distribution of current state, or to predict the distribution of a state 
in a future time point.  
 
How can we solve this problem? At first glance, it may be trivial. Indeed, a dynamic Bayesian network is a 
Bayesian network. So it seems that all we have to do is unrolling, that is, to construct the full Bayesian network 
representation of a DBN by replicating slices until the network is large enough to accommodate the 
observations. The rest of the work can be trivially done by one of those inference techneques in Bayesian 
networks. Unfortunately, a naïve application of unrolling would not be particularly efficient. The second 
approach is to customize variable elimination, taking advantage of the special structure of DBNs, which is also 
called recursive estitimation in [2]. [2] shows that we can achieve constant space and time per filtering update in 
this way. We are not done yet. It turns out that the “constant” for the per-update time and space complexity is, 
in almost all cases, exponential in the number of state variables. In most systems, the complexity of the belief 
state, that is, p(Xt|E1...Et), grows unboundedly, preventing any closed-form representation [1]. This leads us to 
the third approach: approximate inference techniques. A family of algorithms called particle filtering is 
designed to do just this.   
 
Thus, a second question follows: Should we simply open our arms for particle filtering, deserting exact 
inference algorithms? Surprisingly, the answer is not trivally YES.  To motivate, for the umbrala model [2], 
while particle filtering runs 580ms with 0.009 error measured in KL-distance for an observed evidence chain 
length 1000, our customized variable elimination runs only 184ms with exact answers! In this project, we 
implemented three alternative inference approaches for DBNs, in addition, DBNUnrolling, an auxilliary tool 
which take a DBN as input, and automatically unroll it into a Bayesian network. Then we designed and 
conducted a series of experiments using synthetic models. Based on that, we did a thorough performance 
comparison study, trying to answer the following questions: 
 

• For particle filtering , how big should the sample size be? 
• When does customized variable elimination outperform particle filtering? 
• When does particle filtering outperform customized variable elimination?  

 
Unrolling with generic variable elimination is mainly used as a reference group.  
 
The rest of the paper is structured as follows. Section 2 gives out some related work. In section 3, we give an 
overview of dynamic Basian networks and models of interest. Section 4 illustrates the implementation of three 
algorithms: unrolling with generic variable elimination, unrolling with customized variable elimination, and 
particle filtering. In section 5, we show our experiments methodology. Section 6 presents our experiments 
results and analysis. We conclude in section 7.   
 

2 Related Work 

 
Particle filtering is currently an area of intensive study. Many variants and improvements have been proposed 
and the number of applications is growing rapidly. Many researches  emphysize the application of particle 
filtering to certain domains. However, to our knowledge, there is no work done in comparing the performance 
of particle filtering and customized exact inference algorithm w.r.t. different DBN models. [8] used particle 
filtering to tracking complex motion patterns in video and [9] applied it to predicting the stock market. In [1], 
Koller and Lerner studied the number of samples and the error bound of particle filtering with two large DBNs, 
one is the discrete BAT network, and the other is a hybrid network benchmark. Different from those work, we 
focused on a thorough comparison study of customized variable elimination and particle filtering, answering 
questions: (1) Which factors affect the number of samples needed and which factors do not? (2) When should 
one use customized variable elimination and when should one use particle filtering? 
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3 Overview of Dynamic Bayesian Networks 
 
A dynamic Bayesian network or DBN is a Bayesian network that represents a temporal probability model. The 
process of change can be viewed as a series of snapshots, each of which describes the state of the world at a 
particular time. Each snapshor or time slice contains a set of random variables, some of which are observable 
and some of which are not. We will use Xt to denote the set of unobservable state variables at time t and Et to 
denote the set of observable evidence variables. The observation at time t is Et = Et for some set of values Et. 
The semantic meaning of the interval between time slices deponds on the problem itself.   However, for the 
model per se, we can conveniently assume fixed, finite interval. This means that times can be labelled by 
integers. We will assume that everything starts at t = 0, so that times are nongegative integers. In order to bound 
the number of conditional probability tables, as well as the number of parents of each variable, two assumptions 
are adopted. First, we assume that changes in the world state are caused by a stationary process – that is, a 
process of change that is governed by laws that do not themselves change over time: For any evidence variable 
E, P(Et|Parents(Et)) is the same for all t. 
 
The second problem is solved by making Markov assumption, that is, that the current state depends on only a 
finite history of previous states, of which the simplest yet most commonly used is the first-order markov 
process, in which the current state depends only on the previous state and not on any earlier states. In this 
project, we only consider first-order Markov process, the reason is that it is not trivial to generalize particle 
filtering to handle higher order Markov process. The corresponding conditional independence assertion states 
that, for all t,  
 
 P(Xt|X0:t-1) = P(Xt|Xt-1) 
 
The laws describing how the state evoles over time are called the transition model. In addition to restrict the 
parents of the state variables Xt,  we must also restrict the parents of the evidence variables Et. Typically, we 
will assume that the evidence variables at time t depend only on the current state: 
 
 P(Et |X0:t, E0:t-1) = P(Et | Xt) 
 
The conditional distribution P(Et | Xt) is called the sensor model. 
 
In this project, although we restrict our models to satisfy the transition model and the sensor model, our results 
can be generalized to general models.  
 

4 Inference Algorithms for DBNs 
 
In this section, we illustrate how to apply aforementioned three inference algorithms to dynamic Bayesian 
networks, namely, unrolling with generic variable elimination, unrolling with customized variable elimination, 
and particle filtering. They all share the same input and output. 
  
Input: 

• A DBN, which is determined by the  prior probabilities of the state variables, the transition model CPTs, 
and the sensor model CPTs, 

• A series of observations, E0:t 
• The query time slice n, where n > = t. 

 
Output: 

• Joint distribution of query state n, P(Xn | E0:t) 
• Marginalized distribution of each state variable X at the query time slice, P(Xn | E0:t) 
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Among those three algorithms, the first two both employ inference techniques developed for Bayesian 
networks. The basic idea is two steps. Step 1, unroll the inputed DBN into a Bayesian network. Technically, the 
DBN is equivalent to the semi-infinite network obtained by unrolling for ever. However, slices added beyond 
the query time slice have no effect on inferences within the time periord of interest and can be ommited. Step 2, 
apply generic or customized variable elimination on the Bayesian network.    
 
 
5.1 Unrolling with Generic Variable Elimination 
 
The generic variable elimination algorithm works this way. Given the CPTs in BN as initial potential, repeat 
until only query variables remain:   
 
• Choose the next variable to eliminate 
• Multiply all potentials that contain the variable 
• If no evidence for the variable then sum the variable out and replace original  potential by the new result. 

Else, remove variable bases on evidence. 
 

After that, normalize remaining potential to get the final distribution over the query variables.  
 
In our implementation, we used two techniques to improve the performance. First,  we used a heuristic function 
to choose a variable to eliminate. Each time we choose the variable that appear in the least number of CPTs. 
This is a tradeoff between time and space. The other alternative is to choose the variable which least increased 
the total size of the potentials. This heristic gives us the least size of intermidiate potencials, yet it has worse 
time complexity. Our least number of potentials function only requires a scan of the variable index, which is 
O(N) in time complexity, where N is the number of variables. For comparison, for each candidate variable, the 
latter also need to compare all the variables appearing in involed potentials to be able to figure out the result 
potencial size. Thus it has O(N2) time complexity.      
 
Second, we built two hash indexes. One is the potential index. Given a potential ID as a key, the index returns 
the potencial object in constant time. The other is the variable index. Its key is a variable name, the 
corresponding entry is a list of potentials in which the variable appears.  Figure (?) shows an example with 
current potentials and according indexes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 Unrolling with Customized Variable Elimination 
 
Dynamic Bayesian network is a special kind of Bayesian network, so we can skip the expensive procedure of 
choosing the variable in the elimination, in other words, we can eliminate the variables with a fixed sequence:  
(1) For filtering we can eliminate all the state variables at time 0, then all the evidence variables at time 1, then 
all the state variables at time 1, and proceed until there are only state variables at time t left.  
(2) For prediction, the procedure is almost the same as (1), but the condtition for stopping the variable 
elimination should be that there are only state variables at time t+k left (k > 0), and we do not have evidences to 
eliminate between time t and time t + k. 

A: 1 
B: 1, 3, 5 
C: 1, 3 
E: 3, 5 
 

variable index 

A B C 

id: 1 

B C E 

id: 3 

B E 

id: 5 

 

 

 

potential index 

Figure 1: An example of potential index and variable index state  
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(3) For smoothing, we should elimate from two ends to the middle: from time 0 to time k (forward), and from 
time t to time k (backward). 
 
5.3 Particle Filtering 
 
Particle filtering is a general purpose Monte Carlo scheme for tracking in dynamic systems. It maintains the 
belief state at time t as a bag of particles {Xt }, where Xt  is a full instantiation of  Xt. Ideally, we want to sample 
P(Xt+1  | Xt , et ). However, this distribution is rarely one that we can compute efficiently. Hence we use 
importance sampling: We use the samples themselves as an approximate representation of the current state 
distribution, and use an importance weight to make up for the difference. The algorithm is roughly as follows: 
 
First, a population of N samples is created by sampling from the prior distribution at time 0, P(X0). Then the 
update cycle is repeated for each time step: 
 

• Each sample is propagated forward by sampling the next state value Xt+1 given the current value Xt for 
the sample, using the transition model P(Xt+1 | Xt). 

• Each sample is weighted by the likelyhood it assigns to the new evidence, P(Et+1 | Xt+1). 
• The population is resamples to generate a new population of N samples. Each new sample is selected 

from the current population; the probability that a particular sample is selected is proportional to its 
weight. The new samples are unweighted.  

 
The algorithm is shown in detail in Figure 2. [2] shows that this algorithm is consistent, but is it efficient? 
Recall for each time slice, we need to generate N samples each with M data point, where N is the number of 
samples and M is the number of state variables, the time complexity is O(MN). In our implementation, we used 
binary search in resampling step. Hence the complecity of resampling is O(N log N). Therefore, when N >> M, 
the total time complexity for particle filtering is O(N log N). Is this good or bad? We shall interpret it by 
experiment result analysis in section 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 Experiments Methodology 

 
5.1 Test Bed 
 
We run all experiments on CS department machine nova 33, Sun OS, 384M memory, 300 MHz CPU’s clock 
rate, 100 MHz memory’s clock rate. 
 

Function ParticleFilering(E, N, dbn) returns a set of samples for the next time step 
 Inputs: E, the new incoming evidence 
 N, the number of samples to be maintained 
 dbn, a DBN with slice 0 variables X0 and slice variable X1 and E1 
  static: S, a vector of weight of size N 
  local variables: W, a vector of weights of size N 
 
IF E is empty THEN 
   FOR i=1 to N DO 
        S[i] <-sample from P(X0) 
ELSE DO 
   FOR i=1 to N DO 
        S[i] <-sample from P(X1 | X0=S[i]) 
        W[i] <-P(E|X1=S[I]) 
   S <- WeightedSampleWithReplacement(N, S, W) 
Return S  

Figure 2: Particle filtering algorithm 
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5.2  Synthetic Models 
 
In this project, we used systhetic models instead of benchmarks. There are mainly two reasons. First, the 
purpose of our experiments is to study for what kind of models particle filtering works better, and for what kind 
of models unrolling with customized variable elimination works better. Therefore, we need the flexibility to 
adjust the model structures, which can not be provided by any benchmarks. Second, our imprementations only 
supports DBNs that satisfy transit model and sensor model, since our results can be easily generalized to general 
models. However, we could not find any benchmarks that satisfy such assumptions.  
 
There are two parameters of a model. First, the number of state variables. Second, the average number of 
parents of a state variable. By adjust these two parameters, we can adjust the complexity of our DBN models. 
Figure 3 shows a DBN model example we used in our experiments.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3  Error Metrics 
 
We used Kullback-Leibler distance as error metrics [7]. KL-distance for two distributions p(X) and q(X) is 
defined as follows: 
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Intuitively, KL-distance measures how similar those two distributions are to each other. The logarithm is used 
to assign the same scale of weight to point pairs with the same degree of divergence, regardless of the order of 
the pair in the division. For example, the degree of divergence between 10 and 1 should be the same between 1 
and 10. With the logarithm, we have log (1/10)=-1, log(10/1) = 1. They get the same scale of weight. Absolute 
values of each divergence are used to avoid the mutual cancelling of the positive divergnce with the negative 
ones.  
 
We computed the error on both the entire joint distribution and the average error on the marginals of all the state 
variables. Let q(X) be the exact joint distribution, q(X) the approximate joint distribution, then  
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 We define the average error on the marginalized distritribution as follows: (N is the number of variable states) 
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Figure 3: A sample DBN network with 4 state variables and 2 average parents each  
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6 Experiment Results and Analysis 

 
First we compared the performance of the generic variable elimination with the customized variable 
elimination. In this experiment, the average number of parents for the state variables was fixed, and the number 
of state variables varied. Figure 4 shows  the result. The customized algorithm dominates as the number of state 
variables increases. For our network with 8 state variables (the average number of their parents is 2), the 
customized algorithm needs 304 ms, but the generic algorithm needs 10130 ms! Clearly, the customized 
elimination order for DBNs is a big win. Two factors slow down the generic variable elimination: (1) It needs 
additional O(N2) time in deciding the elimination order, and (2) The heuristic method cannot always find the 
best variable for elimination.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Customized variable elimination is an exact algorithm, while particle filtering is a sampling algorithm. Quite 
often, there is a trade off between an exact algorithm and an approximate algorithm: the former is always 
accurate but might be slow; the latter is faster but might be less accurate. Is this the case for those two 
algorithms in question? 
 
Figure 5 shows the relationship between the error and the number of samples used. The curve above shows the 
KL-distance of joint distribution, while the curve below shows the KL-distance of marginalized distribution. 
Both curves have similar shape: the error drops sharply initially and then the improvements become smaller and 
smaller. So we have to increase the number of samples if we want to decrease the KL-distance, but this will 
increase the running time. Thus there is a trade off. Obviously, estimating the marginals is much easier than 
estimating the full joint distribution, therefore the error of marginalized distribution is always smaller than that 
of joint distribution for the same data set. We only consider the joint distributions in our other experiments 
below.  
 
Figure 6 shows the effects of the number of state variables on the number of samples needed. For each number 
of state (2, 4, and 8), we fixed the average number of parents of state variables while varying the number of 
state variables. The result shows that the curve moves upward in an exponential order of the number of state 
variables. This is easy to understand: The number of samples needed is propotional to the number of the states 
in the full joint table, which in turn is exponential to the number of state variables.  
  
 
Surprisingly yet reasonably, the skew of the belief state distributions moves the curve downward (Figure 7). 
The reason is as follows: For a uniform distribution of the belief state, it is very possible to get zero samples for 
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some joint states even when the number of samples is already large. And such error is magnified by the KL-
distance calculation.  
 
We have two control experiments. First, the number of state variables was fixed and the number of their parents 
was varied, our result shows that it is not correlated to the number of sample needed. Second, the length of the 
observed evidence chain was varied when the number of state variables and the number of their parents were 
both fixed. Again, the chain length is not correlated to the number of sample needed. See Figure 8. 
 
Next, we conducted two groups of experiments to compare the performance of particle filtering and the 
customized algorithm. In our experiments, we chose the number of samples for particle filtering such that the 
error is bounded to 0.05±0.03. 
 
In our first group of experiments, we fixed the average number of parents to 2 and varied the number of state 
variables.  When the number of state variables increased from 2 to 8, the customized algorithm increased 
roughly 3 times, while the other increased about 200 times. For every number of state variables, particle 
filtering algorithm always needs more time than customized variable elimination, and the difference increases 
sharply when the number of state variable increases (Figure  9). The reason is that more samples (exponentially 
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increased) are needed to keep the error within the same bound for particle filtering, while the customized 
variable elimination does not suffer from this problem. For a network with 8 state variables and average 2 
parents, we need about 50000 samples to get an average error of about 0.075, which takes more than 18000ms, 
while customized algorithm only need about 300ms. 
 
In our second group of experiments, we fixed the number of state variables to 8 and varied the average number 
of parents. When the average number of parents increased from 1 to 4, the performance of particle filtering 
remained almost the same, while the other increased 2264 times. The reason is that the cost of multiplying 
potentials increases sharply for variable elimination algorithm if some nodes in the network have many parents, 
while particle filtering algorithm is not affected (Figure 10). For a network with 8 state variables and average 4 
parents, we need about 50000 samples to get an average error of about 0.075, which takes only 18s, while 
customized algorithm needs about 430s. 
 

7 Conclutions 

 
As a sampling algorithm, particle filtering can be used easily with hybrid and continuous DBNs. In the 
literature, much research has put emphysis on the importance of particle filtering. However, particle filtering 
should not be blindly applied to any DBN without taking into account its characteristcs.  In this project, we 
implemented three alternative inference algorithms for DBNs, namely, unrolling with generic variable 
elimination, unrolling with customized variable elimination (customized algorithm), and particle filtering. We 
designed and conducted a series of experiments using those alternatives respectively on synthetic networks, of 
which the complexity is adjusted by two parameters: one is the number of state variales, the other is the average 
number of parents. Our experiment results show that (1) The number of samples needed is exponential to the 
number of state variables, and it is correlated with the belief state distribution skewness; It is not correlated to 
the average number of parents for the state varaibles. (2)The efficiency of particle filtering decreased sharply as 
the number of samples increases. For a network with 8 state variables and average 2 parents, we need about 
50000 samples to get an average error of about 0.075, which takes more than 18000ms, while customized 
algorithm only need about 300ms. (3) The efficiency of the customized algorithm decreases sharply with the 
increase of the average number of parents of the state variables; It is not sensitive to the number of state 
varaibles. And Therefore (4) Particle filtering outperforms the customized algorithm for networks of which 
states variables have more than 4 parents in average; For networks with large number of state variables yet a 
small average number of parents, e.g. 2, the customized algorithm is the ideal choice. 

Figure 9: Performance comparison between 
customized algo. and particle filtering,  #parents = 2  
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