CS736 Course Project Report

An In-Depth Examination of Java |/O Performance
and
Possible Tuning Strategies

Kai Xu xuk@cs.wisc.edu
Hongfei Guo guo@cs.wisc.edu

Abstract

There is a growing interest in using Java for hpgiformance computing because of the many advastage
that Java offers as a programming language. Tosb&iluas a language for high-performance computing
however, Java must not only have good support donpuitation, but must also be able to provide high-
performance file I/O. In this paper, we first exampossible strategies for doing Java I/O. Themeggn
and conduct a series of performance experimenwrdiogly using C/C++ as a comparison group. Based
on the experimental results and analysis, we reachconclusions: Java raw 1/O is slower than C/C++,
since system calls in Java are more expensivegtindf improves Java 1/0O performance, for it reduces
system calls, yet there is no big gain for larggffdy size; direct buffering is better than the alqwovided
buffered I/O classes, since the user can tailoribis own needs; increasing the operation sizpsh#O
performance without overheads; I/O-related systetts dmplemented within Java native methods are
cheap, while the overhead of calling Java nativéhots is rather high. When the number of JNI dalls
reduced properly, a performance comparable to Ciantbe achieved.

1. Introduction

There is a growing interest in using Java for tpginformance computing because of the many advastage
that Java offers as a programming language. Tosb&luas a language for high-performance computing
however, Java must not only have good support donputation, but must also be able to provide high-
performance file 1/O, as many scientific applicaohave significant 1/0 requirements. However, @hil
much work has been done in evaluating Java perfozenas a programming language, little has been done
in a satisfying evaluation of Java I/O performarioghis paper, we investigate in depth the I/Oatalities

of Java, and examine how and how well differensfis tuning strategies work compared to C/C++.

1.1 Contribution of This Paper

The contributions of this paper are threefold. tFive explored possible strategies one can utilizgdt

high performance in Java 1/0. Secondly, we desigati conducted a series of experiments that examine
the performance of each individual strategy acecwigli in comparison to C/C++. Finally, experiment
results are thoroughly analyzed and conclusionsesehed.

1.2 Related Work

There are already some papers discussing Javaelformance. Our work is different from those inttha
we summarize possible 1/0O strategies in Java awd githorough Java I/O performance evaluation and
analysis in comparison to C/C++. [1] describes &tad possible strategies in improving Java I/O.
However, no convincing experiments have been gigeshow how well those strategies work, neither has
it studied Java I/O in comparison to that of C/C{2f.compares Java I/O to that of C/C++ and propose
bulk I/O extensions. However, this paper mainlyulees on parallel Java 1/O for specific applications
instead of examining Java 1/O in general.

CS736 Course Project Report

1.3 Organization

The rest of this paper is organized as followsSéation 2 we describe the basic 1/O mechanismaeldin
Java. In Section 3 we discuss our test methodoknyy experiments design. Then we give out the
corresponding experiment results and analysis itti®e 4. Conclusions and ideas for future work are
presented in Section 5.

2. Javal/O Overview

To understand the issues associated with perforiiihgn Java, it is necessary to briefly review ttava
I/O model.

When discussing Java /O, it is worth noting tHa lava programming language assumes two distinct
types of disk file organization. One is based arashs of bytes, the other on character sequengts- B
oriented 1/O includes bytes, integers, floats, desitand so forth; text-oriented 1/O includes chamecand
text. In the Java language a character is repredearging two bytes, instead of the one byte reptaten

in C/C++. Because of this, some translation is ireguto handle characters in file 1/O. In this g since

our major concern is to compare Java /O to tha&/@f++, we will focus on the byte-oriented 1/0.

In Java, byte-oriented 1/O is handled by inputatms and output streams, where a stream is an drdere
sequence of bytes of unknown length. Java prowvadesh set of classes and methods for operatinigyts
input and output streams. These classes are Higrakcand at the base of this hierarchy are ttetratt
classes InputStream and OutputStream. It is usefotiefly discuss this class hierarchy in ordectarify

the reason why we are interested in FilelnputStfEB@OutputStream, BufferedinputStream/
BufferedOutputStream, and RandomAccessFile in @st ttases. Figure 2.1 provides a graphical
representation of this I/O hierarchy. Note that ae not included every class that deals with byte-
oriented I/O but only those classes that are pantito our discussion.

OutputStream RandomAccessFile InputStream
—» FileOutputStream —» FilelnputStream
L FilterOutputStream L FilterinputStream
BufferedOutputStream BufferedinputStream
DataOutputStream DatalnputStream

Figure 2.1 Pertinent Java I/O classes hier:
2.1 InputStream and OutputStream Classes

The abstract classes InputStream and OutputStreartha foundation for all input and output streams.
They define methods for reading/writing raw bytesnf/to streams. For example, the InputStream class
provides methods for reading a single byte, a laytay, or reading the available data into a pasicu
region of a byte array. The OutputStream classigesvmethods for writing that are analogous to ehafs
InputStream.

CS736 Course Project Report

2.2 Filelnput and Output Streams

The FilelnputStream and FileOutputStream classes @wncrete subclasses of InputStream and
OutputStream respectively, which provide a mecharis read from and write to files sequentially. Bot
classes provide all the methods of their superetas§hese two classes are the lowest file 1/0O etass
provided to users.

2.3 Filter Streams

Filter streams provide methods to chain streameth®y to build composite streams. For example, a
BufferedOutputStream can be chained to a FileOStpeam to reduce the number of calls to the file

system. The FilterinputStream and FilterOutputStredasses also define a number of subclasses that
manipulate the data of an underlying stream.

24 Buffered Input and Output Streams

Two important subclasses of filter streams areiqemt to this investigation — BufferedInputStreand a
BufferedOutputStream. These classes provide baoffeior an underlying stream, where the stream to be
buffered is passed as an argument to the construthe buffering is provided with an internal syste
buffer whose size can (optionally) be specifiedh®yuser.

25 Higher Level 1/O Classes

All the classes discussed so far manipulate ra tgta only. Applications however may want to ag
higher-level data types, such as integers, flodtsjbles, and so forth. Java defines two interfaces,
Datalnput and DataOutput, which define methodsdattraw byte streams as these higher-level Jaea da
types. Together, these interfaces define methodsrdading and writing all Java data types. The
DatalnputStream and DataOutputStream classes grodéfault implementations for these interfaces.
These classes are outside the scope of this paper.

2.6 Random Access Files

All the classes mentioned above deal with sequeatiaess 1/0, RandomAccessFile is the only class
provided by Java for random access /O (at the Ieyxtel) on files. This class provides the seek meth
similar to the one found in C/C++, to move the fileinter to an arbitrary location, from which pobyttes
can then be read or written. The RandomAccesshilgscsits alone in the 1/0O hierarchy and duplicates
methods from the stream 1/O hierarchy. In particuRandomAccessFile duplicates the read and write
methods defined by the InputStream and OutputStretasses and implements the Datalnput and
DataOutput interfaces that are implemented by #ia dgtream classes.

3. Test Methodology and Experiment Design

In this section we discuss our test methodologyermkriment designs corresponding to different J&ba
strategies.

3.1 Methodology
In order to get a thorough examination of Javapgé&formance in comparison to that of C/C++, we glesi
a series of experiments corresponding to diffedent 1/O strategies. Throughout our experiments, we

mainly examine two aspects of each strategy:

(1) How well it improves I/O in Java, and
(2) How good it is compared to its C/C++ countetpar

Furthermore, we try to explain how and why eacatsgry impact Java /0.

CS736 Course Project Report

Note that for the sake of reliability and precisiom ran each test case five times, and took theage of
the results.

3.1.1 AccessPattern and Benchmark

In our experiments, we implemented a collectionspfall benchmark programs using two typical file
access patterns: sequential access and randonsaEcesequential access benchmarks, we first wrée
whole file sequentially, and then read all byteskoia the same order. Following is the psudo codeuo
benchmarks:

/I Sequentially write a file
segWrite() {
open file;
for (int I=0; I<FILESIZE/OPERATIONSIZE, I++)

WRITE(buf, OPERATIONSIZE, fileDesc);
/I Here different 1/O strategies provide diffe rent write methods

close file;

}

/I Sequentially read a file
segRead() {
open file;
for (int I=0; I<FILESIZE/OPERATIONSIZE, I++)

READ(buf, OPERATIONSIZE, fileDesc);
/I Here different 1/O strategies provide diffe rent read methods

close file;

}

For random access benchmarks, we randomly writeaaey bytes as the file size into a file, and ranigom
read back the same number of bytes from the file:

//IRandomly write into a file
ranWrite() {
open file;
for (int 1=0; I<FILESIZE/OPERATIONSIZE, I++)
{
position = rand() % (FILESIZE/OPERATIONSIZE);
WRITE(buf, OPERATIONSIZE, position, fileDesc);
/I Here different 1/O strategies provide diffe rent write methods

close file;

}

/IRandomly read from a file
ranRead() {
open file;
for (int I=0; I<FILESIZE/OPERATIONSIZE, I++)
{
position = rand() % (FILESIZE/OPERATIONSIZE);
READ(buf, OPERATIONSIZE, position, fileDesc);

/I Here different 1/O strategies provide different read methods
close file;
}
Note:FILESIZE — the file size;
OPERATIONSIZE - how many bytes are written/read in each operation

CS736 Course Project Report

3.1.2 Comparison Group

Throughout our experiments, we use C/C++ as a cosgpagroup, because it is the most commonly
accepted programming language in the industry. \Me\® it is beneficial for people to have a good
understanding of what I/O performance to expect mamed to C/C++ when using different Java I/O
strategies in their applications.

3.1.3 Dataof Interest and Profiling Tools

There are two kinds of data we are interested iouinexperiments. One is the elapsed time, whichés
commonly used measure for 1/O performance; therathéhe CPU breakdown, which can help explain
where the CPU time is spent.

We use time profiler to get the elapsed time fothbéava and C, PerfAnal [7] profiler to get the CPU
breakdown of Java, and gprof profiler to get théJ@Peakdown of C/C++.

PerfAnal is a GUI-based profiler for analyzing therformance of Java applications. It can analyze th
CPU usage of each called methodusive or exclusive subroutine calls.

3.2 Javall/O Strategiesand Test Cases

There are several ways to tune I/O in Java. As ansef starting the discussion, here are some glener
rules on how to speed up I/O:

» Avoid accessing the disk.

» Avoid accessing the underlying operating system.

» Avoid method calls.

 Avoid processing bytes and characters individually.

Bearing those rules in mind, we address differamtJ/O strategies one by one.

321 ThelLowest Level 1/0

In UNIX/C(C++), the lowest level way to read/wriaebyte from/to a file is to use thead()/write() system
calls. As we mentioned above, the equivalent inaJare theread()/write() methods of the
FilelnputStream/FileOutputStream classes.

In this test, we simply usesad()/write() of FilelnputStream/FileOutputStream to operateftle with one
byte a time. For the random access, weread(), write() and seek() provided by the RandomAccessFile
class.

We call this strategy raw Java I/O, which servea haseline in our discussion.

3.2.2 Buffered Input / Output

For sequential file access, the Java API providésifeered input/output stream, which keeps an iekr
buffer for read/write operations. Intuitively, beffng will improve 1/0O performance. In this testsea we
compare the performance of a buffered input/outtrdam to that of raw 1/O, and to direct buffering,

which will be explained shortly.

Note that the internal buffer size of the buffestibam is adjustable. Here we use its default yalhéch
is 1KB.

3.23 Direct Buffering

If buffering does improve 1/O performance, then ethbuffer size should we use? Is it true that &ugdr,
the better? In this test case, we address thostigue with a user-specified application-level bufivhich

CS736 Course Project Report

is maintained to keep most of the read and writeraons within memory and reduce I/O system calls.
We call this method direct buffering so as to d#fgtiate it from the buffering provided by the JARI.

3.24 Operation Size

The impact of the operation size on Java I/O igvémead in this experiment. Here again we will use th
lowest level FilelnputStream/FileOutputStream arah@mAccessFile for sequential access and random
access respectively. The reason we do not use @#fgribg is that we want to separate the impacthef
operation size from that of the others.

325 UsingJNI

A system call implemented within Java native methisdcheap, but the overhead (for example, paramete
transformation) of making a native call is high.this comprehensive test case, we examine thelpessi
performance gain if we implement buffering and flecess system calls using the Java Native Interfac
We try to reduce the JNI call overhead by incregatiie operation size.

4. Test Resultsand Analysis

In this section we present the results and anabfs@ir experiments with the various strategiescdieed
above. We first describe the hardware and softeanéigurations for our experiments.

41 Experimental Setup

We conducted our experiments on a personal compuitie one Pentium Il 667 MHz CPU, 128 MB of
memory, and a 10 GB IDE disk (1216 cylinders, 26&ds and 512 bytes per sector).

The operating system we used is RedHat Linux 6.2.ct\bose the JDK 1.2.2 for Linux as our Java Virtua
Machine. In order to analyze the CPU usage of #mechmarks we used some profiling tools to obtain
function/method timing and other information peetih to performance. PerfAnal is a GUI-based profile
for analyzing the performance of Java applicatidhsan analyze the CPU usage of each called method
inclusive or exclusive subroutine calls. For the C++ benchmark, we ugadfgand time profilers under
Linux.

4.2 ThelLowest Level Javal/O

The first experiment we conducted is to measurer#lve Java I/O performance. Both sequential and
random benchmarks are tested with different fiesi In all test cases we didn’t use any buffer twed
read/write operation size is set to 1 byte in otdeget the raw Java I/O performance compared @+€/

Figure 4.1 shows the result for sequential reatéwests, where file sizes from 1 MB to 100 MB are
tested. As it is clear from the figure, for botlvdland C, the 1/0 operation rates are stable réggzadf the
increasing file size. And for all test cases, thealsequential access performance is as slow aimee
that of C. In Figure 4.2 we show the CPU time bdeakn result, which was generated by the profiling
tools mentioned above, for the 100 MB file siza t=se. We observed that for both Java and C.ethe r
and write system calls cost most of the CPU tin@43or C, 90% for Java). In addition, Java'’s |/Qated
system calls are more expensive than the corresppi@i calls (224% for read, 158% for write). That i
why Java has a poor performance for these sequewtass tests. We also noted that since mosteof th
CPU time is spent on the I/O-related system ctdlsmprove the Java I/O performance, we should $ocu
on reducing this part of CPU cost.

Figure 4.3 and 4.4 present the 1/0O operation rate @PU time breakdown results for random read/write
tests. From these figures we also found a sloweratipn rate for Java (~400%). And all 1/O-related
system calls (read, write and seek) are expensivéaiva in random access.

CS736 Course Project Report

——Java ac
——C HJava
0.4 400
0.35 350
@ 031 300
2 (25 @ 250 1
£ 02 g 200 -
B =
-§ 0.15 #—o—o—o *——o = 150 -
g 0.1 | 100 +
0.05 507
o 0
0 10 20 30 40 50 60 70 80 90 100 read write efc.cpu idle
File Size (M)
Figure 4.1: Sequential raw I/O performance Figure 4.2: CPU breakdown for
with different file sizes 100 MB sequential access
—— Java ac
——C B Java
0.25 70
60 -
0.2
g 50 +
2 0.15 - —
= & 40 A
E £
2 01
E = 30
@
005 — — 20
0 | 10
1 2 3 4 5 6 7 8 9 10 0 -
File Size (M) read write seek etc.cpu idle
Figure 4.3: Random raw I/O performance Figure 4.4: CPU breakdown result for
with different file sizes 10 MB random access

4.3 Buffered I/0 in Java

The above lowest level Java I/O performance exparindemonstrates that 1/0-related system calls are
expensive and account for a high percentage of @WRe&l A basic rule to speed up I/O is to use bsfiar
order to reduce the accessing of underlying systalis. In this experiment we measured the perfooman
of BufferedinputStream and BufferedOutputStreamictvtare the buffered 1/0 classes provided by the
Java I/O package. Furthermore, we compared thesra@epurpose buffered streams with direct buffgrin
where a user-specified application-level buffepisvided and maintained to keep most of the reatl an
write operations within memory and reduce 1/O systalls. Since the Java I/O package doesnt provide
buffered streams for random access, in this exgatimve only test the sequential benchmarks. Tlee fil
size of the test benchmarks is set to 100MB. Ardithffer size is specified to 1KB, which is the aidf
buffer size of the BufferedinputStream and Buff@atputStream classes.

Figure 4.5 plots the elapsed time for differentféuig strategies in Java for our test cases. Three
categories are shown in this figure, total elape@, sequential read elapsed time and sequentitd w

CS736 Course Project Report

elapsed time. For all these categories, we fouad tte Java package-provided buffered stream classe
could improve Java I/O performance by 25% compaoedo buffer for sequential access. Further, using
our direct buffering could reduce the elasped thgean additional 40%. We show the CPU breakdown
analysis in Figure 4.6. The costs of read and vaystem calls have been greatly reduced becautte of
buffering (they only occupy 0.36% and 0.5% of tHelCtime respectively). However, in order to maintai
the input/output buffers a large percentage ofGRéJ time has been spent on memory copy system calls
for both buffered streams (28.83%) and direct lbirftg (43.64%). The difference in CPU usage for user
level buffer read/write method calls explains whisedt buffering could show better I/O performanbart
general buffered streams provided by the Java geckecause direct buffering could maintain thedyuf
more efficiently according to the users speciafjuest, the unnecessary buffer maintenance jobs are
avoided.

ONo Buffer B Buffered Stream O Direct Buffer BBufferedStream M Direct Buffer

160
800 —
140
700 + 120 1
600 - — 100 |]
- z
@ 500 - g 801
E = 60
E |
= 400 | 0
& 300 -
Y 00 =
1 0
100 - 3 £ g £ g
< 3 = S 3]
0 & B g
Total Seq Write Seq Read 3 2 ©
Figure 4.5: Elapsed time for different Figure 4.6: CPU breakdown for different
Java buffer strategies Java buffer strategies

4.4 Direct Buffering

We have shown that the direct buffering technigaie improve the Java I/O performance better thaaroth
buffer techniques in the previous experiment. lis #xperiment we studied this technique in-depth by
employing it on both sequential and random accegdtisdifferent buffer sizes ranging from 1 byte to
4KB. In these test cases, we still keep 1 byterped/write operation in order to get the pure effifc
changing the buffer size.

441 Sequential Buffering

We depicted the sequential test result in Figure where the file size is set to 100 MB and thesdal
time for each buffer size test case is plotted.r&@lig no surprise that increasing the user-levéfebsize
reduces the elapsed time steadily. And we notited with the direct buffering technique, Java I/O
performance is still 3 times slower than C perfano@ In Figure 4.7 we also provide the answer to an
obvious question: will making the buffer larger sgaup 1/0? The experimental result shows that vthen
buffer size is larger than 512B or 1KB, increading buffer size may help speed up 1/O, but onlabigw
percent, say 1% to 5%. We show the reason foiiiitae CPU breakdown analysis in Figure 4.8 and 4.9

Figure 4.8 presents the CPU breakdown for Javaesialiaccess tests. For each buffer size casbraed
the elapsed time into several parts -- write aa I€PU time, memory copy CPU time for maintainineg t
buffer, other CPU time and CPU idle time. Closeneixation of this figure reveals that when the buffe
size is increased, the CPU time on I/O-relatedesystalls is consistently reduced. At the same titme,
other parts of CPU time do not change much. Thi® ges a clear picture that the buffering reduced/@

CS736 Course Project Report

system calls, and thus improves the I/O performaBog even though we may increase the buffer tsize
large scale to reduce the 1/O-related CPU timaddimit, we cannot reduce the other parts of Cihet
with buffering. According to Amdahl's law, if partsf a program run at two different speeds, the stow
speed will dominate. Here this unchanged part dff @fe decides that using a larger buffer size @aly
improve Java I/O performance with a small percemtag

Another interesting point in Figure 4.8 is that tbe two large buffer size test cases (1MB and 1PNt
elapsed time, especially the CPU idle time, inadas little. Our explanation for this is that fbese test
cases, the user-level buffer is already larger tthen underlying system 1/O buffer size. Under such
circumstances, the read-ahead and write-behincetbufhintained by the underlying runtime system can
not satisfy the large scale user-level read antbwaperations. The extended I/O waiting time inseebthe
CPU idle time and total elapsed time of the benckma

The CPU breakdown for C sequential tests is shawidgure 4.9, where we got similar results as fier t
Java test cases.

442 Random Buffering

After examining the direct buffering for sequentakess, in this section we study how the direffeking
will affect the random access. All the test casesaifile size of 10 MB.

The elapsed time for different buffer sizes is shaw Figure 4.10. According to this figure, for dam
access, when buffer size is increased the JavaCall® performances degrade. The CPU breakdown
results in Figure 4.11 (for Java) and Figure 4fd2 C) give us a clear explanation. With the grayvf the
buffer size, the CPU time of I/O-related systentsc@kad, write, seek) increased. This is causeithdyow
read/write hit ratio to the buffer because of thigiteary moving of the file pointer. In our randomecess
test cases, the buffer hit ratio is lower than 1%der such circumstances, read/write system calsat

be reduced and more data are read in/written otiiteobuffer with the growth of buffer size to maiint the
buffer.

A closer examination of Figure 4.11 and 4.12 shtws when the buffer size increases, the CPU tifne o
read system calls increases, while the CPU timariie system calls stays stable. The reason isnagai
related to the underlying system 1/O buffers. Beeaof the random access pattern, the hit ratichef t
system I/O buffers is also very low. When a pagstfaappens, for the read system call, the systdm w
spend more time waiting for the input buffer tofitled. While for the write system call, after capyg the
data from the user-level buffer to the system oubpifer, the system call can return without wajtifor

the real disk write operation to be finished.

In this experiment we also tested the extreme oabaffering the whole file. That means a 10 MB feuf

is used, which is equal to the whole file size. Tightmost column on Figure 4.11 and 4.12 prestmds

result for this test. The performance improvemsnolivious, since all the I/O operations are peréatm
within the user-level buffers.

45 Operation Size

In previous experiments we have tested the efigictifferent file and buffer sizes. In this expeeint we
tested another 1/0O parameter -- the operation 8inéh sequential and random benchmarks are testhd w
different operation sizes ranging from 1 byte toB4Kgain, in order to obtain the pure effect of ehimg
the operation size, no buffer is used in all teses.

CS736 Course Project Report

—e—Java Owrite Bread Omemcpy Oetc. CPU DOidle
—=—C
800
700 -
@ 600 A
() J
£ 500
[i
F 400 <
3 300 \
Q.
S 200
1]
100 | N eoes
o+ = I
m m m m X X
& AL I 3
Buffer Size Buffer Size
Figure 4.7: Sequential access for direct buffering Figure 4.8: CPU breakdown for Java sequential
access
Owrite Hread Omemcpy [Oetc. CPU Hidle B—C —Java
120 900

800 -
100 | [7 2700 - /
2600
—~ 80 £
=z =500 Yd
E 60 - | §400,
F 40 2300 -
i =200
20 1 100 ’?.:H?.——.L
0 . 0 T T T T T T T T T T
m MmO 0 O MO 0 0 0 Y ¥ X
m MmO O 0 M M0 X X X
289888 %%¥33 TYaseggg Ty
— N [Te]
Buffer Size Buffer Size
Figure 4.9: CPU breakdown for C sequential Figure 4.10: Random access for direct buffering
access
ORead BEWrite OSeek DOetc. CPU MIldle D write Bread Oseek Hetc.CPU Widle
900 = 450
800 400 -
700 - 350
600 m
T o | 300 1
@ N L250 -
£ 400 - £200
" 300 1 F 150 |
200 - 100 -
o o BRAAE
0 L L 0 R N e =
m om [an] 2] m om X X X > m [an] m o m om X X X =
S8 3 S gy~ ST E S%%E’S%ﬁ"“‘"a
N Te] — N [Te]
Buffer Size Buffer Size
Figure 4.11: CPU breakdown for Java random Figure 4.12: CPU breakdown for C random
access access

. 10.

CS736 Course Project Report

The sequential access result for a 100 MB file hews in Figure 4.13. As we expected, the 1/O
performance improves as the operation size is &se@, because the 1/O-related system calls have bee
reduced. For the large operation test cases foa, Jae observed an 85% performance improvement
compared to 1 byte per read/write. Also, we noted the Java I/O performance could be comparabt to
performance when a large operation size is usedge sincreasing the operation size imposes no extra
overheads.

Like the direct buffering experiments, when theragien size is larger than 512 bytes or 1 KB, thereo
big gain of performance to increase the operatip@ further. The reason is that enlarging the dpmra
size still cannot affect the non-1/0O parts of CRillzation.

Figure 4.14 presents the result for random accetts anfile size of 10 MB. There is no surprise that
increasing the operation size in random accessa kamsilar effect as the sequential access tests.

46 UsingJNI

The Java Native Interface (JNI) is a native progrémg interface [9]. It allows Java code that rumside a
Java Virtual Machine (VM) to interoperate with apptions and libraries written in other programming
languages, such as C, C++, and assembly. One ofatbes for using Java native methods is to fulfill
certain highly time-critical operations. In thispeximent we implemented two native methods in ddal
with the I/O-related functionality including maiimiag the user-level direct buffers. Performancsules
for the JNI implementation are compared with theaJeersion direct buffering and with C performance.
The experiment setting is a 100MB file size, 4KBefi buffer size, 1B to 1KB operation size, and only
sequential access is tested.

Figure 4.15 presents the elapsed time result asnatibn of the operation size for three different
implementations. As the previous experiment suggkesincreasing the operation size improved the
performances of all three implementations. Furtlteenwe found that when the operation size is small
(less than 4B), the INI performance is comparabléava direct buffering; while when the operatioe s
becomes large (bigger than 64B), the JNI performacen reach the C level. Our explanation for this
observation is that a native method itself is chieapause of its implementation in C; however, oglthe
native methods from JVM is expensive since therstrha some overhead imposed. Further explanation of
our test case is shown in Figure 4.16, which plesCPU breakdown for the JNI implementation.

Since the Java profiler, PerfAnal, cannot trace fifie native methods, on Figure 4.16 we only gaee t
CPU utilization of our two 1/O native methods, pad and jniwrite, and all the other CPU times. As w
expected above, for the small operation size, thesige methods cost a large amount of CPU tinmeesi
they are called frequently and the overhead foh eadl is expensive. When the operation size irsgea
less native methods are called, and the CPU tines gown. Although we cannot present the CPU time of
the real 1/0 system calls in this figure, from FHigu4l.15 we can deduce that the cost of I/O systdha in

the JNI implementation is the same as in a C implaation. In the large operation size cases, when t
calling overhead of native methods is reduced temall value, the JNI implementation has similar
performance to a C implementation.

11

CS736 Course Project Report

—#—C —¢—Java —8—-C —e—Java
800 250
700 | 0\ \
% 600 @ 200 \
£ 500 § 150
'_
400 - ° \
k5 2 100
2 a00 | 2 \\
© <
W 200 - \ w50 | M
100 % * o
0 4
0 ‘ \ \ \ w w M O M MmO M @O M X
— N < [c¢] © N < [ee] © —
1B 2B 16B 64B 256B 1K 4K S ® & § 5
Operation Size Operation Size
Figure 4.13: Sequential access for different Figure 4.14: Random access for different
operation sizes operation sizes
o— INI Ojniread Mjniwrite Oetc.CPU DOidle
—— Direct Buffer 300
350
300 1 250 -
w w
E’ 250 \\ ‘5200 |
€ £
20 \ < 150 |
e} e
o 150 2
2 \ £100 - —
w L
) — —1 HEHH
0 T T T T 0 - - -
1B 4B 16B 64B 256B 1K 1B 4B 16B 64B 256B 1K
Operation Size Operation Size
Figure 4.15: Elapsed time of three implementation Figure 4.16: CPU breakdown for JNI

5. Conclusionsand Future Work

In this paper, we investigate in depth the 1/O télgees of Java, and examine how and how welletiht
possible tuning strategies work when compared t6+&/ A series of experiments was designed and
conducted to examine the lowest level Java I/O goevdince and different strategies to enhance the
performance. Based on the experiment results aatysas, we reached our conclusions: Java raw /O is
slower than C/C++, since system calls in Java amenexpensive; buffering improves Java 1/O
performance, for it reduces system calls, yet themo big gain for larger buffer size; direct mrfhg is
better than the Java-provided buffered I/O classiese the user can tailor it for his own needsréasing

the operation size helps 1/0 performance withoutrbgads; and system calls are cheap in Java native
methods, while the overhead of calling native me¢his rather high. When the number of native dalls
reduced properly, a performance comparable to Ciantbe achieved.

In this project, we mainly focus on the low levaha 1/0 — byte-oriented I/O. As mentioned in sect
Java needs to handle text-oriented 1/O in a sp@@s| for which a rich set of classes is providadhsas
FileReader/FileWriter and BufferedReader/Buffered®vretc. It would be useful to further examine @av
I/O performance and special tuning approaches mvghth a context.

12

CS736 Course Project Report

Refer ences:

[1]
(2]
(3]
[4]
[5]
[6]
[7]
[8]
9]
[10]

[11]
[12]

Glen McCluskey. Tuning Java I/O Performanceréhal999. http://www.java.sun.com

Dan Bonachea, Phillip Dickens, Rajeev ThakugHPerformance File I/O in Java: Existing
Approaches and Bulk I/0 Extensions. August 200@nSitted to Concurrency-Practice and
Experience.

Peter M Chen, David A. Patterson. A New Apptoée I/O Performance Evaluation — Self-scaling
I/0 Benchmarks, Predicted 1/0O Performance. ACM 02841/94/1100-0308, 1994.

Rafael H. Saavedra, Alan J. Smith. Analysi8ehchmark Characteristics and Benchmark
Performance Prediction. ACM 0734-207/96/1100-03496.

Mendel Rosenblum, John K. Ousterhout. The Dresigd Implementation of a Log-Structured File
System. Proceedings of the" L 8CM Symposium on Operating Systems Principles 2199
Sameer Shende. Profiling and Tracing in Lin2800.

Nathan Meyers. PerfAnal: A Performance AnalyGi®l. 2000. http://www.java.sun.com

Andy Vaught. Gprof, Bprof and Time Profilers.

Sun Microsystems, Inc. Java Native Interfape&fication. March 1997.
http://java.sun.com/products/jdk/1.2/docs/guidégjméc/jniTOC.doc.html

Nick Zhang. How to Improve Java'’s I/O Penfmnce. October 2000.
http://www.javaworld.com/javatips

Gosling, J. and G. Steele. The Java Lang@&ecification, Addison-Wesley, June 1996.

Liang, S. The Java Native Interface: Progreer's Guide and Specification. Addison-Wesley,4.99

.13.

