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Abstract

Quality of service (QoS) measured as balking proipaland average waiting time is of great interést
on-demand data delivery service providers. In shigly, we develop and validate two analytical msdal
balking model and a waiting model, for evaluatinglking probability and average waiting time
respectively for media servers with limited bandWwidBased on in-depth analysis of simulation reswlie

also propose an interpolation of the average setince in the waiting model when measuring the iate
protocol. Compared to simulation, the balking modaptures the trend of balking probability with
changing server bandwidth; the waiting model \setdasonably accurate results when measuring the
Hierarchical Multicast Stream Merging protocol; tilerpolation improves the accuracy of the waiting
model when measuring the Patching protocol. Finalsmg those two models, we evaluate and compare
two multicast protocols — Patching and HMSM — andgest server bandwidth C* as a reasonable trade-
off between QoS and server utilization.

1. Introduction

Multicast network protocols are widely used to sthe server bandwidth for on-demand multimedia data
delivery. As the market grows, the quality of seevbf multimedia servers gains more and more atent
from service providers. In this study, we develow @alidate two analytical models, balking modedi an
waiting model, for evaluating balking probabilitpcaaverage waiting time respectively for media sev
with limited bandwidth, which can be effectivelyaasto help service providers choose the appropriate
server bandwidth to optimize the cost-effectivereddbe stream media service.

Since a server has only a finite capacity, the nimog media requests are no longer contention-ffee.
address the cost-effectiveness issue, it is negetsdave measures that reflect the quality ofdtieam
media service. Different measures are used inrdifitemodels. For the balking model where requests
withdraw whenever immediate service is not avadatile customer balking probability is the key nueas
for the waiting model where clients are patientiggioto wait for service, the mean waiting time is o
measure of interest.

Using those two analytic models we compare anduew@ltwo multicast protocols: grace patching and
hierarchical merging. Since the core CMVA equatidesved here are essentially protocol independent,
is straightforward to extend the modeling methodgldo include other protocols such as dynamic
skyscraper and send-latest receive earliest [HUSh97

Several multicast protocols have been modeled #cally, which led to some quantitative resultstbe
average bandwidth requirement [EaVZ00Db]. Yet to knowledge, so far there are no analytic models tha
measure the QoS of multimedia servers with limbaddwidth.

The main contribution of this paper is mainly tHod@. Firstly, we develop two analytic models whiehse

the decision making during server design phaserbyiging QoS metrics (balking probability and wagi
time) that both users and service providers conadaout. Secondly, based on in-depth examination of
estimated results against simulation results, vepgse an interpolation of the average service tmtbe
waiting model when measuring the Patching protoadiich further improves model accuracy. Finally,
both qualitative and quantitative results are pre=sk based on which a reasonable bandwidth C* as a
trade-off between QoS and server utilization isgested.



The rest of this paper is organized as followsti6e@ provides the background information regagdime

two protocols. Section 3 elaborates on how CMVAatiquns are established for those two different nede
We present validation results and analysis in 8aci. Then we compare and evaluate two multicast
protocols in section 5. Section 6 concludes outysaind gives a list of some possible future work.

2. Two Protocols For On-Demand Data Delivery

To be self-contained, we include a brief overviefsmtite two multicast protocols used throughout our
discussion.

2.1 Patching

The scheme is well described in [EaVZ00b]. In resgoto a given client request, the server delithegs
requested file in a single multicast stream. Artdlignat submits a new request for the same filécseritly
soon after this stream has started begins listetairtge multicast, buffering the data received.tEsech
client is also provided a new unicast stream (thee, “patch” stream) that delivers the data that tlew
request has missed. Both the multicast stream fenghatch stream deliver data at the file play rates
requires that the client have a receive bandwiddtitet the file play rate. The patch stream enables
immediate playback on the client’s side. Once thghmck reaches the buffered point, the patch istresn
terminate and both the old and the new requeststtam® the multicast stream.

A common configuration of the patching scheme & #ach stream transmits data at normal file plaiyba
rate and the client has a receiving bandwidth twiee playback rate so that the client can listetwo
server streams at the same time. Given this se#tin infinite server capacity, the optimized averag
required bandwidth for this protocol is proved [EZD@b] to be:

Roptimized patching — 2N| +1-1, (2.1.2)

where Ni is the expected number of incoming recuistfile i during the playback of that file. ladt this

is a function of server throughput on file i ané file playback duration T and we denote it as f(X)i for
generality. The algorithm itself is fairly simpldowever, the choice of the threshold is importanattain
the optimal bandwidth because it is also a functibNi. If the request rate varies greatly fromdino time,
the threshold has to be adjusted accordingly ty sgtimal. On the other hand, with the threshold
constraint, this protocol does not take full adegetof an existing multicast stream. It is lesg@ggjve in
stream merging compared to hierarchical merging¢hwis described next.

2.2 Hierarchical Multicast Stream Merging (HMSM)

There are two features that distinguish HMSM [EabDZ0EaVZ00b] from patching. One is that every
stream is a multicast stream so that any two stsfanthe same file can merge; the other is thaistrver
uses dynamic programming to generate a merge plegal-time. The merge plan gets updated every time
a new stream is initialized for a new request titece the optimal scheme for all the requests trat
currently served by the system. This algorithm &asuch larger search space for optimality compared
with patching. The configuration for HMSM is morexible. But for the sake of protocol comparisdig t
same setup is used as in previous section andstdisnoted by HMSM(2, 1). The bandwidth requirement
for HMSM(2, 1) can be reasonably well approximgtedVvZ00b] by

Rowswe, 1 = 1.62In(N, /1.62+1), (2.2.1)

which is significantly lower when Ni is large. Noomder HMSM is a much more sophisticated algorithm.
It employs greater server computing power to lotleerbandwidth.



3. Customized Mean Value Analysis (CMVA)

This section covers the analysis of two differgmqtes of client request behavior. In the balking eical
customer does not wait. Once a request cannottisdiesh immediately, the customer request will siynp

be dropped. In contrast, in the waiting model eagstomer request has to wait until it is servedoTw
waiting requests can coalesce if they ask for #reesmedia file, which means they will share a roatt
stream when the service becomes available. Thesefmalescing also helps ease the server loadtand i
happens regardless of the delivery protocol usettidgerver. This will be discussed in more desfadlrtly.

3.1 Customer Balking Model

In the balking scenario, there are a fixed numifestreams in the server system. At any given mopent
stream can and only can be in one of two possifalies waiting state (i.e. waiting for customersyl a
active state (i.e. serving a customer). At the munaecustomer arrives, if there is no waiting stredt

simply leaves. Otherwise, a waiting stream willtelito active state, beginning to serve the req@ste
the stream terminates, it returns into waitingestat

Center 1

C streams

Center O m X

Figure 1. The balking model

In order to model the balking probability, we réstahe scenario, yet from the streams’ perspective.
Initially, waiting streams wait for customers ingaeue. An incoming customer activates a strearnheén t
gueue, reducing the queue length by one. Oncerbens terminates, it returns to the waiting queysra

We model this scenario by a closed queuing netwattk a fixed number of streams circuiting in it. &h
waiting state of a stream is represented by aitics SSFR center, which we call center 0. Andatigve
state of a stream is represented by a fictitiolgydeenter, which we call center 1.

The SSFR center models the mean time for a streaiting/ for customers. Similarly, the delay center
models the mean transmit duration for each filthaserver. Eager et al. gave out simple formwashe
average server bandwidth used to deliver storedarfédes on-demand, as a function of client arrixete

and file length, according to different protoco®olving those equations iteratively, together wtitle
CMVA equations, the utilization of the SSFR serean be calculated. We assume there are different
categories of files on the server, and that thesspattern of each such category of files follavespfian
distribution. In this simple model, we assume thisrenly one category. We shall show how to exttisl
model to include multiple categories shortly.

We use the following notation:

Input Parameters

- C server capacity
e A external customer arrival rate
e M number of file categories



Fori=1,2,....M

o Kj the total number of distinct files in category i
o T mean duration of the entire file in category i
e g zipfian parameter in category i

e B probability of accessing category i files

Output Parameters

- average service time at center 1
* Ro mean residence time at center 0
e X system throughput.
Fori=1, 2, ... #files on the server
e Pi fraction of customer requests for file i
e G average b/w for file i
c mean service time of file i streams at center 1
- mean service time at center 0
« Qo mean queue length at center 0
o X throughput of streams serving file i
 PB mean incoming costumer balking probability
Required minimum bandwidth equation: Given a protocol, the average server bandwidth

used to deliver stored media files on-demand caexpeessed as a function of client arrival rate filed
length [EaVZ00b]. Therefore,

C'=f(pX,T), (3.1.1)

where f should be substituted by (2.1.1) and (2 far1patching and HMSM respectively.

CMVA equation: Using the mean value technique for queuing netwmddels, the mean
residence time at center 0

(C€-D
C

R, =S L+ Q) (3.1.2)

After a stream becomes the head of the queue terc@ri.e. at the moment an arriving costumernvattis
the former head), the average time spent (i.eiceetime) before it can leave the center (i.ehatrhoment
the next costumer arrives) equals the average roestimter-arrival time. Therefore

S, == (3.1.3)

Applying Little’s result, the average queue lengtitenter 0

Q(C) =X R, (3.14)



The system throughput

X:L
Ro+S

Where the expected stream duration

(3.1.5)

%=2HS (3.1.6)

After an activated stream leaves center 0, it sefileei with the probability pTherefore, the throughput of
streams serving file i

Xi =p X (3.1.7)

Applying Little’s result again, the mean serviaadi of file i streams at center 1

C-l
S =~ 3.1.8
T X ( )
The utilization of center O
Uu=X EBO (3.1.9)

Balking probability equation:When center O is being used, we can interpretétthere is at least one
stream waiting in center 0. Therefore an incomingt@mer will be served. Otherwise, when centerribts
being used, i.e., when queue length equals to fpa@ming customer will not find any server, thusl w
leave without being served. Therefore the costuratking probability

P,=1-U (3.1.10)
3.2  Customer Waiting Model

As illustrated in Figure 2, the waiting model is@wen system. The requests floating in are reptedéry

a Poisson process. The stream media server is atbtdgl a multi-channel service center. In this mpdel

requests queue up when the server does not havglermandwidth to serve their needs. The input
parameters for this model are the same as thoséhdobalking model. The output parameters can be
summarized as follows:

e W mean waiting time for a request (not coalesced)
« U system utilization
e S overall mean stream duration estimate
Fori=1, 2, ..., #files on the server
* P fraction of customer requests for file i
e § mean stream duration for file
e Q mean number of waiting requests (not coalesced)léoi
o X mean throughput of requests (not coalesced) lfor fi
- R mean residence time of a request (not coalesoedi)d i
- G average number of active streams forfifile



- K mean residence time adjusted for coalescing

W mean waiting time adjusted for coalescing
O
P IH X
O

Figure 2. The waiting model

A distinct feature of this waiting model is thatjuests can be coalesced if an incoming request sees
another request for the same file waiting in thewgu Consequently, the number of waiting requestsa f
single file cannot exceed one at any time. In thady state, the mean waiting time for each recgresld

be the same regardless of which file it is askiomg In other words, all requests are equal whey tre
waiting. For a request that cannot be coalescet wafity previous requests, its waiting time can be
approximated by

. S_k c
Wi=— S tUT), 3.2.1
=1y Q 49 (32.)

J#i

whereS / Cestimates the server inter-departure time, whiwdracterizes how fast the queue is moving
forward.Sis an average ov&is weighted by the correspondiixg.

1 K
S=— ZS'X“ (3.2.2)

2%

WhereS'’s can be obtained in the same way as we did ®btiking modelU is the server utilization and
can be derived fror@;'s as

K ’
Ci
U= |:1C . (3.2.3)

Given the server utilization U, the probability farrandomly chosen channel being active is als8yJ.
assuming independence among channels, UC is thmlpitity that the server is full and cannot provide
service immediately. However, generally this is tiw case for a multi-channel server and UC is gust
heuristic to reduce the complexity of the modgl.is the mean number of waiting requests that cannot
coalesce for file in the queue. Applying Little’s Law to the quews have

Q =XW (3.2.4)

At any time, the number of non-coalescing waitimgjuests for a certain file is either zero or one.
Therefore, the expected partial queue length feri fi

Q = Pr[queudengthforfileiisong. (3.2.5)



By forced flow law plus the fact that any new respsefor filei will be coalesced if there is already a
request for file | waiting. Hence the throughpubgld satisfy

X, =(1-Q)pA. (3.2.6)
We can replace Xi in (3.2.4) with (3.2.6) and raage terms to get a more intuitive form

WA
= 3.2.7
Q=fowa (3.2.7)

whereWAi is the expected number of requests that coalesitksa non-coalescing request. Thus (3.2.7)
can be interpreted as the fraction of coalescingests for file i. With this set of equations tdugtwith
(3.1.1) and (3.1.8), we are able to solve the systeratively. Once the system is solved, it isyetmssee
that the mean residence time for a request that dokecoalesce is

R=W+S. (3.2.8)

The remaining task is to find out what the meantingitime and the mean residence time for all the
incoming requests should be. For a request thatotazpalesce with previous requests, it expectset®
WA requests for the same file arrive during its wajtperiod. All these requests coalesce into a aingl
request. If we assume the waiting time of the fiexjuest to be deterministic with value W, the mean
waiting time for those coalescing requests would\y@, thus the overall average waiting time coudd b
computed as

WA, dg+w

W=——+%__ (3.2.9)
1+WA,

Unfortunately, the mean waiting time for the firsfjuest is a random variable instead of a fixed brem
This equation only gives an approximation of therall waiting time and we expect it to be more aatai
when the variance of waiting time distribution imal. Similarly, if we assume the waiting time
distribution to be exponential (or rather, a dimition with a coefficient of variation of 1), theeSidual
waiting time” for each coalescing request is stdpected to be W. Therefore,

W=wW’ (3.2.10)
could be used as an alternative to approximat®vkeall waiting time. In general, the second momnant
the waiting time distribution is needed to quant¥y more accurately. For simplicity, in this papee only

discuss the above two approximations.

Once W' is calculated, the mean residence tim¢hfese requests can be modified as
R =W +S. (3.2.11)

- -1 : :
Note that the formula is valid only when coalescingdy occurs, i.e.—— <W,. In case the arrival rate is
[
too low, coalescing is not likely and (3.2.8) wolld more appropriate for the mean residence time
estimate.



3.3 A Simple Interpolation

We consider using protocol-specific informationfioe-tune the analytical model for Patching. Intfac
when a request waits for too long (longer thanttineshold), the server has to open a new streantetbta
for T, which may make the stream duration deviataty from the estimated value. In order to reftads
in the model, a simple interpolation on stream tionais proposed:

S'= 9(X.) (8 + W T, (4.1.1)
W +g(X;) W +g(X;)

where g(Xi) is the optimized threshold. Intuitivelthe interpolated mean stream duration is simply a
weighted average between the duration obtainekeiptevious section and the full file playback diora

The waiting time and the optimal threshold are uasdweights. The full playback duration would be
favored more if the waiting time is longer than theeshold, and vice versa.

4. Validation

We validate our models against some existing sitiulaesults [EaVZ99]. The comparison results show
that the balking model captures the trend of ballkmobability with changing server bandwidth; the
waiting model yields reasonably accurate result®rwimeasuring the Hierarchical Multicast Stream
Merging protocol; the interpolation improves thecaracy of the waiting model when measuring the
Patching protocol.

4.1  Balking Model

Figure 3 is the result for the balking model. Ddtienes are simulation outcomes and solid lines are
CMVA solutions. The server has 20 files with eqleaigths. The total request arrival rate is 2000fier
playback duration. File request frequencies conftorthe Zipfian(0) distribution. This configuratiomill

be used throughout the validation.
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Figure 3. Balking Model Validation

It can be seen that although the analytical modptwes the trend of the balking probability as/eer
bandwidth increases, it consistently overestimdtes balking probability when the bandwidth gets
sufficiently large. In some cases the relative recauld be huge. This is somewhat surprising bechis



model should be exact. We cannot come up with @taaation at the moment this paper is due. For the
time being, we can consider the model to be at tpaeitatively valid.

4.2 Waiting Model

The mean waiting time is given in terms of the patage of the full playback duration of a file. g 4
gives a comparison between waiting time approxioma{i3.2.9) and (3.2.10). It appears that the lager
closer to the simulation results. For HMSM, botipa@aches perform reasonably well. In contrast heeit
way is satisfactory for grace patching when thedwadth is relatively low. Due to the fact that regt
coalescing can only reduce the mean waiting time, suspect that the model has overlooked some
important aspect of the patching protocol.

(b)

@)

Mean Waiting Time
Mean Waiting Time

0.15 0 0.05 0.1 0.15

0 0.05 0.1

Available Server Bandwidth Available Server Bandwidth
per Client per Client
—&——Patching —#—HMSM(2,1) —&——Patching —#—HMSM(2,1)
- = X - -Sim-H - 4 - -Sim-P - = % - -Sim-H

- 4 - -Sim-P

Figure 4. Waiting Model Validation
(a) Deterministic Approximation (b) Exponential Approximation

Further comparison of various server statisticeeated two sources of errors. One is the mean stream
duration for each file. Table 1 shows the discregaretween the analytical model and the simulatogmw

the server bandwidth is 0.05 channel/request. Bociseness, only the overall measure and measorres f
the three most frequently visited files are list€de model seems to underestimate this quantitydbto
74% for an individual file and by 56% overall.

Table 1. Mean Stream Duration Comparison at 0.05 a@nnel/request

Duration Access Probability Model Simulator
File 1 278 .249 .959
File 2 139 .253 .947
File 3 .093 .258 .869

Overall 1.00 .284 .650

4.3  Interpolation

The effect of the simple service time interpolatisshown in Figure 5 and the improvement is sigaift.
However, there is still room for further improvenmeAnother source of error comes from the probgbili
that the server is full, which is approximated by.USimulation results suggest that this heuristic
sometimes can be off by 20% to 30%. Although othere sophisticated mechanisms exist to model this
probability [Klei76], we would rather not do so laeise we cannot further improve our result signifita



even if we use the value obtained from the simulateen the server load is high. The average nuraber
active streams is underestimated (as well as theerseutilization) and the mean throughput is
overestimated. Our speculation is that the fornfatabandwidth calculation has to be adjusted to esom
extent when being adapted to our model. There jgraof for this though.
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Figure 5. Service Time Interpolation for OptimizedPatching
5. Protocol Evaluation

We designed and conducted a series of experimesitg) those two analytic models to compare and
evaluate Patching protocol and HTSM protocol. Nap&singly, the experiment results show significan
impact of different multicast protocols and othgstem parameters on the quality of service, whiah c
serve as a guideline for choosing appropriate selremdwidth. ( Note the data presented below are
calculated using the equations derived in sectitra8d section 3.2.)

Figure 6 illustrates the outcome for the balkingdelo By comparing two plots vertically, we noticdedt
shift of curves when HMSM is used instead of patghiwhich indicates its lower consumption of server
bandwidth. Within a single plot, multiple curveshthat the requirement on bandwidth grows muchemor
slowly than the increase in number of media filasserver. The diamond shaped points are the suheof
average server bandwidths required for immedialieaty of each file [EaVZ99] and we use C* to demot
this. For example, for a server with 80 files (stbenfigurations agree with our default settingy,i€396

for patching and 291 for HMSM(2, 1). These spots strategic points in that the balking probab#itet
these points are already reasonably low. Additidraaidwidths slightly beyond (say within 10% above)
these points can still be very effective in redgcgsustomer balking. But further increase of theveer
bandwidth would be much less fruitful since thekivad probability curves flatten out really quickly.

.10.
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Figure 6. The Impact of Protocols on Bulking Probabities
(a) Patching (b) HMSM

From a stream media service provider's perspectivés always desirable to maximize the server
utilization. To address this issue, Figure 7 plits utilization as a function of the server bandiid
depending on the multicast protocol used and thabeu of files on the server. Again, we can find the
diamond-shaped spots remarkable: the server opaatitbese bandwidths with high utilization andHer
investment in bandwidth can degrade utilizatiorstically.
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Figure 7. The Impact of Protocols on Server Utilizon
(a) Patching (b) HMSM

Similarly, the association between mean requedingaiime and server bandwidth

is presented in fEid@.

Our findings are consistent with those for the ejkmodel. For the same reason, we omit the utiina

analysis for the waiting model.
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Figure 8. Impact of Protocols on Mean Waiting Time
(a) Patching (b) HMSM

Figure 9 might be more relevant to the cost-effeetess argument: the higher the load on the setheer,
more customers to lose, and vice versa. The traieafways there. The trend does not vary muclemiv
different numbers of media files. The argumentiss applicable to the waiting model (not shown)isTik

essentially a guideline for system designers tasbdhe appropriate server bandwidth accordingdo t

design policies.
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Figure 9. The Tradeoff: Utilization vs. Balking

6. Conclusion And Future Work

In this study, we use CMVA techniques to develop tanalytical models, balking model and waiting
model, for evaluating balking probability and awgrawaiting time for media servers with limited

bandwidth. Based on in-depth analysis of simulatiesults, we also propose an interpolation of the
average service time in the waiting model when mnéag the Patching protocol.

Compared to simulation, although the balking modaptures the trend of balking probability with
changing server bandwidth, it can incur a largatie error when the server utilization is low. Twaiting
model performs reasonably well for the HMSM protpget for patching, it demonstrates some pecuyiari
The simple service time interpolation yields a mateurate estimate of the mean stream duratiorghwihi
turn helps the estimation of the mean waiting time.

Based on evaluation results, it is reasonableki® € as “sweet spots” in the system design spaocd.as
we expected, HMSM is always more effective tharcipiag in bandwidth saving.

Future work can be conducted from the followingessp to further improve and complete this study:

» Investigating why the balking model predictions idé from simulation results when the server
capacity gets large.

»  Further model debugging on the waiting model fer diptimized patching protocol.

» Applying the analytical models to media serverswitultiple categories of files (different playback
durations, different popularities and so forth).

.14 .
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