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Abstract 
 
Quality of service (QoS) measured as balking probability and average waiting time is of great interest for 
on-demand data delivery service providers. In this study, we develop and validate two analytical models, a 
balking model and a waiting model, for evaluating balking probability and average waiting time 
respectively for media servers with limited bandwidth. Based on in-depth analysis of simulation results, we 
also propose an interpolation of the average service time in the waiting model when measuring the Patching 
protocol. Compared to simulation, the balking model captures the trend of balking probability with 
changing  server bandwidth; the waiting model yields reasonably accurate results when measuring the 
Hierarchical Multicast Stream Merging protocol; the interpolation improves the accuracy of the waiting 
model when measuring the Patching protocol. Finally, using those two models, we evaluate and compare 
two multicast protocols – Patching and HMSM – and suggest server bandwidth C* as a reasonable trade-
off between QoS and server utilization.  
 
1. Introduction 
 
Multicast network protocols are widely used to save the server bandwidth for on-demand multimedia data 
delivery. As the market grows, the quality of service of multimedia servers gains more and more attention 
from service providers. In this study, we develop and validate two analytical models, balking model and 
waiting model, for evaluating balking probability and average waiting time respectively for media servers 
with limited bandwidth, which can be effectively used to help service providers choose the appropriate 
server bandwidth to optimize the cost-effectiveness of the stream media service. 
 
Since a server has only a finite capacity, the incoming media requests are no longer contention-free. To 
address the cost-effectiveness issue, it is necessary to have measures that reflect the quality of the stream 
media service. Different measures are used in different models. For the balking model where requests 
withdraw whenever immediate service is not available, the customer balking probability is the key measure; 
for the waiting model where clients are patient enough to wait for service, the mean waiting time is our 
measure of interest. 
 
Using those two analytic models we compare and evaluate two multicast protocols: grace patching and 
hierarchical merging. Since the core CMVA equations derived here are essentially protocol independent, it 
is straightforward to extend the modeling methodology to include other protocols such as dynamic 
skyscraper and send-latest receive earliest [HuSh97].  
 
Several multicast protocols have been modeled analytically, which led to some quantitative results on the 
average bandwidth requirement [EaVZ00b]. Yet to our knowledge, so far there are no analytic models that 
measure the QoS of multimedia servers with limited bandwidth.  
 
The main contribution of this paper is mainly threefold. Firstly, we develop two analytic models which ease 
the decision making during server design phase by providing QoS metrics (balking probability and waiting 
time) that both users and service providers concern about. Secondly, based on in-depth examination of 
estimated results against simulation results, we propose an interpolation of the average service time in the 
waiting model when measuring the Patching protocol, which further improves model accuracy. Finally, 
both qualitative and quantitative results are presented, based on which a reasonable bandwidth C* as a 
trade-off between QoS and server utilization is suggested. 
 



. 2 . 

The rest of this paper is organized as follows. Section 2 provides the background information regarding the 
two protocols. Section 3 elaborates on how CMVA equations are established for those two different models. 
We present validation results and analysis in Section 4. Then we compare and evaluate two multicast 
protocols in section 5. Section 6 concludes our study and gives a list of some possible future work. 
 
2. Two Protocols For On-Demand Data Delivery 
 
To be self-contained, we include a brief overview of the two multicast protocols used throughout our 
discussion. 
 
2.1 Patching 
 
The scheme is well described in [EaVZ00b]. In response to a given client request, the server delivers the 
requested file in a single multicast stream. A client that submits a new request for the same file sufficiently 
soon after this stream has started begins listening to the multicast, buffering the data received. Each such 
client is also provided a new unicast stream (i.e., the “patch” stream) that delivers the data that the new 
request has missed. Both the multicast stream and the patch stream deliver data at the file play rate. This 
requires that the client have a receive bandwidth twice the file play rate. The patch stream enables 
immediate playback on the client’s side. Once the playback reaches the buffered point, the patch stream can 
terminate and both the old and the new requests can share the multicast stream.  
 
A common configuration of the patching scheme is that each stream transmits data at normal file playback 
rate and the client has a receiving bandwidth twice the playback rate so that the client can listen to two 
server streams at the same time. Given this setting and infinite server capacity, the optimized average 
required bandwidth for this protocol is proved [EaVZ00b] to be: 
 

112patching    optimized −+= iNR ,  (2.1.1) 

 
where Ni is the expected number of incoming requests for file i during the playback of that file. In fact this 
is a function of server throughput on file i and the file playback duration T and we denote it as f(Xi, T) for 
generality. The algorithm itself is fairly simple. However, the choice of the threshold is important to attain 
the optimal bandwidth because it is also a function of Ni. If the request rate varies greatly from time to time, 
the threshold has to be adjusted accordingly to stay optimal. On the other hand, with the threshold 
constraint, this protocol does not take full advantage of an existing multicast stream. It is less aggressive in 
stream merging compared to hierarchical merging, which is described next. 
 
2.2 Hierarchical Multicast Stream Merging (HMSM) 
 
There are two features that distinguish HMSM [EaVZ00a, EaVZ00b] from patching. One is that every 
stream is a multicast stream so that any two streams for the same file can merge; the other is that the server 
uses dynamic programming to generate a merge plan in real-time. The merge plan gets updated every time 
a new stream is initialized for a new request to reflect the optimal scheme for all the requests that are 
currently served by the system. This algorithm has a much larger search space for optimality compared 
with patching. The configuration for HMSM is more flexible. But for the sake of protocol comparison, the 
same setup is used as in previous section and this is denoted by HMSM(2, 1). The bandwidth requirement 
for HMSM(2, 1) can be reasonably well approximated [EaVZ00b] by 
 

)162.1/ln(62.11)  HMSM(2, += iNR ,  (2.2.1) 

 
which is significantly lower when Ni is large. No wonder HMSM is a much more sophisticated algorithm. 
It employs greater server computing power to lower the bandwidth. 
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3. Customized Mean Value Analysis (CMVA) 
 
This section covers the analysis of two different types of client request behavior. In the balking model a 
customer does not wait. Once a request cannot be satisfied immediately, the customer request will simply 
be dropped. In contrast, in the waiting model each customer request has to wait until it is served. Two 
waiting requests can coalesce if they ask for the same media file, which means they will share a multicast 
stream when the service becomes available. Therefore, coalescing also helps ease the server load and it 
happens regardless of the delivery protocol used by the server. This will be discussed in more detail shortly. 
 
3.1 Customer Balking Model 
 
In the balking scenario, there are a fixed number of streams in the server system. At any given moment, a 
stream can and only can be in one of two possible states: waiting state (i.e. waiting for customers) and 
active state (i.e. serving a customer). At the moment a customer arrives, if there is no waiting stream, it 
simply leaves. Otherwise, a waiting stream will switch to active state, beginning to serve the request. Once 
the stream terminates, it returns into waiting state.  
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to model the balking probability, we restate the scenario, yet from the streams’ perspective. 
Initially, waiting streams wait for customers in a queue. An incoming customer activates a stream in the 
queue, reducing the queue length by one. Once the stream terminates, it returns to the waiting queue again. 
 
We model this scenario by a closed queuing network with a fixed number of streams circuiting in it. The 
waiting state of a stream is represented by a fictitious SSFR center, which we call center 0. And the active 
state of a stream is represented by a fictitious delay center, which we call center 1. 
 
The SSFR center models the mean time for a stream waiting for customers. Similarly, the delay center 
models the mean transmit duration for each file in the server. Eager et al. gave out simple formulas for the 
average server bandwidth used to deliver stored media files on-demand, as a function of client arrival rate 
and file length, according to different protocols. Solving those equations iteratively, together with the 
CMVA equations, the utilization of the SSFR server can be calculated. We assume there are different 
categories of files on the server, and that the access pattern of each such category of files follows a zipfian 
distribution. In this simple model, we assume there is only one category. We shall show how to extend this 
model to include multiple categories shortly.    
 
We use the following notation: 
 
Input Parameters   
 

• C  server capacity 
• λ  external customer arrival rate 
• M number of file categories 

 

X Center 0 

Center 1 

C streams 

Figure 1. The balking model 
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For i = 1, 2, …, M 
• Ki the total number of distinct files in category i 

• Ti mean duration of the entire file in category i 

• qi zipfian parameter in category i 

• Pi probability of accessing category i files  
 
Output Parameters   
 

• S1 average service time at center 1

• R0 mean residence time at center 0 

• X  system throughput.  
 
For i = 1, 2, … #files on the server  

• pi fraction of customer requests for file i 
• Ci’ average b/w for file i 
• S1i mean service time of file i streams at center 1 

• S0 mean service time at center 0 

• Q0 mean queue length at center 0 

• Xi  throughput of streams serving file i 

• PB mean incoming costumer balking probability 
 

Required minimum bandwidth equation: Given a protocol, the average server bandwidth 
used to deliver stored media files on-demand can be expressed as a function of client arrival rate and file 
length [EaVZ00b]. Therefore,  

 

),(’ ii TXpfC = ,   (3.1.1) 

 
where f should be substituted by (2.1.1) and (2.2.1) for patching and HMSM respectively. 

     
CMVA  equation: Using the mean value technique for queuing network models, the mean 

residence time at center 0 
  

)
)1(

1( 000 Q
C

C
SR

−+⋅=     (3.1.2) 

 
After a stream becomes the head of the queue in center 0 (i.e. at the moment an arriving costumer activates 
the former head), the average time spent (i.e. service time) before it can leave the center (i.e. at the moment 
the next costumer arrives) equals the average customer inter-arrival time. Therefore  
 

λ
1

0 =S     (3.1.3) 

 
Applying Little’s result, the average queue length at center 0 
  

00 )( RXCQ ⋅=     (3.1.4) 
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The system throughput  
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X

+
=     (3.1.5) 

 
Where the expected stream duration 
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After an activated stream leaves center 0, it serves file i with the probability pi. Therefore, the throughput of 
streams serving file i 
 

XpX ii ⋅=     (3.1.7) 

 
Applying Little’s result again, the mean service time of file i streams at center 1 
 

i

i
i X

C
S

’
=      (3.1.8) 

 
The utilization of center 0  
 

0SXU ⋅=      (3.1.9)  

 
Balking probability equation: When center 0 is being used, we can interpret it like there is at least one 

stream waiting in center 0. Therefore an incoming customer will be served. Otherwise, when center 0 is not 
being used, i.e., when queue length equals to 0, an incoming customer will not find any server, thus will 
leave without being served. Therefore the costumer balking probability  

  

UPB −=1      (3.1.10) 
 

3.2 Customer Waiting Model 
 
As illustrated in Figure 2, the waiting model is an open system. The requests floating in are represented by 
a Poisson process. The stream media server is modeled by a multi-channel service center. In this model, 
requests queue up when the server does not have enough bandwidth to serve their needs. The input 
parameters for this model are the same as those for the balking model. The output parameters can be 
summarized as follows: 
 

• W mean waiting time for a request (not coalesced)
• U  system utilization 
• S overall mean stream duration estimate 

For i = 1, 2, …, #files on the server  
• pi fraction of customer requests for file i 
• Si mean stream duration for file i 

• Qi mean number of waiting requests (not coalesced) for file i 

• Xi mean throughput of requests (not coalesced) for file i 

• Ri mean residence time of a request (not coalesced) for file i 

• Ci’  average number of active streams for file i 
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• Ri’  mean residence time adjusted for coalescing 

• Wi’  mean waiting time adjusted for coalescing 
 

 
 
 
 
 
 
 
 
 
 
A distinct feature of this waiting model is that requests can be coalesced if an incoming request sees 
another request for the same file waiting in the queue. Consequently, the number of waiting requests for a 
single file cannot exceed one at any time. In the steady state, the mean waiting time for each request should 
be the same regardless of which file it is asking for. In other words, all requests are equal when they are 
waiting. For a request that cannot be coalesced with any previous requests, its waiting time can be 
approximated by 
 

)(
1

C
K

ij
j

ji UQ
C

S
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≠
=

,     (3.2.1) 

 
where S / C estimates the server inter-departure time, which characterizes how fast the queue is moving 
forward. S is an average over Si’s weighted by the corresponding Xi.  
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Where Si’s can be obtained in the same way as we did for the balking model. U is the server utilization and 
can be derived from Ci’s as  
 

C

C
U

K

i
i∑

== 1

’

.    (3.2.3) 

 
Given the server utilization U, the probability for a randomly chosen channel being active is also U. By 
assuming independence among channels, UC is the probability that the server is full and cannot provide 
service immediately. However, generally this is not the case for a multi-channel server and UC is just a 
heuristic to reduce the complexity of the model. Qi is the mean number of waiting requests that cannot 
coalesce for file i in the queue. Applying Little’s Law to the queue, we have 
 

WXQ ii =       (3.2.4) 

 
At any time, the number of non-coalescing waiting requests for a certain file is either zero or one. 
Therefore, the expected partial queue length for file i 
 

]one is  filefor length  queuePr[ iQi = . (3.2.5) 

 

Figure 2. The waiting model 

  λ 
C channels X 
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By forced flow law plus the fact that any new requests for file i will be coalesced if there is already a 
request for file I waiting. Hence the throughput should satisfy 
 

λiii pQX )1( −= .     (3.2.6) 

 
We can replace Xi in (3.2.4) with (3.2.6) and rearrange terms to get a more intuitive form 
 

i

i
i W

W
Q

λ
λ

+
=

1
,       (3.2.7) 

 
where Wλi is the expected number of requests that coalesces with a non-coalescing request. Thus (3.2.7) 
can be interpreted as the fraction of coalescing requests for file i. With this set of equations together with 
(3.1.1) and (3.1.8), we are able to solve the system iteratively. Once the system is solved, it is easy to see 
that the mean residence time for a request that does not coalesce is  
 

ii SWR += .     (3.2.8) 

 
The remaining task is to find out what the mean waiting time and the mean residence time for all the 
incoming requests should be. For a request that cannot coalesce with previous requests, it expects to see 
Wλi requests for the same file arrive during its waiting period. All these requests coalesce into a single 
request. If we assume the waiting time of the first request to be deterministic with value W, the mean 
waiting time for those coalescing requests would be W/2, thus the overall average waiting time could be 
computed as 
 

i

i

W

W
W

W
W

λ

λ

+

+⋅
=

1
2’ .   (3.2.9) 

 
Unfortunately, the mean waiting time for the first request is a random variable instead of a fixed number. 
This equation only gives an approximation of the overall waiting time and we expect it to be more accurate 
when the variance of waiting time distribution is small. Similarly, if we assume the waiting time 
distribution to be exponential (or rather, a distribution with a coefficient of variation of 1), the “residual 
waiting time” for each coalescing request is still expected to be W. Therefore, 

 
’WW =      (3.2.10) 

 
could be used as an alternative to approximate the overall waiting time. In general, the second moment of 
the waiting time distribution is needed to quantify W’ more accurately. For simplicity, in this paper we only 
discuss the above two approximations. 
 
Once W’ is calculated, the mean residence time for these requests can be modified as 

 

ii SWR += ’’ .    (3.2.11) 

Note that the formula is valid only when coalescing truly occurs, i.e., i
i

W≤
λ
1

. In case the arrival rate is 

too low, coalescing is not likely and (3.2.8) would be more appropriate for the mean residence time 
estimate.  
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3.3 A Simple Interpolation 
 
We consider using protocol-specific information to fine-tune the analytical model for Patching. In fact, 
when a request waits for too long (longer than the threshold), the server has to open a new stream that lasts 
for T, which may make the stream duration deviate greatly from the estimated value. In order to reflect this 
in the model, a simple interpolation on stream duration is proposed: 
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’ ,   (4.1.1) 

 
where g(Xi) is the optimized threshold. Intuitively, the interpolated mean stream duration is simply a 
weighted average between the duration obtained in the previous section and the full file playback duration. 
The waiting time and the optimal threshold are used as weights. The full playback duration would be 
favored more if the waiting time is longer than the threshold, and vice versa.  
 
4. Validation  
 
We validate our models against some existing simulation results [EaVZ99]. The comparison results show 
that the balking model captures the trend of balking probability with changing server bandwidth; the 
waiting model yields reasonably accurate results when measuring the Hierarchical Multicast Stream 
Merging protocol; the interpolation improves the accuracy of the waiting model when measuring the 
Patching protocol. 
 
4.1 Balking Model  
 
Figure 3 is the result for the balking model. Dotted lines are simulation outcomes and solid lines are 
CMVA solutions. The server has 20 files with equal lengths. The total request arrival rate is 2000 per file 
playback duration. File request frequencies conform to the Zipfian(0) distribution. This configuration will 
be used throughout the validation.  

 
 
 
It can be seen that although the analytical model captures the trend of the balking probability as server 
bandwidth increases, it consistently overestimates the balking probability when the bandwidth gets 
sufficiently large. In some cases the relative error could be huge. This is somewhat surprising because this 

Figure 3. Balking Model Validation 
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model should be exact. We cannot come up with an explanation at the moment this paper is due. For the 
time being, we can consider the model to be at least qualitatively valid. 
 
4. 2 Waiting Model  
 
The mean waiting time is given in terms of the percentage of the full playback duration of a file. Figure 4 
gives a comparison between waiting time approximation (3.2.9) and (3.2.10). It appears that the latter is 
closer to the simulation results. For HMSM, both approaches perform reasonably well. In contrast, neither 
way is satisfactory for grace patching when the bandwidth is relatively low. Due to the fact that request 
coalescing can only reduce the mean waiting time, we suspect that the model has overlooked some 
important aspect of the patching protocol. 
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Figure 4. Waiting Model Validation 
(a) Deterministic Approximation  (b) Exponential Approximation 

 
Further comparison of various server statistics revealed two sources of errors. One is the mean stream 
duration for each file. Table 1 shows the discrepancy between the analytical model and the simulator when 
the server bandwidth is 0.05 channel/request. For conciseness, only the overall measure and measures for 
the three most frequently visited files are listed. The model seems to underestimate this quantity by up to 
74% for an individual file and by 56% overall. 
 

Table 1. Mean Stream Duration Comparison at 0.05 channel/request 
 

Duration Access Probability Model Simulator 
File 1 .278 .249 .959 
File 2 .139 .253 .947 
File 3 .093 .258 .869 

Overall 1.00 .284 .650 
 
 
4.3 Interpolation 
 
The effect of the simple service time interpolation is shown in Figure 5 and the improvement is significant. 
However, there is still room for further improvement. Another source of error comes from the probability 
that the server is full, which is approximated by UC. Simulation results suggest that this heuristic 
sometimes can be off by 20% to 30%. Although other more sophisticated mechanisms exist to model this 
probability [Klei76], we would rather not do so because we cannot further improve our result significantly 
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even if we use the value obtained from the simulator when the server load is high. The average number of 
active streams is underestimated (as well as the server utilization) and the mean throughput is 
overestimated. Our speculation is that the formula for bandwidth calculation has to be adjusted to some 
extent when being adapted to our model. There is no proof for this though. 
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Figure 5. Service Time Interpolation for Optimized Patching 

 
5. Protocol Evaluation 
 
We designed and conducted a series of experiments using those two analytic models to compare and 
evaluate Patching protocol and HTSM protocol. Not surprisingly, the experiment results show significant 
impact of different multicast protocols and other system parameters on the quality of service, which can 
serve as a guideline for choosing appropriate server bandwidth. ( Note the data presented below are 
calculated using the equations derived in section 3.1 and section 3.2. ) 
 
Figure 6 illustrates the outcome for the balking model. By comparing two plots vertically, we notice a left 
shift of curves when HMSM is used instead of patching, which indicates its lower consumption of server 
bandwidth. Within a single plot, multiple curves show that the requirement on bandwidth grows much more 
slowly than the increase in number of media files on server. The diamond shaped points are the sum of the 
average server bandwidths required for immediate delivery of each file [EaVZ99] and we use C* to denote 
this. For example, for a server with 80 files (other configurations agree with our default setting), C* is 396 
for patching and 291 for HMSM(2, 1). These spots are strategic points in that the balking probabilities at 
these points are already reasonably low. Additional bandwidths slightly beyond (say within 10% above) 
these points can still be very effective in reducing customer balking. But further increase of the server 
bandwidth would be much less fruitful since the balking probability curves flatten out really quickly.  
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Figure 6. The Impact of Protocols on Bulking Probabilities 

(a) Patching  (b) HMSM 
 

From a stream media service provider’s perspective, it is always desirable to maximize the server 
utilization. To address this issue, Figure 7 plots the utilization as a function of the server bandwidth, 
depending on the multicast protocol used and the number of files on the server. Again, we can find the 
diamond-shaped spots remarkable: the server operates at these bandwidths with high utilization and further 
investment in bandwidth can degrade utilization drastically.  
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Figure 7. The Impact of Protocols on Server Utilization 

(a) Patching (b) HMSM 
 
Similarly, the association between mean request waiting time and server bandwidth is presented in Figure 8. 
Our findings are consistent with those for the balking model. For the same reason, we omit the utilization 
analysis for the waiting model. 
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Figure 8. Impact of Protocols on Mean Waiting Time 

(a) Patching (b) HMSM 
 
Figure 9 might be more relevant to the cost-effectiveness argument: the higher the load on the server, the 
more customers to lose, and vice versa. The tradeoff is always there. The trend does not vary much given 
different numbers of media files. The argument is also applicable to the waiting model (not shown). This is 
essentially a guideline for system designers to choose the appropriate server bandwidth according to their 
design policies. 
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Figure 9. The Tradeoff: Utilization vs. Balking 

 
 
6. Conclusion And Future Work 
 
In this study, we use CMVA techniques to develop two analytical models, balking model and waiting 
model, for evaluating balking probability and average waiting time for media servers with limited 
bandwidth. Based on in-depth analysis of simulation results, we also propose an interpolation of the 
average service time in the waiting model when measuring the Patching protocol.  
 
Compared to simulation, although the balking model captures the trend of balking probability with 
changing server bandwidth, it can incur a large relative error when the server utilization is low. The waiting 
model performs reasonably well for the HMSM protocol, yet for patching, it demonstrates some peculiarity. 
The simple service time interpolation yields a more accurate estimate of the mean stream duration, which in 
turn helps the estimation of the mean waiting time.  
 
Based on evaluation results, it is reasonable to take C* as “sweet spots” in the system design space. And as 
we expected, HMSM is always more effective than patching in bandwidth saving. 
 
Future work can be conducted from the following aspects to further improve and complete this study: 
  
• Investigating why the balking model predictions deviate from simulation results when the server 

capacity gets large. 
• Further model debugging on the waiting model for the optimized patching protocol. 
• Applying the analytical models to media servers with multiple categories of files (different playback 

durations, different popularities and so forth). 
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