Pragmatic Bitmap Filters in Microsoft SOL Server

Hangdong Zhao, Yuanyuan Tian, Rana Alotaibi, Bailu Ding, Nicolas Bruno,
Jesus Camacho-Rodriguez, Vassilis Papadimos, Ernesto Cervantes Juarez,
Cesar Galindo-Legaria, Carlo Curino

B® Microsoft

Pre-filtering is great

Example: TPC-H Q3 100 GB
customer

>

orders

>

lineitem

Rows participating in joins after local filtering

20%

49%

53%

Pre-filtering is great

Example: TPC-H Q3 100 GB
customer

&

>

orders lineitem

,,,,,,,,,,,,,,,,,,,, M

Rows participating in joins after local filtering

20%

49% 53%

Rows contributing to query results

5.6%

<1% <0.5%

Pre-filtering is great

Example: TPC-H Q3 100 GB

customer orders lineitem
> | > [
& 2) 0
Rows participating in joins after local filtering
20% 49% 53%
— 4-100x
Rows contributing to query results size reduction!
5.6% <1% <0.5%

most rows do not contribute to the join

Pre-filtering is great

Example: TPC-H Q3 100 GB

customer orders lineitem
DI [> 1 -
i o o -* non-contributing
"""""" > contributing
Rows participating in joins after local filtering
20% 49% 53%
— 4-100x
Rows contributing to query results size reduction!
5.6% <1% <0.5%

most rows do not contribute to the join

Pre-filtering is great

* Often orders-of-magnitude reduction of join input sizes (even in production)

* Yannakakis algorithm is the grand theory for best possible pre-filtering

Yannakakis VLDB’1981

Propagating semijoins first for acyclic joins

...whose join graph is essentially a tree

Yannakakis VLDB'1981

Propagating semijoins first for acyclic joins

Bottom-up pass
* Use semijoin to reduce parent table

Yannakakis VLDB'1981

Propagating semijoins first for acyclic joins

Bottom-up pass N

» Use semijoin to reduce parent table R4 RS

Top-down pass
* Use semijoin to reduce child table

AllL non-contributing rows are filtered

Yannakakis VLDB'1981
/\

Propagating semijoins first for acyclic joins p P
Bottom-up pass /\
» Use semijoin to reduce parent table R4 RS

Top-down pass
* Use semijoin to reduce child table

Join the reduced tables : L
Instance-optimal for acyclic joins

Make Yannakakis Practical

For decades, the Yannakakis algorithm has been ‘ignored’ by real database engines

Because it

-

o

Accepts only acyclic joins

\

J

4)

Introduces high overheads for
scans/semijoins/materialization
of pre-filtered tables

_ J

-

o

Huge impacts on query
optimization & execution

\

J

Make Yannakakis Practical

But recently, there is a renaissance.... P
Replace Yannakakis' semijoins by Bloom filters

CIDR 2024
o Predicate Transfer: Efficient Pre-Filtering on Multi-Join Queries

VLDB 2024
o Robust Join Processing with Diamond Hardened Joins

SIGMOD 2025
o Debunking the Myth of Join-ordering: Toward Robust SQL Analytics
o Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees
o Accelerate Distributed Joins with Predicate Transfer

VLDB 2025
o Parachute: Single-Pass Bi-Directional Information Passing

o Including Bloom Filters in Bottom-up Optimization
o Instance-Optimal Acyclic Join Processing Without Regret: Engineering the Yannakakis Algorithm in Column Stores

So...can | optimize SOL Server now?

| was too naive)

)

Microsoft®

SQL Server

Why I give up optimizing SOL Server?

...SQL Server is way ahead of academia

Why I give up optimizing SOL Server?

Microsoft®

SQL Server

...thanks to the great SQL Server engineers

Ciprian Clinciu
Campbell Fraser
Cesar Galindo-Legaria
Milind Joshi
Michal Nowakiewicz
Vassilis Papadimos
Andrew Richardson
Aleksandras Surna

)

Microsoft®

SQL Server

Why I give up optimizing SOL Server?

SQL Server has been quietly generating—and executing—instance-optimal query
plans for most of your SQOL queries since 2014!

And not only that, it

4) 4) 4)
Accent . Bears no additional Carefully controls huge
arb[i)tra 5'oin§ uerjies scans/semijoins/materialization impacts on query
ryjoinq of pre-filtered tables optimization/execution

-) o J o J

Three Core Pieces

-

o

Batch-mode Hash Join

~

the only building block needed

)

All that in an elegant design!

-

_

Pull-based Execution
cascading bitmap pushdown

~

J

Microsoft®

SQL

)

Server

_

Cascades Optimizer
cost-based optimizations
considering bitmap filters

Three Core Pieces

-

o

Batch-mode Hash Join

~

the only building block needed

J

All that in an elegant design!

-

_

Pull-based Execution
cascading bitmap pushdown

~

J

Microsoft®

SQL

)

Server

_

Cascades Optimizer
cost-based optimizations
considering bitmap filters

Batch-mode Hash Join

* pull-based execution of a batch-mode hash join

orders
o

>

I lineitem |

o

Batch-mode Hash Join

* pull-based execution of a batch-mode hash join

next() calls

l orders |
. o

e bitmap filter decisions

>4 probe(orderkey) « (Columns to create bitmap filters

 Bit-array or Bloom filters
« Sizes of bitmap filters
lineitem |

o

Batch-mode Hash Join

* pull-based execution of a batch-mode hash join

orders
o

>

bitmap push down
probe(orderkey)
lineitem !

o

Batch-mode Hash Join

* pull-based execution of a batch-mode hash join

orders
o
w
~\

N
next() calls ~ probe(orderkey)

I lineitem '

o

“-- X

Three Core Pieces

-

o

Batch-mode Hash Join

~

the only building block needed

)

-

o

Pull-based Execution
cascading bitmap pushdown

~

J

Microsoft®

SQL

)

Server

_

Cascades Optimizer
cost-based optimizations
considering bitmap filters

Composing

a4 m

E
Hash Match 4------ Columnstore Index Scan (Clustered)
(Inner Join) [customer] . [cci]
Eoste: i % Coste 1 %
0.062s 0.023s
1131041 of 3000188 of
8190160 (13%) 2995920 (100%)

(CraOpal).next()

Hash Match
(Inner Join)
Cost: 1 %
0.340s
1131041 of
4091530 (27%)

(OxaL).next()

Hash Join

customer]
o

)

-

Columnstore Index Scan (Clustered)

[orders].[cci]
Cost: 16 %
0.23717s
14567861 of
7292690 (199%)

(&

Compute Scalar
Cost: O %
0.000s
1213353 of
3169070 (38%)

orders

o

el
(%=

Hash Match
(Aggregate)
Cost: 0 %
0.081s
1213353 of
3169070 (38%)

(&

Compute Scalar
Cost: 0 %
0.004s
3311207 of
3242080 (102%)

lineitem
(o)

o

&
Columnstore Index Scan (Clustered)
[lineitem] . [cci]
Cost: 67 %
1.547s
3311207 of
3242080 (102%)

Composing

'»Elt 1

Hash Match 4------
(Inner Join)
Eoste: i %
0.062s
1131041 of
8190160 (13%)

(CraOpal).next()

o

= customer]

Columnstore Index Scan (Clustered)

[customer] . [cci] o
Coste 1 %
0.023s
e e U probe(custkey)
2995920 (100%)
gl .
Hash Match Columnstore Index Scan (Clustered)
(Inner Join) [orders].[cci]
Cost: 1 % Cost: 16 %
0.340s 0.23717s
1131041 of 14567861 of

4091530 (27%)

(OxaL).next()

7292690 (199%)

(&

Compute Scalar
Cost: O %
0.000s
1213353 of
3169070 (38%)

Hash Join

orders

o

el
(%=

Hash Match
(Aggregate)
Cost: 0 %
0.081s
1213353 of
3169070 (38%)

(&

Compute Scalar
Cost: 0 %
0.004s
3311207 of
3242080 (102%)

lineitem
(o)

o

&
Columnstore Index Scan (Clustered)
[lineitem] . [cci]
Cost: 67 %
1.547s
3311207 of
3242080 (102%)

Composing Hash Join

" 1 . customer |

Hash Match 44— Columnstore Index Scan (Clustered)

(Inner Join) [customer] . [cci] o
Eoste: i % Coste 1 % .
0.062s 0.023s bitmap push down
1131041 of 3000188 of
8190160 (13%) 2995920 (100%)
robe(custke
(CraOpal).next() > (y)
=] mm orders |
(6= Vig
Hash Match Columnstore Index Scan (Clustered) (0}
(Inner Join) [orders].[cci]
Cost: 1 % Cost: 16 %
0.340s 0.23717s
1131041 of 14567861 of
4091530 (27%) 7292690 (199%)
(OxaL).next()

Hash Match
Compute Scalar Compute Scalar

(Aggregate)

Cost: 0 % & Cost: 0 %
0.000 case: D 3 0.004
1213353S £ 8-S 331i207S £

< 1213353 of &
3169070 (38%) 3242080 (102%)

3169070 (38%)

lineitem
(o)

o

&
Columnstore Index Scan (Clustered)
[lineitem] . [cci]
Cost: 67 %
1.547s
3311207 of
3242080 (102%)

Composing Hash Join

" 1 . customer |

Hash Match 44— Columnstore Index Scan (Clustered)

(Inner Join) [customer] . [cci] o
Eoste: i % + Coste 1 %
0.062s | 0.023s
1131041 of 1 3000188 of
8190160 (13%) : 2995920 (100%)
1
(CraOpal).next() | 2
1 -
o=l m
: (= Vi

L Hash Match Columnstore Index Scan (Clustered)
(Inner Join) [orders].[cci]
Cost: 1 % Cost: 16 %
0.340s 0.23717s
1131041 of 14567861 of
4091530 (27%) 7292690 (199%)
(OxaL).next()

(&

Compute Scalar
Cost: O %
0.000s
1213353 of
3169070 (38%)

probe(custkey)

orders |
o

el
(%=

Hash Match
(Aggregate)
Cost: 0 %
0.081s
1213353 of
3169070 (38%)

(&

Compute Scalar
Cost: 0 %
0.004s
3311207 of
3242080 (102%)

lineitem
(o)

o

&
Columnstore Index Scan (Clustered)
[lineitem] . [cci]
Cost: 67 %
1.547s
3311207 of
3242080 (102%)

Composing Hash Join

" 1 . customer |

Hash Match 44— Columnstore Index Scan (Clustered)

(Inner Join) [customer] . [cci] o
Eoste: i % + Coste 1 %
0.062s | 0.023s
1131041 of 1 3000188 of
8190160 (13%) : 2995920 (100%)
(Cx0aL).next() ' &
1 -
: R .
L Hash Match ¢ - - Columnstore Index Scan (Clustered)
(Inner Join) [orders].[cci]
Cost: 1 % Cost: 16 %
0.340s 0.23717s
1131041 of 14567861 of
4091530 (27%) 7292690 (199%)
(OxaL).next()

(&

Compute Scalar
Cost: O %
0.000s
1213353 of
3169070 (38%)

probe(custkey)

orders |
o

el
(%=

Hash Match
(Aggregate)
Cost: 0 %
0.081s
1213353 of
3169070 (38%)

(&

Compute Scalar
Cost: 0 %
0.004s
3311207 of
3242080 (102%)

lineitem
(o)

o

&
Columnstore Index Scan (Clustered)
[lineitem] . [cci]
Cost: 67 %
1.547s
3311207 of
3242080 (102%)

Composing Hash Join

" 1 . customer |

Hash Match 44— Columnstore Index Scan (Clustered)

(Inner Join) [customer] . [cci] o
Eoste: i % + Coste 1 %
0.062s | 0.023s
1131041 of 1 3000188 of
8190160 (13%) : 2995920 (100%)
(Cx0aL).next() ' &
1 -
: R .
L Hash Match ¢ - - Columnstore Index Scan (Clustered)
(Inner Join) [orders].[cci]
Cost: 1 % Cost: 16 %
0.340s 0.23717s
1131041 of 14567861 of
4091530 (27%) 7292690 (199%)
(OxaL).next()

(&

Compute Scalar
Cost: O %
0.000s
1213353 of
3169070 (38%)

probe(custkey)

orders 1
o

el
(%=

Hash Match
(Aggregate)
Cost: 0 %
0.081s
1213353 of
3169070 (38%)

(&

Compute Scalar
Cost: 0 %
0.004s
3311207 of
3242080 (102%)

lineitem
(o)

o

&
Columnstore Index Scan (Clustered)
[lineitem] . [cci]
Cost: 67 %
1.547s
3311207 of
3242080 (102%)

Composing Hash Join

-ra]
i 1 . customer
Hash Match 4—— Columnstore Index Scan (Clustered)
(Inner Join) [customer] . [cci] o
Eoste: i % + Coste 1 %
0.062s | 0.023s
1131041 of 1 3000188 of
8190160 (13%) : 2995920 (100%)
(Cx0aL).next() ' &
1 -
i R .
L Hash Match ¢ - - Columnstore Index Scan (Clustered)
(Inner Join) <« [orders].[cci]
Cost: 1 % Cost: 16 %
0.340s 0.23717s
1131041 of 14567861 of
4091530 (27%) 7292690 (199%)

(OxaL).next()

(&

Compute Scalar
Cost: O %
0.000s
1213353 of
3169070 (38%)

probe(custkey)
orders |
o
probe(orderkey)
o
(F= F
Hash Match (;
(Aggregate) Compute Scalar
Cost: 0 % Cost: 0 %
ooS 0815) 0.004s
1213353 of 3311207 of
3169070 (38%) 3242080 (102%)

lineitem
(o)

o

&

Columnstore Index Scan (Clustered)
[lineitem] . [cci]

Cost:

67 %

1.:547s
3311207 of

3242080

(102%)

omposing Hash Join

" 1 . customer |

Hash Match 44— Columnstore Index Scan (Clustered)

(Inner Join) < [customer] . [cci] o
Cost: 1 % - A Cost: 1 %
0.062s 0.023s
1131041 of 3000188 of
8190160 (13%) 2995920 (100%)
probe(custkey)
(CraOpal).next()
-] mm orders |
= Vig

Hash Match < Columnstore Index Scan (Clustered)) bltmap pUSh down
(Inner Join) <« [orders].[cci]

Cost: 1 % Cost: 16 % prObe(Orderkey)

0.340s 0.237s

1131041 of 14567861 of l_|nertem

4091530 (27%) 7292690 (199%)
o
(OxaL).next() -2 mm
| B L’E | B Vi
£ Hash Match = Columnstore Index Scan (Clustered)
Compute Scalar Compute Scalar . . .
(Aggregate) [lineitem] . [cci]
Cost: 0 % Cost: 0 %
0.000 Cost: 0 % 0.004 Cost: 67 %
e o SR o o
. 1213353 of 2 3311207 of

3169070 (38%)

3169070 (38%)

3242080 (102%)

3242080 (102%)

Composing Hash Join

-ra]
i 1 . customer
Hash Match 4—— Columnstore Index Scan (Clustered)
(Inner Join) [customer] . [cci] o
Eoste: i % A Coste 1 %
0.062s <“---9 0.023s
1131041 of : 3000188 of
8190160 (13%) 1 2995920 (100%)
I robe(custke
(CraOpal).next() ! 2 . (y)
! =] mm orders 1
1 e ¢ <
: Hash Match < Columnstore Index Scan (Clustered) (0}
: (Inner Join) <« [orders].[cci]
i Cost: 1 % Cost: 16 % prObE(Orderkey)
L e o 0.340s 0.237s
1131041 of 14567861 of lineitem
3 4091530 (27%) 7292690 (199%)

o

2 k- I L

Hash Match Columnstore Index Scan (Clustered)

(OxaL).next()

Compute Scalar Compute Scalar

(Aggregate) [lineitem] . [cci]

Cost: 0 % & Cost: 0 %
0.000 Cost: 0 % 0.004 Cost: 67 %
1213353S £ 8-S 331i2o7S £ i
< 1213353 of & 3311207 of
3169070 (38%) 3242080 (102%)

3169070 (38%) 3242080 (102%)

omposing

'L»E 1

Hash Match
(Inner Join)
Cost: 1 % = y
0.062s <“---9
1131041 of
8190160 (13%)

(CraOpal).next()

o

&

[customer] . [cci]
Coste 1 %
0.023s
3000188 of
2995920 (100%)

ol
=

Hash Match

Hash Join

44— Columnstore Index Scan (Clustered)

customer]
o

(Inner Join)
Cost: 1 %
0.340s
1131041 of
4091530 (27%)

(OxaL).next()

T A

probe(custkey)
mm orders 1|
Vg
Columnstore Index Scan (Clustered) (0}
[orders].[cci]
Cost: 16 %
0.237s
14567861 of
7292690 (199%)
r T.)E r
l?: Hash Match l?:
Compute Scalar Compute Scalar
(Aggregate)
Cost: 0 % G Cost: 0
0.000s Cost: D 3 0.004s
_____________ 1213353 of oo 8-S oo 3311207 of
N 1213353 of N
3169070 (38%) 3169070 (38%) 3242080 (102%)

probe(orderkey)
lineitem
o

o

&
Columnstore Index Scan (Clustered)
[lineitem] . [cci]
Cost: 67 %
1.547s
3311207 of

3242080 (102%)

Instance-optimal Query Execution

T»EJ: 1

Hash Match
(Inner Join)
Eoste: i %
0.062s
1131041 of
8190160 (13%)

(CraOpal).next()

“--n

—
W —r

e —t

44— Columnstore Index Scan (Clustered)

nmn e e — - -
Ve customer | o~ — 7 i
.'/“
[customer] . [cci] o ”“/’
Cost: 1 % "’,
0.023s -
3000188 of (2
2995920 (100%)
probe(custkey)
- orders 1
= m
Hash Match < Columnstore Index Scan (Clustered) (0}

(Inner Join)

[orders].[cci]

Cost: 1 %

1131041 of
4091530 (27%)

(OxaL).next()

0.340s € — -

Cost: 16 %
0.237s
14567861 of
7292690 (199%)

Hash Match

Compute Scalar Compute Scalar

A t
Cost: O % i Cost: 0 %
0.000 tost: D% 7 0.004
_____________ 1213353 of V7T 0:08ls T 5311207 of
< 1213353 of &

3169070 (38%) 3242080 (102%)

3169070 (38%)

Single scan over inputs

...... =1
-
e I
i
|
|
i
i
i
probe(orderkey)
lineitem
o
m
Columnstore Index Scan (Clustered)
[lineitem]. [cci]
] Cost: 67 %
4---- 1.547s
3311207 :of

3242080 (102%)

Instance-optimal Query Execution

T»EJ: 1

Hash Match
(Inner Join)
Eoste: i %
0.062s
1131041 of
8190160 (13%)

(CraOpal).next()

All probes hit
'
|

i 3

| e
D7
.

“--n

o

E
4—— Columnstore Index Scan (Clustered)
3 | [customer] . [cci]

1 A Cost:

2995920

1 5%

0.023s
3000188 of

(100%)

ol
=

Hash Match

(Inner Join)

Gost:

1%

0.340s

1131041 of

4091530

(27%)

(OxaL).next()

All probes hit

-
-/‘

At most output size

customer]
o

probe(custkey)
mm orders |
Vig
Columnstore Index Scan (Clustered) (0}

[orders].[cci]

Co;t;3%6 % prObe(Orderkey)
< s
14567861 of lineitem
7292690 (199%)
o
= o
= 'S = e
Hash Match Columnstore Index Scan (Clustered)
Compute Scalar Compute Scalar s :
(Aggregate) [lineitem] . [cci]
Cost: 0 % ¢ Cost: 0 %
Cost: 0 % ; J Cost: 67 %
_____________ 0.000s 4---- 0.081s 4---- 0.004s SEEEE 1.547s
1213353 of 1913353 of 3311207 of 3311207 of
3169070 (38%) 3169070 (38%) SZEEGED. (R2R) 3242080 (102%)

Three Core Pieces

-

o

Batch-mode Hash Join

~

the only building block needed

)

-

_

Pull-based Execution
cascading bitmap pushdown

~

J

Microsoft®

SQL

)

Server

o

Cascades Optimizer
cost-based optimizations
considering bitmap filters

Pre-filtering for Arbitrary Queries
Nionkey

— R > JOIN(S, N, C, O, L)
[region \)
” Y
regionkey (nationkey, suppkey)
7\ ’
[nation nationkey > N‘]
nationkey _ '
nationkey "] nationkey
supplier
[customer /\
N = JOIN(C, O, L)
custkey \ Y /
] orderkey
orders suppkey /\
— O
orderkey J‘ o N(C’ O)’ 5
[lineitem /\custkey

C

Example: TPC-H O5 100 GB

Example: TPC-H O5 100 GB
Pre-filtering for Arbitrary Queries
Nionkey

— R = JOIN(S, I, C, O, L)
[region . .
o Y
regionkey (nationkey, suppkey)
/\ ’
[nation nationkey S D<1‘ ’ «
AN
nationkey _ Y N
nationkey ’] nationkey N
[customer >UPPTET /\ \'.\ Cost-based decisions on bitmap passing
N > JOIN(C, O, L) from & to any intermediate result
custkey \ ' J ks
/
] orderkey
orders Suppkey /\ P
JOIN(C,0) = | ¢
orderkey
[lineitem |

/\custkey
C

Experiments

« TPC-H 22 queries (100 GB)

« 7 queries become >2x faster

Shape of Runtime| | Inst.- | #rows | SQL Srv. | Yannak.
ID join graph speedup| | opt.? | to join | reads (%) | reads (%)
1 No join — — — — —
2 Line 3.47X v 81.1m 0.43% 0.21%
3 Line (C-0-L) 1.91X v 399.4m 5.23% 1.25%
4 A semijoin 1.92x v 385.1m 5.28% 5.14%
54 Cyclic join 2.33% — 638.8M 4.2% 1.21%
6 No join — — — — —
74 Line 3.00% o 348.4m 4.15% 0.81%
g4 Snowflake 2.86X x 661.8m 1.92% 0.16%
9 Snowflake 1.47X x 832.2Mm 8.23% 8.22%
10 Line (N-C-0-L) 1.23X v 168.8M 12.51% 12.01%
11 Line 1.75% 4 81.1m 8.01% 8.01%
12 Single join 1.21X V4 153.2m 3.97% 3.95%
13 An outer join — — — — —
14 Single join 1.14X 4 27.5M 49.98% 49.98%
15 Single join 1.07X v 23.7m 95.78% 95.78%
16 Antijoin & join 1.03X v 83.0m 17.91% 17.91%
17 Correlate joins 2.55% — 51.5M 1.22% 1.21%
18% Line (C-0-L) 1.22X b 4 1215.1m 49.39% 49.39%
194 Single join 1.82X v 25.8m 0.43% 0.39%
20 Correlate joins 2.01x - 172.3m 0.2% 0.07%
21 Correlate joins 2.36X — 379.4m 21.43% 19.24%
22 An antijoin 1.27X v 155.8M 17.41% 15.94%

Table 1: TPC-H (SF=100) results. v/ (X) mark instance-optimal plans
(not) chosen; — are inapplicable cases; * denotes optimizer slowdown.
Last three columns show total rows (in millions) for all joins and %
after pre-filtering of SQL Server and Yannakakis.

Experiments

TPC-H 22 queries (100 GB)
/ queries become >2x faster
12 queries are instance-optimal

3 queries are not using inst-opt plan
o Skip futile bitmap filters
o Use bitmaps on intermediate results

Shape of Runtime || Inst.- | #rows | SQL Srv. | Yannak.
ID join graph speedup || opt.? | to join | reads (%) | reads (%)
1 No join — — — — —
2 Line 3.47X v 81.1m 0.43% 0.21%
3 Line (C-0-L) 1.91X v 399.4m 5.23% 1.25%
4 A semijoin 1.92x v 385.1m 5.28% 5.14%
54 Cyclic join 2.33% — 638.8M 4.2% 1.21%
6 No join — — — — —
74 Line 3.00x ~ 348.4m 4.15% 0.81%
g4 Snowflake 2.86X x 661.8m 1.92% 0.16%
9 Snowflake 1.47X x 832.2Mm 8.23% 8.22%
10 Line (N-C-0-L) 1.23X v 168.8M 12.51% 12.01%
11 Line 1.75% 4 81.1m 8.01% 8.01%
12 Single join 1.21X V4 153.2m 3.97% 3.95%
13 An outer join — — — — —
14 Single join 1.14X 4 27.5M 49.98% 49.98%
15 Single join 1.07X v 23.7m 95.78% 95.78%
16 Antijoin & join 1.03X v 83.0m 17.91% 17.91%
17 Correlate joins 2.55% — 51.5M 1.22% 1.21%
18% Line (C-0-L) 1.22X b 4 1215.1m 49.39% 49.39%
194 Single join 1.82x v 25.8M 0.43% 0.39%
20 Correlate joins 2.01x - 172.3m 0.2% 0.07%
21 Correlate joins 2.36X — 379.4m 21.43% 19.24%
22 An antijoin 1.27X 155.8m 17.41% 15.94%

Table 1: TPC-H (SF=100) results.

X) mark instance-optimal plans
(not) chosen; — are inapplicable cases; * denotes optimizer slowdown.
Last three columns show total rows (in millions) for all joins and %
after pre-filtering of SQL Server and Yannakakis.

~

E 1 Shape of Runtime | Inst.- /&rows SQL Srv. Yanra(.
X p e r I l I l e n S ID join graph speedup | opt.? [to join | reads (%) | reads (%)
1 No join — — — — —
2 Line 3.47X v 81.1m 0.43% 0.21%
3 Line (C-0-L) 1.91X v 399.4m 5.23% 1.25%
. 4 A semijoin 1.92x v 385.1m 5.28% 5.14%
e TPC-H 22 queries (100 GB) 54 Cyclic join 2.33X — 638.8M 4.2% 1.21%
6 No join — — — — —
o 7/ queries become >2x faster 74 Line 3.00x v 348.4m 4.15% 0.81%
g4 Snowflake 2.86X x 661.8m 1.92% 0.16%
° 1 1 - 1 9 Snowflake 1.47X x 832.2m 8.23% 8.22%
12 querles are instance Optlmal 10 Line (N-C-0-L) 1.23X v 168.8M 12.51% 12.01%
11 Line 1.75X < 81.1m 8.01% 8.01%
12 Single join 1.21X V4 153.2m 3.97% 3.95%
. . . 13 An outer join — — — — —
* 3 queries are not using inst-opt plan 14 Single join 1.14% v || 275m | 4998% | 49.98%
H H i i 15 Single join 1.07X v 23.7m 95.78% 95.78%
© Sklp f}Jtlle bltma.p filters) 16 Antijoin & join 1.03X v 83.0m 17.91% 17.91%
o Use bitmaps on intermediate results 17 | Correlate joins | 2.55x — 51.5M 1.22% 1.21%
18% | Line (C-0-L) 1.22% x || 1215.1m | 49.39% 49.39%
194 Single join 1.82% v 25.8M 0.43% 0.39%
. 20 Correlate joins 2.01x - 172.3m 0.2% 0.07%
0, (o)
* 5 have >1% gaps (but <4%) from Yannakakis | 21 | Correlatejoins | 2.36x | — || 379.4m | 2143% | 19.24%
o SQL Server al.ready getS 22 An antijoin 1.27X v 155.8M 17.41% 15.94%

Table 1: TPC-H (SF=100) results. v/ (x) mark instance-optimal plajns
(not) chosen; — are inapplicable cases; * denotes optimizer slowdown.
Last three columns show total rows (in millions) for all joins and %
after pre-filtering of SQL Server and Yannakakis.

most pre-filtering benefits

Future Directions

o Accurate bitmap-aware Cardinality Estimations & Cost Models
o Robust Query Plans for Complex SOL Workloads

o Pre-filtering Solutions for Modern Data Platforms & Analytics

Thank you

Check out our papers for

 Formal proof of instance optimality
for SQL Server

« Careful costing to generate optimal
plans

* Robustness and semi-robustness
guarantees come as by-product

* A Dbetter presentation

	Slide 1
	Slide 2: Pre-filtering is great
	Slide 3: Pre-filtering is great
	Slide 4: Pre-filtering is great
	Slide 5: Pre-filtering is great
	Slide 6: Pre-filtering is great
	Slide 7: Yannakakis VLDB’1981
	Slide 8: Yannakakis VLDB’1981
	Slide 9: Yannakakis VLDB’1981
	Slide 10: Yannakakis VLDB’1981
	Slide 11: Make Yannakakis Practical
	Slide 12: Make Yannakakis Practical
	Slide 13: So... can I optimize SQL Server now?
	Slide 14: Why I give up optimizing SQL Server?
	Slide 15: Why I give up optimizing SQL Server?
	Slide 16: Why I give up optimizing SQL Server?
	Slide 17: Three Core Pieces
	Slide 18: Three Core Pieces
	Slide 19: Batch-mode Hash Join
	Slide 20: Batch-mode Hash Join
	Slide 21: Batch-mode Hash Join
	Slide 22: Batch-mode Hash Join
	Slide 23: Three Core Pieces
	Slide 24: Composing Hash Join
	Slide 25: Composing Hash Join
	Slide 26: Composing Hash Join
	Slide 27: Composing Hash Join
	Slide 28: Composing Hash Join
	Slide 29: Composing Hash Join
	Slide 30: Composing Hash Join
	Slide 31: Composing Hash Join
	Slide 32: Composing Hash Join
	Slide 33: Composing Hash Join
	Slide 34: Instance-optimal Query Execution
	Slide 35: Instance-optimal Query Execution
	Slide 36: Three Core Pieces
	Slide 37: Pre-filtering for Arbitrary Queries
	Slide 38: Pre-filtering for Arbitrary Queries
	Slide 39: Experiments
	Slide 40: Experiments
	Slide 41: Experiments
	Slide 42: Future Directions
	Slide 43: Thank you

