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Pre-filtering is great

* Often orders-of-magnitude reduction of join input sizes (even in production)

* Yannakakis algorithm is the grand theory for best possible pre-filtering



Yannakakis VLDB’1981

Propagating semijoins first for acyclic joins

...whose join graph is essentially a tree



Yannakakis VLDB'1981

Propagating semijoins first for acyclic joins

Bottom-up pass
* Use semijoin to reduce parent table



Yannakakis VLDB'1981

Propagating semijoins first for acyclic joins

Bottom-up pass N

» Use semijoin to reduce parent table R4 RS

Top-down pass
* Use semijoin to reduce child table

AllL non-contributing rows are filtered



Yannakakis VLDB'1981
/\

Propagating semijoins first for acyclic joins p P
Bottom-up pass /\
» Use semijoin to reduce parent table R4 RS

Top-down pass
* Use semijoin to reduce child table

Join the reduced tables : L
Instance-optimal for acyclic joins



Make Yannakakis Practical

For decades, the Yannakakis algorithm has been ‘ignored’ by real database engines

Because it

-

o

Accepts only acyclic joins

\

J

4 )

Introduces high overheads for
scans/semijoins/materialization
of pre-filtered tables

\_ J

-

o

Huge impacts on query
optimization & execution

\
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Make Yannakakis Practical

But recently, there is a renaissance.... P
Replace Yannakakis' semijoins by Bloom filters

CIDR 2024
o Predicate Transfer: Efficient Pre-Filtering on Multi-Join Queries

VLDB 2024
o Robust Join Processing with Diamond Hardened Joins

SIGMOD 2025
o Debunking the Myth of Join-ordering: Toward Robust SQL Analytics
o Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees
o Accelerate Distributed Joins with Predicate Transfer

VLDB 2025
o Parachute: Single-Pass Bi-Directional Information Passing

o Including Bloom Filters in Bottom-up Optimization
o Instance-Optimal Acyclic Join Processing Without Regret: Engineering the Yannakakis Algorithm in Column Stores



So...can | optimize SOL Server now?

| was too naive )
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Why I give up optimizing SOL Server?

...SQL Server is way ahead of academia
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Why I give up optimizing SOL Server?

SQL Server has been quietly generating—and executing—instance-optimal query
plans for most of your SQOL queries since 2014!

And not only that, it

4 ) 4 ) 4 )
Accent . Bears no additional Carefully controls huge
arb[i)tra 5'oin§ uerjies scans/semijoins/materialization impacts on query
ryjoinq of pre-filtered tables optimization/execution
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Three Core Pieces
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Batch-mode Hash Join
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the only building block needed
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All that in an elegant design!
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Batch-mode Hash Join

* pull-based execution of a batch-mode hash join

orders
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Batch-mode Hash Join

* pull-based execution of a batch-mode hash join

next() calls

l orders |
. o

e bitmap filter decisions

>4 probe(orderkey) « (Columns to create bitmap filters

 Bit-array or Bloom filters
« Sizes of bitmap filters
lineitem |

o




Batch-mode Hash Join

* pull-based execution of a batch-mode hash join

orders
o

>

bitmap push down
probe(orderkey)
lineitem !

o



Batch-mode Hash Join

* pull-based execution of a batch-mode hash join

orders
o
w
~\

N
next() calls ~ probe(orderkey)

I lineitem '

o
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Instance-optimal Query Execution
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Instance-optimal Query Execution
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Pre-filtering for Arbitrary Queries
Nionkey

— R > JOIN(S, N, C, O, L)
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Example: TPC-H O5 100 GB



Example: TPC-H O5 100 GB
Pre-filtering for Arbitrary Queries
Nionkey
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Experiments

« TPC-H 22 queries (100 GB)

« 7 queries become >2x faster

Shape of Runtime| | Inst.- | #rows | SQL Srv. | Yannak.
ID join graph speedup| | opt.? | to join | reads (%) | reads (%)
1 No join — — — — —
2 Line 3.47X v 81.1m 0.43% 0.21%
3 Line (C-0-L) 1.91X v 399.4m 5.23% 1.25%
4 A semijoin 1.92x v 385.1m 5.28% 5.14%
54 Cyclic join 2.33% — 638.8M 4.2% 1.21%
6 No join — — — — —
74 Line 3.00% o 348.4m 4.15% 0.81%
g4 Snowflake 2.86X x 661.8m 1.92% 0.16%
9 Snowflake 1.47X x 832.2Mm 8.23% 8.22%
10 Line (N-C-0-L) 1.23X v 168.8M 12.51% 12.01%
11 Line 1.75% 4 81.1m 8.01% 8.01%
12 Single join 1.21X V4 153.2m 3.97% 3.95%
13 An outer join — — — — —
14 Single join 1.14X 4 27.5M 49.98% 49.98%
15 Single join 1.07X v 23.7m 95.78% 95.78%
16 Antijoin & join 1.03X v 83.0m 17.91% 17.91%
17 Correlate joins 2.55% — 51.5M 1.22% 1.21%
18% Line (C-0-L) 1.22X b 4 1215.1m 49.39% 49.39%
194 Single join 1.82X v 25.8m 0.43% 0.39%
20 Correlate joins 2.01x - 172.3m 0.2% 0.07%
21 Correlate joins 2.36X — 379.4m 21.43% 19.24%
22 An antijoin 1.27X v 155.8M 17.41% 15.94%

Table 1: TPC-H (SF=100) results. v/ (X) mark instance-optimal plans
(not) chosen; — are inapplicable cases; * denotes optimizer slowdown.
Last three columns show total rows (in millions) for all joins and %
after pre-filtering of SQL Server and Yannakakis.



Experiments

TPC-H 22 queries (100 GB)
/ queries become >2x faster
12 queries are instance-optimal

3 queries are not using inst-opt plan
o Skip futile bitmap filters
o Use bitmaps on intermediate results
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Last three columns show total rows (in millions) for all joins and %
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12 querles are instance Optlmal 10 Line (N-C-0-L) 1.23X v 168.8M 12.51% 12.01%
11 Line 1.75X < 81.1m 8.01% 8.01%
12 Single join 1.21X V4 153.2m 3.97% 3.95%
. . . 13 An outer join — — — — —
* 3 queries are not using inst-opt plan 14 Single join 1.14% v || 275m | 4998% | 49.98%
H H i i 15 Single join 1.07X v 23.7m 95.78% 95.78%
© Sklp f}Jtlle bltma.p filters ) 16 Antijoin & join 1.03X v 83.0m 17.91% 17.91%
o Use bitmaps on intermediate results 17 | Correlate joins | 2.55x — 51.5M 1.22% 1.21%
18% | Line (C-0-L) 1.22% x || 1215.1m | 49.39% 49.39%
194 Single join 1.82% v 25.8M 0.43% 0.39%
. 20 Correlate joins 2.01x - 172.3m 0.2% 0.07%
0, (o)
* 5 have >1% gaps (but <4%) from Yannakakis | 21 | Correlatejoins | 2.36x | — || 379.4m | 2143% | 19.24%
o SQL Server al.ready getS 22 An antijoin 1.27X v 155.8M 17.41% 15.94%

Table 1: TPC-H (SF=100) results. v/ (x) mark instance-optimal plajns
(not) chosen; — are inapplicable cases; * denotes optimizer slowdown.
Last three columns show total rows (in millions) for all joins and %
after pre-filtering of SQL Server and Yannakakis.

most pre-filtering benefits



Future Directions

o Accurate bitmap-aware Cardinality Estimations & Cost Models
o Robust Query Plans for Complex SOL Workloads

o Pre-filtering Solutions for Modern Data Platforms & Analytics



Thank you

Check out our papers for

 Formal proof of instance optimality
for SQL Server

« Careful costing to generate optimal
plans

* Robustness and semi-robustness
guarantees come as by-product

* A Dbetter presentation
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