
Pragmatic Bitmap Filters in Microsoft SQL Server

Hangdong Zhao, Yuanyuan Tian, Rana Alotaibi, Bailu Ding, Nicolas Bruno,
Jesús Camacho-Rodríguez, Vassilis Papadimos, Ernesto Cervantes Juárez,

Cesar Galindo-Legaria, Carlo Curino

lineitemorderscustomer

⨝ ⨝

Example: TPC-H Q3 100 GB

Rows participating in joins after local filtering
20% 49%

σ

53%

σ σ

Pre-filtering is great

⨝ ⨝

Rows participating in joins after local filtering
20% 49% 53%

σ σ

5.6% <1% <0.5%
Rows contributing to query results

Pre-filtering is great

σ

lineitemorderscustomer
Example: TPC-H Q3 100 GB

⨝ ⨝

Rows participating in joins after local filtering
20% 49% 53%

σ σ σ

5.6% <1% <0.5%
Rows contributing to query results

4–100×
size reduction!

most rows do not contribute to the join

Pre-filtering is great

lineitemorderscustomer
Example: TPC-H Q3 100 GB

⨝ ⨝

Rows participating in joins after local filtering
20% 49% 53%

σ σ σ

5.6% <1% <0.5%
Rows contributing to query results

4–100×
size reduction!

non-contributing

contributing

Pre-filtering is great

most rows do not contribute to the join

lineitemorderscustomer
Example: TPC-H Q3 100 GB

• Often orders-of-magnitude reduction of join input sizes (even in production)

• Yannakakis algorithm is the grand theory for best possible pre-filtering

Pre-filtering is great

Propagating semijoins first for acyclic joins

R1

R2 R3

R4 R5

Yannakakis VLDB’1981

…whose join graph is essentially a tree

Propagating semijoins first for acyclic joins
Bottom-up pass

• Use semijoin to reduce parent table

R1

R2 R3

R4 R5

Yannakakis VLDB’1981

Propagating semijoins first for acyclic joins
Bottom-up pass

• Use semijoin to reduce parent table

Top-down pass
• Use semijoin to reduce child table

R1

R2 R3

R4 R5

R3

Yannakakis VLDB’1981

All non-contributing rows are filtered

Propagating semijoins first for acyclic joins
Bottom-up pass

• Use semijoin to reduce parent table

Top-down pass
• Use semijoin to reduce child table

Join the reduced tables

R1

R2 R3

R4 R5

Instance-optimal for acyclic joins

Yannakakis VLDB’1981

Make Yannakakis Practical
For decades, the Yannakakis algorithm has been ‘ignored’ by real database engines

Because it

Accepts only acyclic joins
Introduces high overheads for

scans/semijoins/materialization
of pre-filtered tables

Huge impacts on query
optimization & execution

Make Yannakakis Practical
But recently, there is a renaissance....

CIDR 2024
o Predicate Transfer: Efficient Pre-Filtering on Multi-Join Queries

VLDB 2024
o Robust Join Processing with Diamond Hardened Joins

SIGMOD 2025
o Debunking the Myth of Join-ordering: Toward Robust SQL Analytics
o Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees
o Accelerate Distributed Joins with Predicate Transfer

VLDB 2025
o Parachute: Single-Pass Bi-Directional Information Passing
o Including Bloom Filters in Bottom-up Optimization
o Instance-Optimal Acyclic Join Processing Without Regret: Engineering the Yannakakis Algorithm in Column Stores

A Common Theme
Replace Yannakakis’ semijoins by Bloom filters

So... can I optimize SQL Server now?

I was too naïve :)

…SQL Server is way ahead of academia

Why I give up optimizing SQL Server?

…thanks to the great SQL Server engineers

Ciprian Clinciu
Campbell Fraser

Cesar Galindo-Legaria
Milind Joshi

Michal Nowakiewicz
Vassilis Papadimos
Andrew Richardson
Aleksandras Surna

Why I give up optimizing SQL Server?

SQL Server has been quietly generating—and executing—instance-optimal query
plans for most of your SQL queries since 2014!

Accept only acyclic joins
arbitrary join queries

Bears no additional
scans/semijoins/materialization

of pre-filtered tables

Carefully controls huge
impacts on query

optimization/execution

And not only that, it

Why I give up optimizing SQL Server?

Three Core Pieces

All that in an elegant design!

Batch-mode Hash Join
the only building block needed

Pull-based Execution
cascading bitmap pushdown

Cascades Optimizer
cost-based optimizations
considering bitmap filters

Three Core Pieces

All that in an elegant design!

Batch-mode Hash Join
the only building block needed

Pull-based Execution
cascading bitmap pushdown

Cascades Optimizer
cost-based optimizations
considering bitmap filters

Batch-mode Hash Join

• pull-based execution of a batch-mode hash join

lineitem
𝜎

⋈

orders
𝜎

probe(orderkey)
bitmap filter decisions

• Columns to create bitmap filters
• Bit-array or Bloom filters
• Sizes of bitmap filters

Batch-mode Hash Join

⋈

• pull-based execution of a batch-mode hash join

next() calls

lineitem
𝜎

orders
𝜎

Batch-mode Hash Join

• pull-based execution of a batch-mode hash join

⋈
bitmap push down

lineitem
𝜎

orders
𝜎

probe(orderkey)

Batch-mode Hash Join

• pull-based execution of a batch-mode hash join

⋈

next() calls
lineitem

𝜎

orders
𝜎

probe(orderkey)

Three Core Pieces

Batch-mode Hash Join
the only building block needed

Pull-based Execution
cascading bitmap pushdown

Cascades Optimizer
cost-based optimizations
considering bitmap filters

customer
𝜎

lineitem
𝜎

orders
𝜎

(C⋈O⋈L).next()

Composing Hash Join

1

(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)

(C⋈O⋈L).next()

Composing Hash Join

1

(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)
(C⋈O⋈L).next()

Composing Hash Join

1

bitmap push down

(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)
(C⋈O⋈L).next()

Composing Hash Join

1

2

(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)
(C⋈O⋈L).next()

Composing Hash Join

1

2

(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)
(C⋈O⋈L).next()

Composing Hash Join

1

2

(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)

probe(orderkey)

(C⋈O⋈L).next()

Composing Hash Join

1

2

(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)

probe(orderkey)

(C⋈O⋈L).next()

Composing Hash Join

1

2

bitmap push down

(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)

probe(orderkey)

(C⋈O⋈L).next()

Composing Hash Join

1

2

3
(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)

probe(orderkey)

(C⋈O⋈L).next()

Composing Hash Join

1

2

3
(O⋈L).next()

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)

probe(orderkey)

(C⋈O⋈L).next()

Instance-optimal Query Execution

1

2

3
(O⋈L).next()

Single scan over inputs

customer
𝜎

lineitem
𝜎

orders
𝜎

probe(custkey)

probe(orderkey)

(C⋈O⋈L).next()

Instance-optimal Query Execution

1

2

3
(O⋈L).next()

All probes hit

All probes hit

At most output size

Three Core Pieces

Batch-mode Hash Join
the only building block needed

Pull-based Execution
cascading bitmap pushdown

Cascades Optimizer
cost-based optimizations
considering bitmap filters

Pre-filtering for Arbitrary Queries

region

nation

supplier
customer

orders

lineitem

𝜎

𝜎
suppkey

custkey

orderkey

nationkey

nationkey

nationkey

regionkey

N ⋈ JOIN(C, O, L)

JOIN(C, O) ⋈ L

C ⋈ O

S ⋈ JOIN(N, C, O, L)

regionkey

(nationkey, suppkey)

nationkey

orderkey

custkey

R ⋈ JOIN(S, N, C, O, L)

Example: TPC-H Q5 100 GB

Pre-filtering for Arbitrary Queries

region

nation

supplier
customer

orders

lineitem

𝜎

𝜎
suppkey

custkey

orderkey

nationkey

nationkey

nationkey

regionkey

N ⋈ JOIN(C, O, L)

JOIN(C, O) ⋈ L

C ⋈ O

S ⋈ JOIN(N, C, O, L)

regionkey

(nationkey, suppkey)

nationkey

orderkey

custkey

R ⋈ JOIN(S, N, C, O, L)

Cost-based decisions on bitmap passing
from & to any intermediate result

Example: TPC-H Q5 100 GB

Experiments

• TPC-H 22 queries (100 GB)
• 7 queries become >2x faster

Experiments

• TPC-H 22 queries (100 GB)
• 7 queries become >2x faster
• 12 queries are instance-optimal

• 3 queries are not using inst.-opt plan
o Skip futile bitmap filters
o Use bitmaps on intermediate results

Experiments

• TPC-H 22 queries (100 GB)
• 7 queries become >2x faster
• 12 queries are instance-optimal

• 3 queries are not using inst.-opt plan
o Skip futile bitmap filters
o Use bitmaps on intermediate results

• 5 have >1% gaps (but <4%) from Yannakakis
o SQL Server already gets
 most pre-filtering benefits

Future Directions

o Accurate bitmap-aware Cardinality Estimations & Cost Models

o Robust Query Plans for Complex SQL Workloads

o Pre-filtering Solutions for Modern Data Platforms & Analytics

Thank you

Check out our papers for

• Formal proof of instance optimality
for SQL Server

• Careful costing to generate optimal
plans

• Robustness and semi-robustness
guarantees come as by-product

• A better presentation

	Slide 1
	Slide 2: Pre-filtering is great
	Slide 3: Pre-filtering is great
	Slide 4: Pre-filtering is great
	Slide 5: Pre-filtering is great
	Slide 6: Pre-filtering is great
	Slide 7: Yannakakis VLDB’1981
	Slide 8: Yannakakis VLDB’1981
	Slide 9: Yannakakis VLDB’1981
	Slide 10: Yannakakis VLDB’1981
	Slide 11: Make Yannakakis Practical
	Slide 12: Make Yannakakis Practical
	Slide 13: So... can I optimize SQL Server now?
	Slide 14: Why I give up optimizing SQL Server?
	Slide 15: Why I give up optimizing SQL Server?
	Slide 16: Why I give up optimizing SQL Server?
	Slide 17: Three Core Pieces
	Slide 18: Three Core Pieces
	Slide 19: Batch-mode Hash Join
	Slide 20: Batch-mode Hash Join
	Slide 21: Batch-mode Hash Join
	Slide 22: Batch-mode Hash Join
	Slide 23: Three Core Pieces
	Slide 24: Composing Hash Join
	Slide 25: Composing Hash Join
	Slide 26: Composing Hash Join
	Slide 27: Composing Hash Join
	Slide 28: Composing Hash Join
	Slide 29: Composing Hash Join
	Slide 30: Composing Hash Join
	Slide 31: Composing Hash Join
	Slide 32: Composing Hash Join
	Slide 33: Composing Hash Join
	Slide 34: Instance-optimal Query Execution
	Slide 35: Instance-optimal Query Execution
	Slide 36: Three Core Pieces
	Slide 37: Pre-filtering for Arbitrary Queries
	Slide 38: Pre-filtering for Arbitrary Queries
	Slide 39: Experiments
	Slide 40: Experiments
	Slide 41: Experiments
	Slide 42: Future Directions
	Slide 43: Thank you

