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Rows participating in joins after local filtering
20% 49% 53%
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5.6% <1% <0.5%
Rows contributing to query results

4–100× 
size reduction!

non-contributing

contributing

Pre-filtering is great

most rows do not contribute to the join
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• Often orders-of-magnitude reduction of join input sizes (even in production)

• Yannakakis algorithm is the grand theory for best possible pre-filtering

Pre-filtering is great



Propagating semijoins first for acyclic joins
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…whose join graph is essentially a tree
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Propagating semijoins first for acyclic joins
Bottom-up pass

• Use semijoin to reduce parent table 

Top-down pass
• Use semijoin to reduce child table 

Join the reduced tables 
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Instance-optimal for acyclic joins

Yannakakis VLDB’1981



Make Yannakakis Practical
For decades, the Yannakakis algorithm has been ‘ignored’ by real database engines 

Because it

Accepts only acyclic joins
Introduces high overheads for 

scans/semijoins/materialization 
of pre-filtered tables

Huge impacts on query 
optimization & execution



Make Yannakakis Practical
But recently,  there is a renaissance....

CIDR 2024
o Predicate Transfer: Efficient Pre-Filtering on Multi-Join Queries

VLDB 2024
o Robust Join Processing with Diamond Hardened Joins

SIGMOD 2025
o Debunking the Myth of Join-ordering: Toward Robust SQL Analytics
o Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees
o Accelerate Distributed Joins with Predicate Transfer

VLDB 2025
o Parachute: Single-Pass Bi-Directional Information Passing
o Including Bloom Filters in Bottom-up Optimization
o Instance-Optimal Acyclic Join Processing Without Regret: Engineering the Yannakakis Algorithm in Column Stores

A Common Theme
Replace Yannakakis’ semijoins by Bloom filters



So... can I optimize SQL Server now?

I was too naïve :)



…SQL Server is way ahead of academia

Why I give up optimizing SQL Server?



…thanks to the great SQL Server engineers
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Why I give up optimizing SQL Server?



SQL Server has been quietly generating—and executing—instance-optimal query 
plans for most of your SQL queries since 2014!

Accept only acyclic joins 
arbitrary join queries 

Bears no additional 
scans/semijoins/materialization 

of pre-filtered tables

Carefully controls huge 
impacts on query 

optimization/execution

And not only that, it

Why I give up optimizing SQL Server?



Three Core Pieces

All that in an elegant design!

Batch-mode Hash Join
the only building block needed

Pull-based Execution 
cascading bitmap pushdown

Cascades Optimizer
cost-based optimizations 
considering bitmap filters
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Batch-mode Hash Join

• pull-based execution of a batch-mode hash join

lineitem
𝜎

⋈ 

orders
𝜎



probe(orderkey)
bitmap filter decisions

• Columns to create bitmap filters
• Bit-array or Bloom filters
• Sizes of bitmap filters
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Instance-optimal Query Execution
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All probes hit

All probes hit

At most output size



Three Core Pieces

Batch-mode Hash Join
the only building block needed

Pull-based Execution 
cascading bitmap pushdown

Cascades Optimizer
cost-based optimizations 
considering bitmap filters



Pre-filtering for Arbitrary Queries 
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Cost-based decisions on bitmap passing 
from & to any intermediate result 

Example: TPC-H Q5 100 GB
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Experiments

• TPC-H 22 queries (100 GB)
• 7 queries become >2x faster
• 12 queries are instance-optimal

• 3 queries are not using inst.-opt plan
o Skip futile bitmap filters
o Use bitmaps on intermediate results

• 5 have >1% gaps (but <4%) from Yannakakis
o SQL Server already gets 
    most pre-filtering benefits



Future Directions

o  Accurate bitmap-aware Cardinality Estimations & Cost Models

o  Robust Query Plans for Complex SQL Workloads

o  Pre-filtering Solutions for Modern Data Platforms & Analytics



Thank you

Check out our papers for

• Formal proof of instance optimality 
for SQL Server

• Careful costing to generate optimal 
plans 

• Robustness and semi-robustness 
guarantees come as by-product

• A better presentation
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