
Join Queries with Negation
(and Aggregation)

Conjunctive Queries with Negation and Aggregation: A Linear Time Characterization [PODS’24]
Hangdong Zhao, Austen Fan, Xiating Ouyang, Paraschos Koutris

https://dblp.org/pid/307/7991.html
https://dblp.org/pid/279/3249.html
https://dblp.org/pid/183/6263.html
https://dblp.org/pid/49/8316.html

This Talk

Much progress has been over the last years on faster join algorithms
• worst-case optimal joins
• constant-delay enumeration
• tree decompositions & width measures
• PANDA

What happens when we add negation (and aggregation)?

Conjunctive Queries (CQs)

Q(xF) = ⋀
K∈ℰ

RK(xK)

• variables

• hypergraph

• for a hyperedge

x = {x1, …, xn}
([n], ℰ)

E ⊆ [n] : xE = {xi}i∈E

head body

3

• Boolean:

• full:

F = ∅
F = [n] = {1,2,…, n}

Example: Triangle

Q(x1, x3) = R(x1, x2) ∧ S(x2, x3) ∧ T(x1, x3)

4

1

 2 3

Conjunctive Queries + Negation (CQNs)

• We need a safety condition: the positive atoms must contain all variables

• The hypergraph is called the signed hypergraph([n], ℰ+, ℰ−)

head negativepositive

5

Q(xF) = ⋀
K∈ℰ+

RK(xK) ∧ ⋀
K∈ℰ−

¬RK(xK)

Example: Open Triangle

Q(x2) = R(x1, x2) ∧ S(x2, x3) ∧ ¬T(x1, x3)

6

1

2 3

Example: 3-independent set

Q() = V(x1) ∧ V(x2) ∧ V(x3) ∧ ¬R(x1, x2) ∧ ¬R(x2, x3) ∧ ¬R(x1, x3)

7

If all positive relations are singleton, we will sometimes ignore them and just write

Q() = ¬R(x1, x2) ∧ ¬R(x2, x3) ∧ ¬R(x1, x3)
1

2 3

Some Background

α-acyclicity

9

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x4, x5) ∧ U(x3, x6)
R(x1, x2)

S(x2, x3)

T(x3, x4, x5)

A CQ is α-acyclic if and only if it admits a join tree

U(x3, x6)

The structure of α-acyclicity

A node is an α-leaf if the set contains a maximum element (pivot)v {K ∈ ℰ ∣ v ∈ K}

10

All variables are α-leaves for this hypergraph!

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

x1 : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)
x2 : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)
x3 : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

The structure of α-acyclicity

A CQ is α-acyclic iff it admits an α-elimination sequence. At every step:
1. find any α-leaf (with pivot)

2. remove any relation with variables contained in

3. remove from

x R
R

x R

11

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

x1 is an α-leaf : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)
x2 is an α-leaf : S(x2, x3) ∧ U(x2, x3)
x3 is an α-leaf : U(x3)

:

A linear-time algorithm

12

We follow the α-elimination sequence. At every step:
1. find any α-leaf (with pivot)

2. for any with variables contained in , update and remove

3. project out from

x R
T R R ← R ⋉ T T

x R

A linear-time algorithm

13

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

x1 is an α-leaf : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)
x2 is an α-leaf : S(x2, x3) ∧ U(x2, x3)
x3 is an α-leaf : U(x3)

U R

S

⋉
⋉

⋉

T

πx2,x3

π∅

A linear-time characterization for CQs

14

[Yannakakis ’81] For an α-acyclic CQ with input size :

1. if it is Boolean, it can be evaluated in linear time

2. if it is full, the output can be enumerated with constant delay after
linear-time preprocessing, with total time

3. if it is full, we can count the answers in linear time

Moreover, no other CQs admit linear-time algorithms under widely
believed conjectures

N
O(N)

O(N + 𝖮𝖴𝖳)
O(N)

What is the linear-time characterization for
CQs with negation?

The Inclusion-Exclusion Principle

16

Q(x1, x2, x3) = R(x1, x2) ∧ S(x2, x3) ∧ ¬T(x1, x2, x3)

We can rewrite this query using a difference operator:

Q = (R(x1, x2) ∧ S(x2, x3)) − (R(x1, x2) ∧ S(x2, x3) ∧ T(x1, x2, x3))
Q1: acyclic CQ Q2: acyclic CQ

#Q = #Q1 − #Q2

The Inclusion-Exclusion Principle

17

We can generalize this idea via the inclusion-exclusion principle [Brault-Baron ’13]:

Q(x) = ⋀
K∈ℰ+

RK(xK) ∧ ⋀
K∈ℰ−

¬RK(xK)

#Q = ∑
S⊆ℰ−

(−1)|S|#QS

where is the CQ with hypergraph QS ([n], ℰ+ ∪ S)

Signed-acyclicity

If the hypergraph is α-acyclic for any then (and thus Boolean) can
be evaluated in linear time (data complexity)
• Caveat #1: the algorithm is exponential in the size of the query
• Caveat #2: we cannot use this idea to perform constant-delay enumeration

ℰ+ ∪ S S ⊆ ℰ− #Q Q

18

A CQ with negation is signed-acyclic if is α-acyclic for any ℰ+ ∪ S S ⊆ ℰ−

[Brault-Baron ’13]

Signed-acyclicity: examples

19

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ ¬U(x1, x2, x3)

Q() = ¬R(x1, x2) ∧ ¬S(x2, x3) ∧ ¬T(x3, x1) ∧ ¬U(x1, x2, x3)

Q() = ¬R(x1, x2) ∧ ¬S(x2, x3) ∧ ¬T(x3, x4)

β-acyclicity

• Suppose all positive relations are unary (arity = 1)

• Then signed-acyclicity is equivalent to: any subset of is α-acyclic

• This is equivalent to the notion of β-acyclicity [Duris ’12, Brault-Baron ’14]
• Existing algorithms for β-acyclic CQNs include polylogarithmic factors

ℰ−

20

A Linear-Time Algorithm

The structure of signed-acyclicity

A node is a signed-leaf if there exists (pivot) such that:

• α-property: every positive edge that contains is contained in

• β-property: forms a total order w.r.t.
inclusion with as the smallest element

v K ∈ ℰ+

v K
{N ∈ ℰ− ∣ v ∈ N, N ⊊ K} ∪ {K}

K

22

Q() = A(x1, x2, x3) ∧ U(x3, x4) ∧ ¬V(x4) ∧ ¬R(x2, x3, x4) ∧ ¬S(x1, x2, x3, x4)

pivot for x4

The structure of signed-acyclicity

A CQ is signed-acyclic iff it admits a signed-elimination sequence. At
every step:
1. find any signed-leaf (with pivot)

2. remove any relation with variables contained in (α-property)

3. remove from everywhere (β-property)

x R
R

x

23

Q() = A(x1, x2, x3) ∧ U(x3, x4) ∧ ¬V(x4) ∧ ¬R(x2, x3, x4) ∧ ¬S(x1, x2, x3, x4)

A linear-time algorithm

24

We follow the signed-elimination sequence. At every step:
1. find any signed-leaf (with pivot)

2. Semi-join with and remove any relation with variables contained in
(α-property)

3. “Remove” from every relation that contains it (β-property)

x R
R R

x

Item #3 is the challenging one!

The Key Idea

25

Q() = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

• We cannot afford to scan A for every value of B
• We build a data structure that encodes the “skips”

 1 2 3 4 5 start end

b

b

c

d

The Key Idea

26

Q() = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1 2 3 4 5 start end

b

b

c

d

To “project out” from , we only keep the values that
generate no answer (i.e.)

x1 R
{d}

Q′ () = B(x2) ∧ ¬R(x2)

a

b

c

d

e

B dR

Enumeration

27

Q(x1, x2) = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1 2 3 4 5 start end

b

b

c

d

The skipping data structure can also be used to
enumerate all results with constant delay

A linear-time characterization

28

For a signed-acyclic CQ with negation with input size :

1. if it is Boolean, it can be evaluated in linear time

2. if it is full, the answers can be enumerated with constant delay after
linear-time preprocessing, with total time

Moreover, the algorithms have polynomial combined complexity

N
O(N)

O(N + 𝖮𝖴𝖳)

What about projections?

29

If the signed hypergraph is signed-acyclic, the output
can be enumerated with constant delay after linear-time preprocessing
• This naturally captures the notion of free-connex CQs
• Any CQN not in this class does not admit a linear-time algorithm

under widely believed conjectures

([n], ℰ+, ℰ− ∪ {F})

Q(xF) = ⋀
K∈ℰ+

RK(xK) ∧ ⋀
K∈ℰ−

¬RK(xK)

Aggregation

Counting: example

31

#Q(x2) = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)
1

2

3

4

5

a

b

c

d

e

For every value of B, count the number of nodes from A
that are not connected with it

Counting: example

32

#Q(x2) = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1 2 3 4 5 start end

b

b

c

d

We can count by using the skipping DS to find the
correct intervals and then compute the partial counts:
a : [1 − 5]
b : [3]
c : [1 − 2], [4 − 5]

Summing: example

33

#Q(x2) = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1 2 3 4 5 start end

b

b

c

d

• We need to compute the partial sums
• We can build a data structure in linear time such that

we can calculate each partial sum in constant time
(OFFLINE PARTIAL SUMS)

Idea:
v

∑
i=u

xi =
v

∑
i=1

xi −
v

∑
i=1

xi

13

4

1

24

7

General Aggregation

34

#Q(x2) = ⊕x1
A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1 2 3 4 5 start end

b

b

c

d

For any aggregation, where forms a semigroup

• we can compute the partial sums in constant time

• but we need preprocessing time

• is the inverse Ackermann function

• uses deep results for RangeSum [Yao ’82, Chazelle ‘91]

⊕

O(N ⋅ α(N))
α(N)

13

4

1

24

7

Aggregation in Arbitrary CQNs

35

Q(xF) = ⊕x[n]∖F
⊗K∈ℰ+ RK(xK) ∧ ⊗K∈ℰ−R̄K(xK)

positive
factor

negative
factor

• Semiring structure

• positive factor: a list of tuples with their value in ; any tuple outside
the list has value

• negative factor: a list of tuples with their value in ; any tuple outside
the list has the same default value

(D, ⊕ , ⊗ ,0, 1)
D

0
D

c ≠ 0

Aggregation in Arbitrary CQNs

36

Q(xF) = ⊕x[n]∖F
⊗K∈ℰ+ RK(xK) ∧ ⊗K∈ℰ−R̄K(xK)

For any semiring, if the signed hypergraph is free-
connex signed-acyclic, the output can be enumerated with constant delay
after preprocessing time

• If the semiring has an additive inverse, the preprocessing time is

• The general algorithm follows the elimination sequence, but
maintaining the aggregates becomes very complex

([n], ℰ+, ℰ− ∪ {F})

O(N ⋅ α(N))
O(N)

Other Remarks

Query Difference

Our techniques also characterize the linear-time behavior for the difference of two CQs
with the same output schema: [Hu & Wang ’23]

Since both resulting CQNs are signed-acyclic, we can enumerate their union with
constant-delay enumeration after linear time preprocessing

Q = Q1 − Q2

Q = (R(x1, x2) ∧ S(x2, x3, x4)) − (T(x1, x2) ∧ U(x2, x3))
= (R(x1, x2) ∧ S(x2, x3, x4) ∧ ¬T(x1, x2)) ∪ (R(x1, x2) ∧ S(x2, x3, x4) ∧ ¬U(x2, x3))

38

Relational Division

• Suppose we want to compute relational division:

• We can rewrite using RA:

• Define , which can be computed in linear time

• The RHS of the difference is the query which is free-
connex signed-acyclic and thus can be computed in linear time!

Corollary: the division operator can be computed in linear time

R(x, y)/S(x)
πy(R) − πy((πy(R) × S) − R)

R′ (y) = πy(R)

Q(y) = R′ (y) ∧ S(x) ∧ ¬R(x, y)

39

Open Questions

What are the appropriate measures of width to have tractability for CQNs?
• nest-set width [Lanzinger ’21]
• generalizations of fractional hyper tree width?

Do our algorithms translate to practice?
• query rewriting techniques [Hu & Wang ’23]
• data structure implementation

40

