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This Talk

Much progress has been over the last years on faster join algorithms
• worst-case optimal joins
• constant-delay enumeration
• tree decompositions & width measures
• PANDA 

What happens when we add negation (and aggregation)?



Conjunctive Queries (CQs)

Q(xF) = ⋀
K∈ℰ

RK(xK)

• variables 

• hypergraph 

• for a hyperedge 

x = {x1, …, xn}
([n], ℰ)

E ⊆ [n] : xE = {xi}i∈E

head body
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• Boolean: 

• full: 

F = ∅
F = [n] = {1,2,…, n}



Example: Triangle

Q(x1, x3) = R(x1, x2) ∧ S(x2, x3) ∧ T(x1, x3)
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 2  3  



Conjunctive Queries + Negation (CQNs)

• We need a safety condition: the positive atoms must contain all variables

• The hypergraph  is called the signed hypergraph([n], ℰ+, ℰ−)

head negativepositive
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Q(xF) = ⋀
K∈ℰ+

RK(xK) ∧ ⋀
K∈ℰ−

¬RK(xK)



Example: Open Triangle

Q(x2) = R(x1, x2) ∧ S(x2, x3) ∧ ¬T(x1, x3)
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2  3  



Example: 3-independent set

Q() = V(x1) ∧ V(x2) ∧ V(x3) ∧ ¬R(x1, x2) ∧ ¬R(x2, x3) ∧ ¬R(x1, x3)
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If all positive relations are singleton, we will sometimes ignore them and just write

Q() = ¬R(x1, x2) ∧ ¬R(x2, x3) ∧ ¬R(x1, x3)
1  

2  3  



Some Background



α-acyclicity
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Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x4, x5) ∧ U(x3, x6)
R(x1, x2)

S(x2, x3)

T(x3, x4, x5)

A CQ is α-acyclic if and only if it admits a join tree

U(x3, x6)



The structure of α-acyclicity

A node  is an α-leaf if the set  contains a maximum element (pivot)v {K ∈ ℰ ∣ v ∈ K}
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All variables are α-leaves for this hypergraph!

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

x1 : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)
x2 : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)
x3 : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)



The structure of α-acyclicity

A CQ is α-acyclic iff it admits an α-elimination sequence. At every step:
1. find any α-leaf  (with pivot )

2. remove any relation with variables contained in 

3. remove  from 

x R
R

x R
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Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

x1 is an α-leaf : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)
x2 is an α-leaf : S(x2, x3) ∧ U(x2, x3)
x3 is an α-leaf : U(x3)

:



A linear-time algorithm
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We follow the α-elimination sequence. At every step:
1. find any α-leaf  (with pivot )

2. for any  with variables contained in , update  and remove 

3. project out  from 

x R
T R R ← R ⋉ T T

x R



A linear-time algorithm

13

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

x1 is an α-leaf : R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)
x2 is an α-leaf : S(x2, x3) ∧ U(x2, x3)
x3 is an α-leaf : U(x3)

U R

S

⋉
⋉

⋉

T

πx2,x3

π∅



A linear-time characterization for CQs
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[Yannakakis ’81] For an α-acyclic CQ with input size : 

1. if it is Boolean, it can be evaluated in linear time 

2. if it is full, the output can be enumerated with constant delay after 
linear-time preprocessing, with total time 

3. if it is full, we can count the answers in linear time 

Moreover, no other CQs admit linear-time algorithms under widely 
believed conjectures

N
O(N)

O(N + 𝖮𝖴𝖳)
O(N)



What is the linear-time characterization for 
CQs with negation?



The Inclusion-Exclusion Principle
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Q(x1, x2, x3) = R(x1, x2) ∧ S(x2, x3) ∧ ¬T(x1, x2, x3)

We can rewrite this query using a difference operator:

Q = (R(x1, x2) ∧ S(x2, x3)) − (R(x1, x2) ∧ S(x2, x3) ∧ T(x1, x2, x3))
Q1: acyclic CQ Q2: acyclic CQ

#Q = #Q1 − #Q2



The Inclusion-Exclusion Principle

17

We can generalize this idea via the inclusion-exclusion principle [Brault-Baron ’13]:

Q(x) = ⋀
K∈ℰ+

RK(xK) ∧ ⋀
K∈ℰ−

¬RK(xK)

#Q = ∑
S⊆ℰ−

(−1)|S|#QS

where  is the CQ with hypergraph QS ([n], ℰ+ ∪ S)



Signed-acyclicity

If the hypergraph  is α-acyclic for any  then  (and thus Boolean ) can 
be evaluated in linear time (data complexity)
• Caveat #1: the algorithm is exponential in the size of the query
• Caveat #2: we cannot use this idea to perform constant-delay enumeration

ℰ+ ∪ S S ⊆ ℰ− #Q Q
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A CQ with negation is signed-acyclic if  is α-acyclic for any  ℰ+ ∪ S S ⊆ ℰ−

[Brault-Baron ’13]



Signed-acyclicity: examples
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Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ U(x1, x2, x3)

Q() = R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x1) ∧ ¬U(x1, x2, x3)

Q() = ¬R(x1, x2) ∧ ¬S(x2, x3) ∧ ¬T(x3, x1) ∧ ¬U(x1, x2, x3)

Q() = ¬R(x1, x2) ∧ ¬S(x2, x3) ∧ ¬T(x3, x4)



β-acyclicity

• Suppose all positive relations are unary (arity = 1)

• Then signed-acyclicity is equivalent to: any subset of  is α-acyclic

• This is equivalent to the notion of β-acyclicity [Duris ’12, Brault-Baron ’14]
• Existing algorithms for β-acyclic CQNs include polylogarithmic factors

ℰ−
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A Linear-Time Algorithm



The structure of signed-acyclicity

A node  is a signed-leaf if there exists  (pivot) such that:

• α-property: every positive edge that contains  is contained in 

• β-property:  forms a total order w.r.t. 
inclusion with  as the smallest element

v K ∈ ℰ+

v K
{N ∈ ℰ− ∣ v ∈ N, N ⊊ K} ∪ {K}

K
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Q() = A(x1, x2, x3) ∧ U(x3, x4) ∧ ¬V(x4) ∧ ¬R(x2, x3, x4) ∧ ¬S(x1, x2, x3, x4)

pivot for x4



The structure of signed-acyclicity

A CQ is signed-acyclic iff it admits a signed-elimination sequence. At 
every step:
1. find any signed-leaf  (with pivot )

2. remove any relation with variables contained in  (α-property)

3. remove  from everywhere (β-property)

x R
R

x
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Q() = A(x1, x2, x3) ∧ U(x3, x4) ∧ ¬V(x4) ∧ ¬R(x2, x3, x4) ∧ ¬S(x1, x2, x3, x4)



A linear-time algorithm
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We follow the signed-elimination sequence. At every step:
1. find any signed-leaf  (with pivot )

2. Semi-join with  and remove any relation with variables contained in  
(α-property)

3. “Remove”  from every relation that contains it (β-property)

x R
R R

x

Item #3 is the challenging one!



The Key Idea
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Q() = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

• We cannot afford to scan A for every value of B
• We build a data structure that encodes the “skips”

 1  2  3  4  5 start   end

b

b

c

d



The Key Idea
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Q() = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1  2  3  4  5 start   end

b

b

c

d

To “project out”  from , we only keep the values that 
generate no answer (i.e. )

x1 R
{d}

Q′ () = B(x2) ∧ ¬R(x2)

a

b

c

d

e

B dR



Enumeration
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Q(x1, x2) = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1  2  3  4  5 start   end

b

b

c

d

The skipping data structure can also be used to 
enumerate all results with constant delay



A linear-time characterization
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For a signed-acyclic CQ with negation with input size : 

1. if it is Boolean, it can be evaluated in linear time 

2. if it is full, the answers can be enumerated with constant delay after 
linear-time preprocessing, with total time 

Moreover, the algorithms have polynomial combined complexity

N
O(N)

O(N + 𝖮𝖴𝖳)



What about projections?
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If the signed hypergraph  is signed-acyclic, the output 
can be enumerated with constant delay after linear-time preprocessing
• This naturally captures the notion of free-connex CQs
• Any CQN not in this class does not admit a linear-time algorithm 

under widely believed conjectures

([n], ℰ+, ℰ− ∪ {F})

Q(xF) = ⋀
K∈ℰ+

RK(xK) ∧ ⋀
K∈ℰ−

¬RK(xK)



Aggregation



Counting: example
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#Q(x2) = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)
1

2

3

4

5

a

b

c

d

e

For every value of B, count the number of nodes from A 
that are not connected with it



Counting: example
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#Q(x2) = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1  2  3  4  5 start   end

b

b

c

d

We can count by using the skipping DS to find the 
correct intervals and then compute the partial counts:
a : [1 − 5]
b : [3]
c : [1 − 2], [4 − 5]



Summing: example
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#Q(x2) = A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1  2  3  4  5 start   end

b

b

c

d

• We need to compute the partial sums 
• We can build a data structure in linear time such that 

we can calculate each partial sum in constant time 
(OFFLINE PARTIAL SUMS)

Idea: 
v

∑
i=u

xi =
v

∑
i=1

xi −
v

∑
i=1

xi

13

4

1

24

7



General Aggregation
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#Q(x2) = ⊕x1
A(x1) ∧ B(x2) ∧ ¬R(x1, x2)

1

2

3

4

5

a

b

c

d

e

 1  2  3  4  5 start   end

b

b

c

d

For any aggregation, where  forms a semigroup

• we can compute the partial sums in constant time

• but we need preprocessing time  

•  is the inverse Ackermann function

• uses deep results for RangeSum [Yao ’82, Chazelle ‘91]

⊕

O(N ⋅ α(N))
α(N)

13

4

1

24

7



Aggregation in Arbitrary CQNs
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Q(xF) = ⊕x[n]∖F
⊗K∈ℰ+ RK(xK) ∧ ⊗K∈ℰ−R̄K(xK)

positive 
factor

negative 
factor

• Semiring structure 

• positive factor: a list of tuples with their value in ; any tuple outside 
the list has value 

• negative factor: a list of tuples with their value in ; any tuple outside 
the list has the same default value 

(D, ⊕ , ⊗ ,0, 1)
D

0
D

c ≠ 0



Aggregation in Arbitrary CQNs
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Q(xF) = ⊕x[n]∖F
⊗K∈ℰ+ RK(xK) ∧ ⊗K∈ℰ−R̄K(xK)

For any semiring, if the signed hypergraph  is free-
connex signed-acyclic, the output can be enumerated with constant delay 
after preprocessing time 

• If the semiring has an additive inverse, the preprocessing time is 

• The general algorithm follows the elimination sequence, but 
maintaining the aggregates becomes very complex

([n], ℰ+, ℰ− ∪ {F})

O(N ⋅ α(N))
O(N)



Other Remarks



Query Difference

Our techniques also characterize the linear-time behavior for the difference of two CQs 
with the same output schema:  [Hu & Wang ’23]

   

Since both resulting CQNs are signed-acyclic, we can enumerate their union with 
constant-delay enumeration after linear time preprocessing

Q = Q1 − Q2

Q = (R(x1, x2) ∧ S(x2, x3, x4)) − (T(x1, x2) ∧ U(x2, x3))
= (R(x1, x2) ∧ S(x2, x3, x4) ∧ ¬T(x1, x2)) ∪ (R(x1, x2) ∧ S(x2, x3, x4) ∧ ¬U(x2, x3))
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Relational Division

• Suppose we want to compute relational division: 

• We can rewrite using RA: 

• Define , which can be computed in linear time

• The RHS of the difference is the query  which is free-
connex signed-acyclic and thus can be computed in linear time!

Corollary: the division operator can be computed in linear time

R(x, y)/S(x)
πy(R) − πy((πy(R) × S) − R)

R′ (y) = πy(R)

Q(y) = R′ (y) ∧ S(x) ∧ ¬R(x, y)
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Open Questions

What are the appropriate measures of width to have tractability for CQNs?
• nest-set width [Lanzinger ’21]
• generalizations of fractional hyper tree width?

Do our algorithms translate to practice?
• query rewriting techniques [Hu & Wang ’23]
• data structure implementation 
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