Join Queries with Negation (and Aggregation)

This Talk

Much progress has been over the last years on faster join algorithms

- worst-case optimal joins
- constant-delay enumeration
- tree decompositions \& width measures
- PANDA

What happens when we add negation (and aggregation)?

Conjunctive Queries (CQs)

$$
\begin{gathered}
\text { head } \\
Q\left(\mathbf{x}_{F}\right)=\bigwedge_{K \in \mathscr{C}}^{\text {body }} \\
R_{K}\left(\mathbf{x}_{K}\right)
\end{gathered}
$$

- variables $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$
- hypergraph ([n], $\mathscr{E})$
- Boolean: $F=\varnothing$
- full: $F=[n]=\{1,2, \ldots, n\}$
- for a hyperedge $E \subseteq[n]: \mathbf{x}_{E}=\left\{x_{i}\right\}_{i \in E}$

Example: Triangle

$$
Q\left(x_{1}, x_{3}\right)=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{1}, x_{3}\right)
$$

Conjunctive Queries + Negation (CQNs)

$$
Q\left(\mathbf{x}_{F}\right)=\bigwedge_{K \in \mathscr{E}^{+}}^{\text {head }} R_{K}\left(\mathbf{x}_{K}\right) \wedge \bigwedge_{K \in \mathscr{L}^{-}} \neg R_{K}\left(\mathbf{x}_{K}\right)
$$

- We need a safety condition: the positive atoms must contain all variables
- The hypergraph ([n], $\left.\mathscr{E}^{+}, \mathscr{E}^{-}\right)$is called the signed hypergraph

Example: Open Triangle

$$
Q\left(x_{2}\right)=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge \neg T\left(x_{1}, x_{3}\right)
$$

Example: 3-independent set

$$
Q()=V\left(x_{1}\right) \wedge V\left(x_{2}\right) \wedge V\left(x_{3}\right) \wedge \neg R\left(x_{1}, x_{2}\right) \wedge \neg R\left(x_{2}, x_{3}\right) \wedge \neg R\left(x_{1}, x_{3}\right)
$$

If all positive relations are singleton, we will sometimes ignore them and just write

$$
Q()=\neg R\left(x_{1}, x_{2}\right) \wedge \neg R\left(x_{2}, x_{3}\right) \wedge \neg R\left(x_{1}, x_{3}\right) \quad \therefore \quad \therefore
$$

Some Background

α-acyclicity

A CQ is α-acyclic if and only if it admits a join tree

$$
Q()=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{4}, x_{5}\right) \wedge U\left(x_{3}, x_{6}\right) \underbrace{R\left(x_{1}, x_{2}\right)}_{T\left(x_{3}, x_{4}, x_{5}\right)} \quad U\left(x_{3}, x_{6}\right)
$$

The structure of α-acyclicity

A node v is an α-leaf if the set $\{K \in \mathscr{E} \mid v \in K\}$ contains a maximum element (pivot)

$$
\begin{aligned}
& Q()=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad x_{1}: R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right) \\
& x_{2}: R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right) \\
& x_{3}: R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

All variables are α-leaves for this hypergraph!

The structure of α-acyclicity

A CQ is α-acyclic iff it admits an α-elimination sequence. At every step:

1. find any α-leaf x (with pivot R)
2. remove any relation with variables contained in R
3. remove x from R

$$
\begin{aligned}
& \quad Q()=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right) \\
& x_{1} \text { is an } \alpha \text {-leaf: } R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right) \\
& x_{2} \text { is an } \alpha \text {-leaf: } S\left(x_{2}, x_{3}\right) \wedge U\left(x_{2}, x_{3}\right) \\
& x_{3} \text { is an } \alpha \text {-leaf: } U\left(x_{3}\right)
\end{aligned}
$$

A linear-time algorithm

We follow the α-elimination sequence. At every step:

1. find any α-leaf x (with pivot R)
2. for any T with variables contained in R, update $R \leftarrow R \ltimes T$ and remove T
3. project out x from R

A linear-time algorithm

$$
Q()=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right)
$$

x_{1} is an α-leaf: $R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right)$
x_{2} is an α-leaf: $S\left(x_{2}, x_{3}\right) \wedge U\left(x_{2}, x_{3}\right)$ x_{3} is an α-leaf: $U\left(x_{3}\right)$

A linear-time characterization for CQs

[Yannakakis '81] For an α-acyclic CQ with input size N :

1. if it is Boolean, it can be evaluated in linear time $O(N)$
2. if it is full, the output can be enumerated with constant delay after linear-time preprocessing, with total time $O(N+$ OUT $)$
3. if it is full, we can count the answers in linear time $O(N)$

Moreover, no other CQs admit linear-time algorithms under widely believed conjectures

What is the linear-time characterization for CQs with negation?

The Inclusion-Exclusion Principle

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge \neg T\left(x_{1}, x_{2}, x_{3}\right)
$$

We can rewrite this query using a difference operator:

$$
\begin{array}{rl}
Q & =\left(R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right)\right)-\left(R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{1}, x_{2}, x_{3}\right)\right) \\
Q 1: \text { acyclic } \mathrm{CQ} & Q 2: \text { acyclic } \mathrm{CQ} \\
\# Q & =\# Q_{1}-\# Q_{2}
\end{array}
$$

The Inclusion-Exclusion Principle

$$
Q(\mathbf{x})=\bigwedge_{K \in \mathscr{C}^{+}} R_{K}\left(\mathbf{x}_{K}\right) \wedge \bigwedge_{K \in \mathscr{E}^{-}} \neg R_{K}\left(\mathbf{x}_{K}\right)
$$

We can generalize this idea via the inclusion-exclusion principle [Brault-Baron '13]:

$$
\# Q=\sum_{S \subseteq \mathscr{E}^{-}}(-1)^{|S|} \# Q_{S}
$$

where Q_{S} is the CQ with hypergraph $\left([n], \mathscr{E}^{+} \cup S\right)$

Signed-acyclicity

If the hypergraph $\mathscr{E}^{+} \cup S$ is α-acyclic for any $S \subseteq \mathscr{E}^{-}$then $\# Q$ (and thus Boolean Q) can be evaluated in linear time (data complexity)

- Caveat \#1: the algorithm is exponential in the size of the query
- Caveat \#2: we cannot use this idea to perform constant-delay enumeration

$$
\text { A CQ with negation is signed-acyclic if } \mathscr{E}^{+} \cup S \text { is } \alpha \text {-acyclic for any } S \subseteq \mathscr{E}^{-}
$$

[Brault-Baron '13]

Signed-acyclicity: examples

$$
\begin{aligned}
& Q()=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge U\left(x_{1}, x_{2}, x_{3}\right) \\
& Q()=R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}\right) \wedge T\left(x_{3}, x_{1}\right) \wedge \neg U\left(x_{1}, x_{2}, x_{3}\right) \\
& Q()=\neg R\left(x_{1}, x_{2}\right) \wedge \neg S\left(x_{2}, x_{3}\right) \wedge \neg T\left(x_{3}, x_{1}\right) \wedge \neg U\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

$$
Q()=\neg R\left(x_{1}, x_{2}\right) \wedge \neg S\left(x_{2}, x_{3}\right) \wedge \neg T\left(x_{3}, x_{4}\right)
$$

β-acyclicity

- Suppose all positive relations are unary (arity $=1$)
- Then signed-acyclicity is equivalent to: any subset of \mathscr{E}^{-}is α-acyclic
- This is equivalent to the notion of β-acyclicity [Duris '12, Brault-Baron '14]
- Existing algorithms for β-acyclic CQNs include polylogarithmic factors

A Linear-Time Algorithm

The structure of signed-acyclicity

A node v is a signed-leaf if there exists $K \in \mathscr{E}^{+}$(pivot) such that:

- α-property: every positive edge that contains v is contained in K
- β-property: $\left\{N \in \mathscr{E}^{-} \mid v \in N, N \subsetneq K\right\} \cup\{K\}$ forms a total order w.r.t. inclusion with K as the smallest element

$$
\begin{gathered}
Q()=A\left(x_{1}, x_{2}, x_{3}\right) \wedge U\left(x_{3}, x_{4}\right) \wedge \neg V\left(x_{4}\right) \wedge \neg R\left(x_{2}, x_{3}, x_{4}\right) \wedge \neg S\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\text { pivot for } x_{4}
\end{gathered}
$$

The structure of signed-acyclicity

A CQ is signed-acyclic iff it admits a signed-elimination sequence. At every step:

1. find any signed-leaf x (with pivot R)
2. remove any relation with variables contained in R (α-property)
3. remove x from everywhere (β-property)

$$
Q()=A\left(x_{1}, x_{2}, x_{3}\right) \wedge U\left(x_{3}, x_{4}\right) \wedge \neg V\left(x_{4}\right) \wedge \neg R\left(x_{2}, x_{3}, x_{4}\right) \wedge \neg S\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

A linear-time algorithm

We follow the signed-elimination sequence. At every step:

1. find any signed-leaf x (with pivot R)
2. Semi-join with R and remove any relation with variables contained in R (α-property)
3. "Remove" x from every relation that contains it (β-property)

> Item \#3 is the challenging one!

The Key Idea

$Q()=A\left(x_{1}\right) \wedge B\left(x_{2}\right) \wedge \neg R\left(x_{1}, x_{2}\right) \quad$ - We cannot afford to scan A for every value of B

- We build a data structure that encodes the "skips"

$$
\text { start - } 1-2-3-4-5-\text { end }
$$

b

The Key Idea

d
$Q()=A\left(x_{1}\right) \wedge B\left(x_{2}\right) \wedge \neg R\left(x_{1}, x_{2}\right)$

$$
\text { start }-1-2-3-5-\text { end }
$$

$$
\mathrm{b}
$$

To "project out" x_{1} from R, we only keep the values that generate no answer (i.e. $\{d\}$)

$$
Q^{\prime}()=B\left(x_{2}\right) \wedge \neg R\left(x_{2}\right)
$$

| B |
| :--- | :--- |
| b |
| c |
| d |
| e |

Enumeration

$$
\mathrm{d}
$$

$$
Q\left(x_{1}, x_{2}\right)=A\left(x_{1}\right) \wedge B\left(x_{2}\right) \wedge \neg R\left(x_{1}, x_{2}\right)
$$

$b \quad c$

$$
\begin{gathered}
\text { start }-1-3-4-5-\text { end } \\
\mathrm{b}
\end{gathered}
$$

The skipping data structure can also be used to enumerate all results with constant delay

A linear-time characterization

For a signed-acyclic CQ with negation with input size N :

1. if it is Boolean, it can be evaluated in linear time $O(N)$
2. if it is full, the answers can be enumerated with constant delay after linear-time preprocessing, with total time $O(N+$ OUT $)$
Moreover, the algorithms have polynomial combined complexity

What about projections?

$$
Q\left(\mathbf{x}_{F}\right)=\bigwedge_{K \in \mathscr{C}^{+}} R_{K}\left(\mathbf{x}_{K}\right) \wedge \bigwedge_{K \in \mathscr{C}^{-}} \neg R_{K}\left(\mathbf{x}_{K}\right)
$$

If the signed hypergraph $\left([n], \mathscr{E}^{+}, \mathscr{E}^{-} \cup\{F\}\right)$ is signed-acyclic, the output can be enumerated with constant delay after linear-time preprocessing

- This naturally captures the notion of free-connex CQs
- Any CQN not in this class does not admit a linear-time algorithm under widely believed conjectures

Aggregation

Counting: example

$$
\# Q\left(x_{2}\right)=A\left(x_{1}\right) \wedge B\left(x_{2}\right) \wedge \neg R\left(x_{1}, x_{2}\right)
$$

For every value of B, count the number of nodes from A that are not connected with it

Counting: example

$$
\mathrm{d}
$$

$$
\# Q\left(x_{2}\right)=A\left(x_{1}\right) \wedge B\left(x_{2}\right) \wedge \neg R\left(x_{1}, x_{2}\right)
$$

$b \quad c$

$$
\text { start - } 1-2-3-5-\text { end }
$$

$$
\mathrm{b}
$$

We can count by using the skipping DS to find the correct intervals and then compute the partial counts:

$$
\begin{aligned}
& a:[1-5] \\
& b:[3]
\end{aligned}
$$

$$
c:[1-2],[4-5]
$$

Summing: example

d

$$
\# Q\left(x_{2}\right)=A\left(x_{1}\right) \wedge B\left(x_{2}\right) \wedge \neg R\left(x_{1}, x_{2}\right)
$$

b

- We need to compute the partial sums
- We can build a data structure in linear time such that we can calculate each partial sum in constant time (OFFLINE PARTIAL SUMS)

$$
\text { Idea: } \sum_{i=u}^{v} x_{i}=\sum_{i=1}^{v} x_{i}-\sum_{i=1}^{v} x_{i}
$$

General Aggregation

d

$$
\# Q\left(x_{2}\right)=\oplus_{x_{1}} A\left(x_{1}\right) \wedge B\left(x_{2}\right) \wedge \neg R\left(x_{1}, x_{2}\right)
$$

$$
\text { start }-1-2-3-5-\text { end }
$$

\[
=1-2=

\] | |
| :---: |
| b |

For any aggregation, where \bigoplus forms a semigroup

- we can compute the partial sums in constant time
- but we need preprocessing time $O(N \cdot \alpha(N))$
- $\alpha(N)$ is the inverse Ackermann function
- uses deep results for RangeSum [Yao '82, Chazelle '91]

Aggregation in Arbitrary CQNs

$$
Q\left(\mathbf{x}_{F}\right)=\oplus_{\mathbf{x}_{[n] \backslash F}} \otimes_{K \in \mathscr{C}^{+}} R_{K}\left(\mathbf{x}_{K}\right) \wedge \otimes_{K \in \mathscr{E}_{-}-} \bar{R}_{K}\left(\mathbf{x}_{K}\right)
$$

- Semiring structure $(\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$
- positive factor: a list of tuples with their value in \mathbf{D}; any tuple outside the list has value $\mathbf{0}$
- negative factor: a list of tuples with their value in \mathbf{D}; any tuple outside the list has the same default value $c \neq \mathbf{0}$

Aggregation in Arbitrary CQNs

$$
Q\left(\mathbf{x}_{F}\right)=\oplus_{\mathbf{x}_{[n] \mid F}} \otimes_{K \in \mathscr{C}^{+}} R_{K}\left(\mathbf{x}_{K}\right) \wedge \otimes_{K \in \mathscr{C}_{-}} \bar{R}_{K}\left(\mathbf{x}_{K}\right)
$$

For any semiring, if the signed hypergraph $\left([n], \mathscr{E}^{+}, \mathscr{E}^{-} \cup\{F\}\right)$ is freeconnex signed-acyclic, the output can be enumerated with constant delay after preprocessing time $O(N \cdot \alpha(N))$

- If the semiring has an additive inverse, the preprocessing time is $O(N)$
- The general algorithm follows the elimination sequence, but maintaining the aggregates becomes very complex

Other Remarks

Query Difference

Our techniques also characterize the linear-time behavior for the difference of two CQs with the same output schema: $Q=Q_{1}-Q_{2}$ [Hu \& Wang '23]

$$
\begin{aligned}
Q & =\left(R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}, x_{4}\right)\right)-\left(T\left(x_{1}, x_{2}\right) \wedge U\left(x_{2}, x_{3}\right)\right) \\
& =\left(R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}, x_{4}\right) \wedge \neg T\left(x_{1}, x_{2}\right)\right) \cup\left(R\left(x_{1}, x_{2}\right) \wedge S\left(x_{2}, x_{3}, x_{4}\right) \wedge \neg U\left(x_{2}, x_{3}\right)\right)
\end{aligned}
$$

Since both resulting CQNs are signed-acyclic, we can enumerate their union with constant-delay enumeration after linear time preprocessing

Relational Division

- Suppose we want to compute relational division: $R(x, y) / S(x)$
- We can rewrite using RA: $\pi_{y}(R)-\pi_{y}\left(\left(\pi_{y}(R) \times S\right)-R\right)$
- Define $R^{\prime}(y)=\pi_{y}(R)$, which can be computed in linear time
- The RHS of the difference is the query $Q(y)=R^{\prime}(y) \wedge S(x) \wedge \neg R(x, y)$ which is freeconnex signed-acyclic and thus can be computed in linear time!

Corollary: the division operator can be computed in linear time

Open Questions

What are the appropriate measures of width to have tractability for CQNs?

- nest-set width [Lanzinger '21]
- generalizations of fractional hyper tree width?

Do our algorithms translate to practice?

- query rewriting techniques [Hu \& Wang '23]
- data structure implementation

