Predicates and Predicate Logic

Motivating example: Consider

If $(x + y \ge 300)$ then $(x \ge 150)$ or $y \ge 150)$

Is this true or false?

Suppose we let P: $x + y \ge 300$

Q: $x \ge 150$ R: $y \ge 150$

Then $P \Rightarrow Q \lor R \equiv$

Predicates

predicate: a mapping from some underlying domain D to propositions

Examples:

 $P(x): x^2 \ge x$

domain is

Q(x) : x = x + 1

S(x): x ends in the letter 'y'

domain is

T(x): x has at least 9 letters

Even(x): x is even domain is

Costars(a, b, m): a and b both appeared in movie m

domain of a, b is

domain of m is

Creating propositions from predicates:

1.

2.

Quantification

Universal quantification

 $(\forall x) P(x) means$

- ∘ *true* if
- ∘ false if

If domain is unclear, specify it: Common numeric domains:

Examples

Suppose we have the domain Days = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}

$$(\forall x \in Days) S(x)$$

 $\equiv S(Monday) \ \land \ S(Tuesday) \ \land \ S(Wednesday) \ \land \ S(Friday) \ \land \ S(Saturday) \ \land \ S(Sunday)$

 $(\forall x) P(x)$ in other words,

Existential quantification

- $(\exists x) P(x) means$
 - o true if
 - ∘ *false* if

Examples

 $(\exists x \in Days) T(x)$

(X) (X) (X)

Relationship between universal and existential quantification

$$\neg (\forall x) P(x) \equiv$$

$$\neg (\exists x) P(x) \equiv$$

To get a feel for why, suppose D = $\{x_0, x_1, x_2, ..., x_n\}$

Then
$$(\forall x) P(x) \equiv$$

and
$$(\exists x) P(x) \equiv$$