Propositions and Propositional Logic

Propositions

Goal: reason about discrete structures in a rigorous manner

Proof: chain of logical deductions starting from some axioms & ending in a proposition

Axiom: basic fact that we take for granted; underlying assumptions

Proposition:

Which of the following statements are propositions?

- 1. Mark Hill is the chair of the CS Department.
- 2. Today is not Thursday.
- 3. Serena Williams is the greatest women's tennis player ever.
- 4. It is snowing.
- 5. This sentence is false.

Operations on propositions

negation: ¬

conjunction: ∧

disjunction: ∨

implication: ⇒

equivalence (or biconditional): \iphi

Precedence

Propositional formulas

Properties of operators

Some of the most useful:

- associative
- commutative
- distributive
- DeMorgan's Laws
- conditional identities

Examples

- 1. (¬A) ∨ B
- 2. $(A \Rightarrow B) \land (B \Rightarrow A)$
- 3. $(A \land (A \Rightarrow B)) \Rightarrow B$
- 4. $(A \lor B) \land (A \lor \neg B) \land \neg A$

Logical equivalence

Show $A \Rightarrow B$ is logically equivalent to $\neg B \Rightarrow \neg A$

Show $A \Rightarrow B$ is **not** logically equivalent to $B \Rightarrow A$

Show $(A \lor B) \Rightarrow C$ is logically equivalent to $(A \Rightarrow C) \land (B \Rightarrow C)$