Good Programming Practices/Style

Programmers use good programming style to ensure that their source code is easily read and understood by people, including themselves. These people typically are members of a program development team and others who maintain or enhance the code. Good style is particularly important when an author leaves a project. Then only the source code remains to communicate the author's intentions.

Good style will also help you develop your code more efficiently and minimize bugs. A programmer's personal style develops over his or her career. It is to your advantage to take the time now to establish good programming practices.

4.2.1 Comments

Comments are essential for making your code readable. Do not use comments to explain things that are obvious to programmers. Instead, use comments to point out things that are not immediately evident, or to highlight sections of code.

Example of a bad comment:

first_loop = num_nodes+1; % set first_loop to be one more than the

 % number of nodes

This comment is unhelpful because it doesn't really give any additional information beyond what you can understand from reading the first_loop = num_nodes+1 statement itself.

Example of a better comment:

first_loop = num_nodes+1; % the loop equations follow the node

 % equations, so the index of the first loop

 % equation is one more than the index of

 % the last node equation

4.2.2 Some Tips for Writing Better Code

· Use descriptive names. This is true for script names as well as variable names. The name need not be long, but it should relate to the intended use. Short names such as i, j, k can be used for temporary variables and loop counters. Remember not to use blanks or dashes in M-file names.

· Whitespace is essential for making source files readable.

· Meaningful parts of code are grouped together by using blank lines as separators.

· Indentation - use tabs/spaces to indicate the level of nesting. Don't forget that you can use the Smart Indent (Text->Smart Indent) feature of the Matlab text editor to handle indentation for you.

· Use comments throughout your scripts to explain why the code is important, not just re-iterate what each statement is doing.

· Use several lines of comments at the top of each of your M-Files to describe the script.

· You don't need to comment every statement. Use comments to:

· highlight the major steps of your algorithm

· explain long calculations or conditions

· clarify convoluted or unusual code

· mark locations where you suspect a bug may exist

· mark locations where improvements or enhancements are planned

