
Week 1 Page 1

Welcome to CS 536:
Introduction to Programming Languages and Compilers!

Instructor: Beck Hasti
• hasti@cs.wisc.edu
• Office hours to be determined

TAs
• Aaryan Patel
• Daniel Smedema
• Jack Stanek
• Nick Boddy

Course websites:
canvas.wisc.edu

www.piazza.com/wisc/spring2025/compsci536

pages.cs.wisc.edu/~hasti/cs536/epic

About the course
We will study compilers
We will understand how they work
We will build a full compiler

Course mechanics
Exams (60%)
• Midterm 1 (18%): Thursday, February 27, 6:30 – 8 pm
• Midterm 2 (16%): Thursday, March 20, 6:30 – 8 pm
• Final (26%): Thursday, May 8, 6:30 – 8:30 pm

Programming Assignments (40%)
• 6 programs: 5% + 7% + 7% + 7% + 7%+ 7%

Homework Assignments
• 8 short homeworks (optional, not graded)

Week 1 Page 2

What is a compiler?

A compiler is
• recognizer of language S

• a translator from S to T

• a program in language H

Front end vs back end

front end = understand source code S; map S to IR

IR = intermediate representation

back end = map IR to T

Week 1 Page 3

Overview of typical compiler

Scanner

Parser

Semantic analyzer

Intermediate code generator

Optimzer

Code generator

Object program

sequence of characters

sequence of tokens

AST

augmented, annotated AST

IR

optimized IR

assembly or machchine code

front end

back end

Symbol
table

Source program

Week 1 Page 4

Scanner
Input: characters from source program
Output: sequence of tokens
Actions:
• group characters into lexemes (tokens)
• identify and ignore whitespace, comments, etc.

What errors can it catch?
• bad characters

• unterminated strings

• integer literals that are too large

Parser
Input: sequence of tokens from the scanner
Output: AST (abstract syntax tree)
Actions:
• group tokens into sentences

What errors can it catch?
• syntax errors

• (possibly) static semantic errors

Semantic analyzer
Input: AST
Output: annotated AST
Actions: does more static semantic checks
• Name analysis

• Type checking

Intermediate code generator
Input: annotated AST
Output: intermediate representation (IR)

Week 1 Page 5

Example

a = 2 * b + abs(-71);

Scanner produces tokens:

AST (from parser)

Symbol table

3-address code

temp1 = 2 * b

temp2 = 0 – 71

move temp2 param1

call abs

move return1 temp3

temp4 = temp1 + temp3

a = temp4

Week 1 Page 6

Optimizer
Input: IR
Output: optimized IR
Actions: improve code
• make it run faster, make it smaller
• several passes: local and global optimization
• more time spent in compilation; less time in execution

Code generator
Input: IR from optimizer
Output: target code

Symbol Table
Compiler keeps track of names in
• semantic analyzer

• code generation

• optimizer

P1 : implement symbol table

Block-structured language
• nested visibility of names

• easy to tell which def of a name applies

• lifetime of data is bound to scope

Example: (from C)
int x, y;

void A() {
 double x, z;
 C(x, y, z);
}

void B(){
 C(x, y, z);
}

Week 1 Page 7

Recall
A compiler is

• recognizer of language S
• a translator from S to T
• a program in language H

front end = understand source code S; map S to IR
IR = intermediate representation
back end = map IR to T

Why do we need a
compiler?

• processors can execute
only binaries (machine-
code/assembly programs)

• writing assembly
programs will make you
lose your mind

• allows you to write
programs in nice(ish)
high-level languages like
C; compile to binaries

Week 1 Page 8

Special linkage between scanner and parser (in most compilers)

Scanning
Scanner translates sequence of chars into sequence of tokens
Each time scanner is called it should:

• find longest sequence of chars corresponding to a token
• return that token

Scanner generator
• Inputs:

• one regular expression for each token
• one regular expression for each item to ignore (comments, whitespace, etc.)

• Output: scanner program

To understand how a scanner generator works, we need to understand FSMs

Week 1 Page 9

Finite-state machines
(aka finite automata, finite-state automata)

• Inputs: string (sequence of characters)

• Output: accept / reject

Language defined by an FSM = the set of strings accepted by the FSM

Example 1:
Language: single-line comments starting with // (in Java / C++)

Nodes are states
Edges are transitions
Start state has arrow point to it
Final states are double circles

Week 1 Page 10

How a finite state machine works
curr_state = start_state
let in_ch= current input character

repeat

 if there is edge out of curr_state with
 label in_ch into next_state
 curr_state = next_state
 in_ch = next char of input

 otherwise

 stuck // error condition

until stuck or input string is consumed

if entire string is consumed and
 curr_state is a final state

 accept string

otherwise

 reject string

Formalizing finite-state machines
alphabet (Σ) = finite, non-empty set of elements called symbols

string over Σ = finite sequence of symbols from Σ

language over Σ = set of strings over Σ

finite state machine M = (Q, Σ, δ, q, F) where

Q = set of states

Σ = alphabet

δ = state transition function Q×Σ→Q

q = start state

F = set of accepting (or final) states

L(M) = the language of FSM M = set of all strings M accepts

finite automata M accepts x = x1x2x3...xn iff

𝛿𝛿(𝛿𝛿(𝛿𝛿(… 𝛿𝛿(𝛿𝛿(𝛿𝛿(𝑠𝑠0, 𝑥𝑥1), 𝑥𝑥2), 𝑥𝑥3), … 𝑥𝑥𝑛𝑛−2), 𝑥𝑥𝑛𝑛−1), 𝑥𝑥𝑛𝑛)

Week 1 Page 11

Example 2: hexadecimal integer literals in Java

Hexadecimal integer literals in Java:
• must start 0x or 0X
• followed by at least one hexadecimal digit (hexdigit)

• hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F
• optionally can add long specifier (l or L) at end

Q =

Σ =

δ =

q =

F =

State transition table

 0 1 – 9 a – f A – F x X l L

s0

s1

s2

s3

s4

se

Week 1 Page 12

Coding a state transition table
curr_state = start_state

done = false

while (!done)

 ch = nextChar()

 next = transition[curr_state][ch]

 if (next == error || ch == EOF)

 done = true

 else

 curr_state = next

return final_states.contains(curr_state) && next != error

Example 3: identifiers in C/C++

A C/C++ identifier
• is a sequence of one or more letters, digits, underscores
• cannot start with a digit

Week 1 Page 13

Deterministic vs non-deterministic FSMs
deterministic
• no state has >1 outgoing edge with same label
• edges can only be labelled with elements of Σ

non-deterministic
• states may have multiple outgoing edges with same label
• edges may be labelled with special symbol 𝜀𝜀 (empty string)

𝜺𝜺 -transitions can happen without reading input

Example 2 (revisited): hexadecimal integer literals in Java

Example 4: FSM to recognize keywords for, if, int

Recap
• The scanner reads a stream of characters and tokenizes it (i.e., finds tokens)

• Tokens are defined using regular expressions

• Scanners are implemented using (deterministic) FSMs

• FSMs can be non-deterministic

Week 1 Page 14

Next time
• regular expressions

• understand the connections between
• DFAs and NFAs
• NFAs and regular expressions

• language recognition  tokenizers

• scanner generators

• JLex

Programming Assignment 1
• released tomorrow (Friday, Jan. 24)

• test code (part 1) due Sunday, Feb. 2 by 11:59 pm

• other files (part 2) due Thursday, Feb. 6 by 11:59 pm

	Welcome to CS 536: Introduction to Programming Languages and Compilers!
	About the course
	Course mechanics
	What is a compiler?
	Front end vs back end
	Overview of typical compiler
	Scanner
	Parser
	Semantic analyzer
	Intermediate code generator
	Example
	Optimizer
	Code generator
	Symbol Table
	Recall
	Special linkage between scanner and parser (in most compilers)
	Scanning
	Finite-state machines (aka finite automata, finite-state automata)
	Example 1:
	How a finite state machine works
	Formalizing finite-state machines
	Example 2: hexadecimal integer literals in Java
	Coding a state transition table
	Example 3: identifiers in C/C++
	Deterministic vs non-deterministic FSMs
	Example 2 (revisited): hexadecimal integer literals in Java
	Example 4: FSM to recognize keywords for, if, int
	Recap
	Next time
	Programming Assignment 1

