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CS 536 Announcements for Thursday, January 30, 2025 
Course websites:  

pages.cs.wisc.edu/~hasti/cs536/epic 
www.piazza.com/wisc/spring2025/compsci536 

Programming Assignment 1 
• test code due Sunday, Feb. 2 by 11:59 pm 
• other files due Thursday, Feb. 6 by 11:59 pm 

Last Time 
• intro to CS 536 
• compiler overview 
• start scanning 
• finite state machines 

• formalizing finite state machines 
• coding finite state machines 
• deterministic vs non-deterministic FSMs 

Today 
• non-deterministic FSMs 
• equivalence of NFAs and DFAs  
• regular languages 
• regular expressions 
• regular expressions  DFAs 
• language recognition  tokenizers 
• scanner generators 
• JLex 

 
 

Recall 
• scanner : converts a sequence of characters to a sequence of tokens 
• scanner implemented using FSMs 
• FSMs can be DFA or NFA 

 
Creating a scanner 

          

  token  regex  NFA  DFA  

scanner  =  to + to + to + to  

  regex  NFA  DFA  code  

  scanner generator  
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NFAs, formally 
finite state machine M = (Q, Σ, δ, q, F) 
 
 
 
 
L(M) = the language of FSM M = set of all strings M accepts 
Example: 
 
 
 
 
 
 
 
 
 

"Running" an NFA 
To check if a string is in L(M) of NFA M, simulate set of choices it could make. 
 
 
 
 
 
 
 
 
 
 
The string is in L(M) iff there is at least one sequence of transitions that 
• consumes all input (without getting stuck) and 
• ends in one of the final states 
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NFA and DFA are equivalent 
Two automata M and M* are equivalent iff L(M) = L(M*) 
Lemmas to be proven: 

Lemma 1:  Given a DFA M, one can construct an NFA M* that recognizes the same 
language as M, i.e., L(M*) = L(M) 

Lemma 2:  Given an NFA M, one can construct a DFA M* that recognizes the same 
language as M, i.e., L(M*) = L(M) 

 
 
 
 
 
 
 
 
 
 
 

Proving Lemma 2 
Lemma 2:  Given an NFA M, one can construct a DFA M* that recognizes the same 

language as M, i.e., L(M*) = L(M) 

Part 1: Given an NFA M without 𝜺𝜺-transitions, one can construct a DFA M* that recognizes 
the same language as M 

Part 2: Given an NFA M with 𝜺𝜺-transitions, one can construct a NFA M* without 𝜺𝜺-transitions 
that recognizes the same language as M 
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NFA without 𝜺𝜺-transitions to DFA 
Observation: we can only be in finitely many subsets of states at any one time 

Idea: to do NFA M  DFA M*, use a single state in M* to simulate sets of states in M 

Suppose M has |Q| states. Then M* can have only up to           states. 
Why? 

 
A B C 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

 

Example 
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NFA without 𝜺𝜺-transitions to DFA 
Given NFA M: 

 
Build new DFA M* 
To build DFA: Add an edge in M* from state S* on character c to state T* if T* represents the 
set of all states that a state in S* could possibly transition to on input c 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜺𝜺-transitions 
Example: xn, where n is even or divisible by 3 

  

ε 

ε 
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Eliminating 𝜺𝜺-transitions 
Goal: given NFA M with 𝜺𝜺-transitions, construct an 𝜺𝜺-free NFA M* that is equivalent to M 
Definition: epsilon closure 

eclose(S) = set of all states reachable from S using 0 or more epsilon transitions
 

 

 

 eclose 

P  

Q  

R  

Q1  

R1  

R2  
 

 

 

  

ε 

ε 

ε 

ε 
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Summary of FSMs 
DFAs and NFAs are equivalent 
• an NFA can be converted into a DFA, which can be implemented via the table-driven 

approach 

𝜺𝜺-transitions do not add expressiveness to NFAs 
• algorithm to remove 𝜀𝜀-transitions 

 
 
 
 

Regular Languages and Regular Expressions 
Regular language 
Any language recognized by an FSM is a regular language 
Examples: 

• single-line comments beginning with // 
• hexadecimal integer literals in Java 
• C/C++ identifiers 
• {𝜀𝜀, ab, abab, ababab, abababab, …} 

Regular expression 
= a pattern that defines a regular language 

regular language: (potentially infinite) set of strings 
regular expression: represents a (potentially infinite) set of strings by a single pattern 

Example: {𝜺𝜺, ab, abab, ababab, abababab, …}  (ab)* 

Why do we need them? 
• Each token in a programming language can be defined by a regular language 

• Scanner-generator input = one regular expression for each token to be recognized by 
the scanner 

 

Formal definition 
A regular expression over an alphabet Σ is any of the following: 
• ∅ (the empty regular expression) 
• ε 
• a (for any a ∈ Σ) 

Moreover, if R1 and R2 are regular expressions over Σ, then so are:  R1 | R2 ,  R1 · R2  , R1* 
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Regular expressions (as an expression language) 
regular expression = pattern describing a set of strings 
operands: single characters, epsilon 
operators: 

 alternation ("or"):   a | b 

 concatenation ("followed by"):   a.b     ab 

 iteration ("Kleene star"):   a* 

Conventions 
aa  is a.a 
a+  is aa* 
letter  is a|b|c|d|…|y|z|A|B|…|Z 
digit  is 0|1|2|…|9 
not(x)  is all characters except x 
parentheses for grouping and overriding precedence, e.g., (ab)* 

Example: single-line comments beginning with // 
 
 
 
Example: hexadecimal integer literals in Java 
• must start 0x or 0X 
• followed by at least one hexadecimal digit (hexdigit) 

• hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F 
• optionally can add long specifier (l or L) at end 

 
 
 
 
Example: C/C++ identifiers (with one added restriction) 
• sequence of letters/digits/underscores 
• cannot begin with a digit 
• cannot end with an underscore  
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From regular expressions to NFAs 
Overview of the process 
• Conversion of literals and epsilon 

• Conversion of operators 
 
 
 
Regex to NFA rules 
Rules for operands 
 
 
 
 
Suppose A is a regex with NFA: 
 
 
 
 
 
 
 
 
Rules for alternation  A|B 
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Regex to NFA rules 
Rules for catenation  A.B 
 

  
 
Rules for iteration  A* 
 
 

 
 
 
 

Tree representation of a regex 
Consider regex:  ( letter | '_' ) ( letter | '_' | digit )* 
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Regex to DFA 
We now can do: 
 
 
We can add one more step: optimize DFA 

Theorem: For every DFA M, there exists a unique equivalent smallest DFA M* that 
recognizes the same language as M. 

To optimize: 
• remove unreachable states 

• remove dead states 

• merge equivalent states 
 
 
But what's so great about DFAs? 

Recall: state-transition function (δ) can be expressed as a table 
 very efficient array representation 

 
 
 

 efficient algorithm for running (any) DFA 
s = start state 
while (more input){ 
 c = read next char 
 s = table[s][c] 
} 
if s is final, accept 
else reject 

 
What else do we need? 

FSMs – only check for language membership of a string 
scanner needs to 
• recognize a stream of many different tokens using the longest match 
• know what was matched 
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Table-driven DFA  tokenizer 
Idea: augment states with actions that will be executed when state is reached 

Consider:  ( letter )( letter | digit )* 
 
 
 
Problem: 
 
 
 
 
 
 
Problem: 
 
 
 
 
 

Scanner Generator Example

Language description:  
consider a language consisting of two 
statements 
• assignment statements: ID = expr 
• increment statements: ID += expr 

where expr is of the form: 

• ID + ID 
• ID ^ ID 
• ID < ID 
• ID <= ID 

and ID are identifiers following C/C++ 
rules (can contain only letters, digits, and 
underscores; can't start with a digit) 

Tokens: 

Token Regular expression 
ASSIGN 

 

INCR 
 

PLUS 
 

EXP 
 

LESSTHAN 
 

LEQ 
 

ID  
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Combined DFA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

State-transition table 

 = + ^ < _ letter digit EOF 
none 

of 
these 

 
S0 
  

 ret 
ASSIGN  A  ret EXP  B  C  C    ret EOF   

 
A 
  

ret INC  put 1 back, ret 
PLUS 

  
            

 
B 
  

 ret LEQ  put 1 back, ret 
LESSTHAN 

  
            

 
C 
  

 put 1 back, 
ret ID 

  
     C C C put 1 back, 

ret ID 
  

 

do { 
 read char 
 perform action / update state 
 if (action was to return a token) 
  start again in start state 
} while not(EOF or stuck) 
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Lexical analyzer generators 
(aka scanner generators) 

Formally define transformation from regex to scanner 

Tools written to synthesize a lexer automatically 

• Lex : UNIX scanner generator, builds scanner in C 
• Flex : faster version of Lex 
• JLex : Java version of Lex 

 

JLex 
Declarative specification 
• you don't tell JLex how to scan / how to match tokens 
• you tell JLex what you want scanned (tokens) & what to do when a token is matched 

Input: set of regular expressions + associated actions 
 
Output: Java source code for a scanner 
 
 
Format of JLex specification 
3 sections separated by %% 
• user code section 
• directives 
• regular expression rules 

Example 
// User Code section:  For right now, we will not use it. 
%% 

DIGIT=  [0-9] 
LETTER=  [a-zA-Z] 
WHITESPACE= [\040\t\n] 

%state SPECIALINTSTATE 

%implements java_cup.runtime.Scanner 
%function next_token 
%type java_cup.runtime.Symbol 

%eofval{ 
System.out.println("All done"); 
return null; 
%eofval} 

%line 



Week 2  Page 15 

%% 
 

({LETTER}|"_")({DIGIT}|{LETTER}|"_")* { 
                          System.out.println(yyline+1 + ": ID "  
                        + yytext()); } 
 
"="            { System.out.println(yyline+1 + ": ASSIGN"); } 
"+"            { System.out.println(yyline+1 + ": PLUS"); } 
"^"            { System.out.println(yyline+1 + ": EXP"); } 
"<"            { System.out.println(yyline+1 + ": LESSTHAN"); } 
"+="           { System.out.println(yyline+1 + ": INCR"); } 
"<="           { System.out.println(yyline+1 + ": LEQ"); } 
{WHITESPACE}*  { } 
.              { System.out.println(yyline+1 + ": bad char"); } 

 
Regular expression rules section 

Format:   <regex>{code}    where <regex> is a regular expression for a single token 
• can use macros from Directives section – surround with curly braces { } 
• characters represent themselves (except special characters) 
• characters inside " " represent themselves (except \" ) 
• . matches anything 

Regular expression operators:  |   *   +   ?   ( ) 

Character class operators:    -     ^     \ 
 
 
 
Using scanner generated by JLex in a program 
// inFile is a FileReader initialized to read from the 

// file to be scanned 

Yylex scanner = new Yylex(inFile); 

try { 

    scanner.next_token(); 

} catch (IOException ex) { 

    System.err.println( 

              "unexpected IOException thrown by the scanner"); 

    System.exit(-1); 

} 
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