
Week 2 Page 1

CS 536 Announcements for Thursday, January 30, 2025
Course websites:

pages.cs.wisc.edu/~hasti/cs536/epic
www.piazza.com/wisc/spring2025/compsci536

Programming Assignment 1
• test code due Sunday, Feb. 2 by 11:59 pm
• other files due Thursday, Feb. 6 by 11:59 pm

Last Time
• intro to CS 536
• compiler overview
• start scanning
• finite state machines

• formalizing finite state machines
• coding finite state machines
• deterministic vs non-deterministic FSMs

Today
• non-deterministic FSMs
• equivalence of NFAs and DFAs
• regular languages
• regular expressions
• regular expressions  DFAs
• language recognition  tokenizers
• scanner generators
• JLex

Recall
• scanner : converts a sequence of characters to a sequence of tokens
• scanner implemented using FSMs
• FSMs can be DFA or NFA

Creating a scanner

 token regex NFA DFA

scanner = to + to + to + to

 regex NFA DFA code

 scanner generator

Week 2 Page 2

NFAs, formally
finite state machine M = (Q, Σ, δ, q, F)

L(M) = the language of FSM M = set of all strings M accepts
Example:

"Running" an NFA
To check if a string is in L(M) of NFA M, simulate set of choices it could make.

The string is in L(M) iff there is at least one sequence of transitions that
• consumes all input (without getting stuck) and
• ends in one of the final states

Week 2 Page 3

NFA and DFA are equivalent
Two automata M and M* are equivalent iff L(M) = L(M*)
Lemmas to be proven:

Lemma 1: Given a DFA M, one can construct an NFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Lemma 2: Given an NFA M, one can construct a DFA M* that recognizes the same
language as M, i.e., L(M*) = L(M)

Proving Lemma 2
Lemma 2: Given an NFA M, one can construct a DFA M* that recognizes the same

language as M, i.e., L(M*) = L(M)

Part 1: Given an NFA M without 𝜺𝜺-transitions, one can construct a DFA M* that recognizes
the same language as M

Part 2: Given an NFA M with 𝜺𝜺-transitions, one can construct a NFA M* without 𝜺𝜺-transitions
that recognizes the same language as M

Week 2 Page 4

NFA without 𝜺𝜺-transitions to DFA
Observation: we can only be in finitely many subsets of states at any one time

Idea: to do NFA M  DFA M*, use a single state in M* to simulate sets of states in M

Suppose M has |Q| states. Then M* can have only up to states.
Why?

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Example

Week 2 Page 5

NFA without 𝜺𝜺-transitions to DFA
Given NFA M:

Build new DFA M*
To build DFA: Add an edge in M* from state S* on character c to state T* if T* represents the
set of all states that a state in S* could possibly transition to on input c

𝜺𝜺-transitions
Example: xn, where n is even or divisible by 3

ε

ε

Week 2 Page 6

Eliminating 𝜺𝜺-transitions
Goal: given NFA M with 𝜺𝜺-transitions, construct an 𝜺𝜺-free NFA M* that is equivalent to M
Definition: epsilon closure

eclose(S) = set of all states reachable from S using 0 or more epsilon transitions

 eclose

P

Q

R

Q1

R1

R2

ε

ε

ε

ε

Week 2 Page 7

Summary of FSMs
DFAs and NFAs are equivalent
• an NFA can be converted into a DFA, which can be implemented via the table-driven

approach

𝜺𝜺-transitions do not add expressiveness to NFAs
• algorithm to remove 𝜀𝜀-transitions

Regular Languages and Regular Expressions
Regular language
Any language recognized by an FSM is a regular language
Examples:

• single-line comments beginning with //
• hexadecimal integer literals in Java
• C/C++ identifiers
• {𝜀𝜀, ab, abab, ababab, abababab, …}

Regular expression
= a pattern that defines a regular language

regular language: (potentially infinite) set of strings
regular expression: represents a (potentially infinite) set of strings by a single pattern

Example: {𝜺𝜺, ab, abab, ababab, abababab, …}  (ab)*

Why do we need them?
• Each token in a programming language can be defined by a regular language

• Scanner-generator input = one regular expression for each token to be recognized by
the scanner



Formal definition
A regular expression over an alphabet Σ is any of the following:
• ∅ (the empty regular expression)
• ε
• a (for any a ∈ Σ)

Moreover, if R1 and R2 are regular expressions over Σ, then so are: R1 | R2 , R1 · R2 , R1*

Week 2 Page 8

Regular expressions (as an expression language)
regular expression = pattern describing a set of strings
operands: single characters, epsilon
operators:

 alternation ("or"): a | b

 concatenation ("followed by"): a.b ab

 iteration ("Kleene star"): a*

Conventions
aa is a.a
a+ is aa*
letter is a|b|c|d|…|y|z|A|B|…|Z
digit is 0|1|2|…|9
not(x) is all characters except x
parentheses for grouping and overriding precedence, e.g., (ab)*

Example: single-line comments beginning with //

Example: hexadecimal integer literals in Java
• must start 0x or 0X
• followed by at least one hexadecimal digit (hexdigit)

• hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F
• optionally can add long specifier (l or L) at end

Example: C/C++ identifiers (with one added restriction)
• sequence of letters/digits/underscores
• cannot begin with a digit
• cannot end with an underscore

Week 2 Page 9

From regular expressions to NFAs
Overview of the process
• Conversion of literals and epsilon

• Conversion of operators

Regex to NFA rules
Rules for operands

Suppose A is a regex with NFA:

Rules for alternation A|B

Week 2 Page 10

Regex to NFA rules
Rules for catenation A.B

Rules for iteration A*

Tree representation of a regex
Consider regex: (letter | '_') (letter | '_' | digit)*

Week 2 Page 11

Regex to DFA
We now can do:

We can add one more step: optimize DFA

Theorem: For every DFA M, there exists a unique equivalent smallest DFA M* that
recognizes the same language as M.

To optimize:
• remove unreachable states

• remove dead states

• merge equivalent states

But what's so great about DFAs?

Recall: state-transition function (δ) can be expressed as a table
 very efficient array representation

 efficient algorithm for running (any) DFA
s = start state
while (more input){
 c = read next char
 s = table[s][c]
}
if s is final, accept
else reject

What else do we need?

FSMs – only check for language membership of a string
scanner needs to
• recognize a stream of many different tokens using the longest match
• know what was matched

Week 2 Page 12

Table-driven DFA  tokenizer
Idea: augment states with actions that will be executed when state is reached

Consider: (letter)(letter | digit)*

Problem:

Problem:

Scanner Generator Example

Language description:
consider a language consisting of two
statements
• assignment statements: ID = expr
• increment statements: ID += expr

where expr is of the form:

• ID + ID
• ID ^ ID
• ID < ID
• ID <= ID

and ID are identifiers following C/C++
rules (can contain only letters, digits, and
underscores; can't start with a digit)

Tokens:

Token Regular expression
ASSIGN

INCR

PLUS

EXP

LESSTHAN

LEQ

ID

Week 2 Page 13

Combined DFA

State-transition table

 = + ^ < _ letter digit EOF
none

of
these

S0

 ret
ASSIGN A ret EXP B C C ret EOF

A

ret INC put 1 back, ret
PLUS

B

 ret LEQ put 1 back, ret
LESSTHAN

C

 put 1 back,
ret ID

 C C C put 1 back,

ret ID

do {
 read char
 perform action / update state
 if (action was to return a token)
 start again in start state
} while not(EOF or stuck)

Week 2 Page 14

Lexical analyzer generators
(aka scanner generators)

Formally define transformation from regex to scanner

Tools written to synthesize a lexer automatically

• Lex : UNIX scanner generator, builds scanner in C
• Flex : faster version of Lex
• JLex : Java version of Lex

JLex
Declarative specification
• you don't tell JLex how to scan / how to match tokens
• you tell JLex what you want scanned (tokens) & what to do when a token is matched

Input: set of regular expressions + associated actions

Output: Java source code for a scanner

Format of JLex specification
3 sections separated by %%
• user code section
• directives
• regular expression rules

Example
// User Code section: For right now, we will not use it.
%%

DIGIT= [0-9]
LETTER= [a-zA-Z]
WHITESPACE= [\040\t\n]

%state SPECIALINTSTATE

%implements java_cup.runtime.Scanner
%function next_token
%type java_cup.runtime.Symbol

%eofval{
System.out.println("All done");
return null;
%eofval}

%line

Week 2 Page 15

%%

({LETTER}|"_")({DIGIT}|{LETTER}|"_")* {
 System.out.println(yyline+1 + ": ID "
 + yytext()); }

"=" { System.out.println(yyline+1 + ": ASSIGN"); }
"+" { System.out.println(yyline+1 + ": PLUS"); }
"^" { System.out.println(yyline+1 + ": EXP"); }
"<" { System.out.println(yyline+1 + ": LESSTHAN"); }
"+=" { System.out.println(yyline+1 + ": INCR"); }
"<=" { System.out.println(yyline+1 + ": LEQ"); }
{WHITESPACE}* { }
. { System.out.println(yyline+1 + ": bad char"); }

Regular expression rules section

Format: <regex>{code} where <regex> is a regular expression for a single token
• can use macros from Directives section – surround with curly braces { }
• characters represent themselves (except special characters)
• characters inside " " represent themselves (except \")
• . matches anything

Regular expression operators: | * + ? ()

Character class operators: - ^ \

Using scanner generated by JLex in a program
// inFile is a FileReader initialized to read from the

// file to be scanned

Yylex scanner = new Yylex(inFile);

try {

 scanner.next_token();

} catch (IOException ex) {

 System.err.println(

 "unexpected IOException thrown by the scanner");

 System.exit(-1);

}

	CS 536 Announcements for Thursday, January 30, 2025
	NFAs, formally
	"Running" an NFA
	NFA and DFA are equivalent
	Proving Lemma 2
	NFA without 𝜺-transitions to DFA
	Example
	NFA without 𝜺-transitions to DFA
	𝜺-transitions
	Eliminating 𝜺-transitions
	Summary of FSMs
	Regular Languages and Regular Expressions
	Regular expressions (as an expression language)
	From regular expressions to NFAs
	Regex to NFA rules
	Regex to NFA rules
	Tree representation of a regex
	Regex to DFA
	Table-driven DFA (tokenizer
	Scanner Generator Example
	Combined DFA
	State-transition table
	Lexical analyzer generators (aka scanner generators)
	JLex
	Example

