
Week 3 Page 1

CS 536 Announcements for Thursday, February 6, 2025
Programming Assignment 2
• has been released
• due Tuesday, February 18

Last Time
• non-determinisitic FSMs
• equivalence of NFAs and DFAs
• regular expressions
• regular languages
• regular expressions  DFAs
• language recognition  tokenizers
• scanner generators
• JLex

Today
• CFGs
• Makefiles
• resolving ambiguity
• expression grammars
• list grammars

Recall big picture

Week 3 Page 2

Why regular expressions are not good enough
Regular expression wrap-up
+ perfect for tokenizing a language
– limitations
• define only limited family of languages

• can't be used to specify all the programming constructs we need
• no notion of structure

Regexs cannot handle "matching"
Example: L() = { (n)n where n > 0}
Theorem: No regex/DFA can describe the language L()
Proof by contradiction: Suppose there exists a DFA A for L() where A has N states.

Then A has to accept the string (N)N with some sequence of states

By the pigeonhole principle, there exists i, j ≤ N where i < j such that
So

In other words,

No notion of structure
Consider the following stream of tokens: ID ASSIGN ID PLUS ID

Week 3 Page 3

The Chomsky Language Hierarchy
 Language class:

 recursively enumerable

 context-sensitive

 context-free

 regular

Context-free grammar (CFG)
= a set of recursive rewriting rules to generate patterns of strings

Formal definition: A CFG is a 4-tuple (N, ∑, P, S)

• N = set of non-terminals

• ∑ = set of terminals

• P = set of productions

• S = initial non-terminal symbol ("start symbol"), S ϵ N

Week 3 Page 4

Productions
Production syntax : LHS  RHS

Language defined by a CFG
= set of strings (i.e., sequences of terminals) that can be derived from the start non-terminal

To derive a string (of terminal symbols):
• set Curr_Seq to start symbol

• repeat
• find a non-terminal x in Curr_Seq
• find production of the form x  α
• "apply" production: create new Curr_Seq by replacing x with α

• until Curr_Seq contains no non-terminals

Derivation notation
• derives

• derives in one or more steps

• derives in zero or more steps

L(G) = language defined by CFG G
 =

Week 3 Page 5

Example grammar
Terminals

 BEGIN

 END

 SEMICOLON

 ASSIGN

 ID

 PLUS

Non-terminals

 prog

 stmts

 stmt

 expr

Productions

1) prog  BEGIN stmts END

2) stmts  stmts SEMICOLON stmt
3) | stmt

4) stmt  ID ASSIGN expr

5) expr  ID
6) | expr PLUS ID

Week 3 Page 6

Example derivation
Productions
1) prog  BEGIN stmts END
2) stmts  stmts SEMICOLON stmt
3) | stmt
4) stmt  ID ASSIGN expr
5) expr  ID
6) | expr PLUS ID

Derivation

prog

⟹ BEGIN stmts END

⟹ BEGIN stmts SEMICOLON stmt END

⟹ BEGIN stmt SEMICOLON stmt END

⟹ BEGIN ID ASSIGN expr SEMICOLON stmt END

⟹ BEGIN ID ASSIGN expr SEMICOLON ID ASSIGN expr END

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr END

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr PLUS ID END

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN ID PLUS ID END

Week 3 Page 7

Parse trees
= way to visualize a derivation

To derive a string (of terminal symbols):
• set root of parse tree to start symbol

• repeat

• find a leaf non-terminal x
• find production of the form x  α
• "apply" production: symbols in α become the children of x

• until there are no more leaf non-terminals

Derived sequence determined from leaves, from left to right

Productions
1) prog  BEGIN stmts END
2) stmts  stmts SEMICOLON stmt
3) | stmt
4) stmt  ID ASSIGN expr
5) expr  ID
6) | expr PLUS ID

Week 3 Page 8

Makefiles
Basic structure

<target>: <dependency list>
 <command to satisfy target)

Example
Example.class: Example.java IO.class
 javac Example.java

IO.class: IO.java
 javac IO.java

Make creates an internal dependency graph
• a file is rebuilt if one of its dependencies changes

Variables – for common configuration values to use throughout your makefile

Example
JC = /s/std/bin/javac
JFLAGS = -g

Example.class: Example.java IO.class
 $(JC) $(JFLAGS) Example.java

IO.class: IO.java
 $(JC) $(JFLAGS) IO.java

Phony targets
• target with no dependencies
• use make to run commands:

Example
clean:
 rm -f *.class

Week 3 Page 9

Programming Assignment 2
Modify:
• bach.jlex

• P2.java

• Makefile

Makefile

testing - add more here to run your tester and compare
its results to expected results

test:
 java -cp $(CP) P2
 diff allTokens.in allTokens.out

clean up

clean:
 rm -f *~ *.class bach.jlex.java

cleantest:
 rm -f allTokens.out

Running the tester
vm-instunix-07(53)% make test
java -cp ./deps:. P2
3:1 ****ERROR**** ignoring illegal character: a
diff allTokens.in allTokens.out
3d2
< a
make: *** [Makefile:40: test] Error 1

Week 3 Page 10

CFG review
formal definition: CFG G = (N, ∑, P, S)

CFG generates a string by applying
productions until no non-terminals remain

⟹+ means "derives in 1 or more steps"

language defined by a CFG G
L(G) = { w | s ⟹+ w} where
s = start is the start non-terminal of G, an
w = sequence consisting of (only) terminal symbols or ε

Derivation order

1) prog  BEGIN stmts END

2) stmts  stmts SEMICOLON stmt
3) | stmt

4) stmt  ID ASSIGN expr

5) expr  ID
6) | expr PLUS ID

Leftmost derivation :

Rightmost derivation :

Week 3 Page 11

Expression Grammar Example

1) expr  INTLIT
2) | expr PLUS expr
3) | expr TIMES expr
4) | LPAREN expr RPAREN

Derive: 4 + 7 * 3

For grammar G and string w, G is ambiguous if there is

OR

OR

Week 3 Page 12

Grammars for expressions
Goal: write a grammar that correctly reflects precedences and associativities

Precedence
• use different non-terminal for each precedence level
• start by re-writing production for lowest precedence operator first

Example
1) expr  INTLIT
2) | expr PLUS expr
3) | expr TIMES expr
4) | LPAREN expr RPAREN

Week 3 Page 13

Grammars for expressions (cont.)
What about associativity? Consider 1 + 2 + 3

Definition: recursion in grammars

A grammar is recursive in non-terminal x if
x ⟹+ α x γ for non-empty strings of symbols α and γ
A grammar is left-recursive in non-terminal x
if x ⟹+ x γ for non-empty string of symbols γ
A grammar is right-recursive in non-terminal x if
x ⟹+ α x for non-empty string of symbols α

In expression grammars
for left associativity, use left recursion
for right associativity, use right recursion

Example

Week 3 Page 14

Extend this grammar to add exponentiation (POW)
Add exponentiation (POW) to this grammar, with the correct precedence and associativity.

expr  expr PLUS term
 | term
term  term TIMES factor
 | factor
factor  INTLIT
 | LPAREN expr RPAREN

Week 3 Page 15

List grammars
Example a list with no separators, e.g., A B C D E F G

Another ambiguous example
stmt  IF cond THEN stmt
 | IF cond THEN stmt ELSE stmt
 | . . .

Given this word in this grammar: if a then if b then s1 else s2
How would you derive it?

	CS 536 Announcements for Thursday, February 6, 2025
	Recall big picture
	Why regular expressions are not good enough
	Regexs cannot handle "matching"
	No notion of structure
	The Chomsky Language Hierarchy
	Context-free grammar (CFG)
	Productions
	Language defined by a CFG
	Example grammar
	Example derivation
	Parse trees
	Makefiles
	Programming Assignment 2
	CFG review
	Derivation order
	Expression Grammar Example
	Grammars for expressions
	Grammars for expressions (cont.)
	Extend this grammar to add exponentiation (POW)
	List grammars
	Another ambiguous example

