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CS 536 Announcements for Thursday, February 6, 2025 
Programming Assignment 2 
• has been released 
• due Tuesday, February 18 

Last Time 
• non-determinisitic FSMs 
• equivalence of NFAs and DFAs 
• regular expressions 
• regular languages 
• regular expressions  DFAs 
• language recognition  tokenizers 
• scanner generators 
• JLex 

Today 
• CFGs 
• Makefiles 
• resolving ambiguity 
• expression grammars 
• list grammars 

 

Recall big picture 
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Why regular expressions are not good enough 
Regular expression wrap-up 
+ perfect for tokenizing a language 
–  limitations 
• define only limited family of languages 

• can't be used to specify all the programming constructs we need 
• no notion of structure 

 

Regexs cannot handle "matching" 
Example: L( ) = { (n)n where n > 0} 
Theorem: No regex/DFA can describe the language L( ) 
Proof by contradiction: Suppose there exists a DFA A for L( )  where A has N states. 

Then A has to accept the string (N)N with some sequence of states 
 
 
 
 
 
By the pigeonhole principle, there exists i, j ≤ N where i < j such that 
So 
 
 
 
 
In other words,  
 
 
 

No notion of structure 
Consider the following stream of tokens:  ID ASSIGN ID PLUS ID 
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The Chomsky Language Hierarchy 
 Language class: 
 
 recursively enumerable 
 
 context-sensitive 
 
 context-free 
 
 regular 
 
 
 
 
 
 
 

Context-free grammar (CFG) 
= a set of recursive rewriting rules to generate patterns of strings 
 
 
 
 
 
Formal definition: A CFG is a 4-tuple (N, ∑, P, S) 

• N = set of non-terminals  

• ∑ = set of terminals 

• P = set of productions 

• S = initial non-terminal symbol ("start symbol"), S ϵ N 
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Productions 
Production syntax : LHS  RHS 

 

 

 

 

 

 

 

 

 

 

 

Language defined by a CFG  
= set of strings (i.e., sequences of terminals) that can be derived from the start non-terminal  

To derive a string (of terminal symbols): 
• set Curr_Seq to start symbol 

• repeat 
• find a non-terminal x in Curr_Seq 
• find production of the form x  α 
• "apply" production: create new Curr_Seq by replacing x with α 

• until Curr_Seq contains no non-terminals 

Derivation notation 
• derives 

• derives in one or more steps 

• derives in zero or more steps 

L(G) = language defined by CFG G 
 =  
  



Week 3  Page 5 

Example grammar 
Terminals 

 BEGIN 

 END 

 SEMICOLON 

 ASSIGN 

 ID 

 PLUS 
 
Non-terminals 

 prog 

 stmts 

 stmt 

 expr 
 
Productions 

1) prog  BEGIN stmts END 

2) stmts  stmts SEMICOLON stmt 
3)   | stmt 

4) stmt  ID ASSIGN expr 

5) expr  ID 
6)   | expr PLUS ID 
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Example derivation 
Productions 
1) prog  BEGIN stmts END 
2) stmts  stmts SEMICOLON stmt 
3)   | stmt 
4) stmt  ID ASSIGN expr 
5) expr  ID 
6)   | expr PLUS ID 
 
Derivation 

prog  

⟹ BEGIN stmts END 

⟹ BEGIN stmts SEMICOLON stmt END 

⟹ BEGIN stmt SEMICOLON stmt END 

⟹ BEGIN ID ASSIGN expr SEMICOLON stmt END 

⟹ BEGIN ID ASSIGN expr SEMICOLON ID ASSIGN expr END 

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr END 

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN expr PLUS ID END 

⟹ BEGIN ID ASSIGN ID SEMICOLON ID ASSIGN ID PLUS ID END 
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Parse trees 
= way to visualize a derivation 

To derive a string (of terminal symbols): 
• set root of parse tree to start symbol 

• repeat 

• find a leaf non-terminal x 
• find production of the form x  α 
• "apply" production: symbols in α become the children of x 

• until there are no more leaf non-terminals 

Derived sequence determined from leaves, from left to right 

Productions 
1) prog  BEGIN stmts END 
2) stmts  stmts SEMICOLON stmt 
3)   | stmt 
4) stmt  ID ASSIGN expr 
5) expr  ID 
6)   | expr PLUS ID 
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Makefiles 
Basic structure 

<target>: <dependency list> 
 <command to satisfy target) 

Example 
Example.class: Example.java IO.class 
 javac Example.java 
 
IO.class: IO.java 
 javac IO.java 

Make creates an internal dependency graph 
• a file is rebuilt if one of its dependencies changes 

Variables – for common configuration values to use throughout your makefile 

Example 
JC = /s/std/bin/javac 
JFLAGS = -g 
 
Example.class: Example.java IO.class 
 $(JC) $(JFLAGS) Example.java 
 
IO.class: IO.java 
 $(JC) $(JFLAGS) IO.java 

Phony targets 
• target with no dependencies 
• use make to run commands: 

Example 
clean: 
 rm -f *.class 
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Programming Assignment 2 
Modify: 
• bach.jlex 

• P2.java 

• Makefile 

Makefile 
### 
# testing - add more here to run your tester and compare  
# its results to expected results 
### 
test: 
 java -cp $(CP) P2  
 diff allTokens.in allTokens.out 
 
### 
# clean up 
### 
 
clean: 
 rm -f *~ *.class bach.jlex.java 
 
cleantest: 
 rm -f allTokens.out 
 

Running the tester 
vm-instunix-07(53)% make test 
java -cp ./deps:. P2  
3:1 ****ERROR**** ignoring illegal character: a 
diff allTokens.in allTokens.out 
3d2 
< a 
make: *** [Makefile:40: test] Error 1 
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CFG review 
formal definition: CFG G = (N, ∑, P, S) 

CFG generates a string by applying  
productions until no non-terminals remain 

⟹+  means "derives in 1 or more steps" 

language defined by a CFG G  
L(G) = { w | s ⟹+ w} where 
s = start is the start non-terminal of G, an 
w = sequence consisting of (only) terminal symbols or ε 

 
 
 
 
 
 
 
 

Derivation order 

1) prog  BEGIN stmts END 

2) stmts  stmts SEMICOLON stmt 
3)   | stmt 

4) stmt  ID ASSIGN expr 

5) expr  ID 
6)   | expr PLUS ID 

Leftmost derivation : 
 
 
Rightmost derivation : 
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Expression Grammar Example 

1) expr  INTLIT 
2)   | expr PLUS expr 
3)   | expr TIMES expr 
4)   | LPAREN expr RPAREN 

 
Derive: 4 + 7 * 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For grammar G and string w, G is ambiguous if there is 

 

OR 

 

OR 
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Grammars for expressions 
Goal: write a grammar that correctly reflects precedences and associativities 
 
Precedence 
• use different non-terminal for each precedence level 
• start by re-writing production for lowest precedence operator first 

Example 
1) expr  INTLIT 
2)   | expr PLUS expr 
3)   | expr TIMES expr 
4)   | LPAREN expr RPAREN 
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Grammars for expressions (cont.) 
What about associativity? Consider 1 + 2 + 3 
 
 
 
 
 
 
 
 
Definition: recursion in grammars 

A grammar is recursive in non-terminal x if  
x ⟹+ α x γ for non-empty strings of symbols α and γ  
A grammar is left-recursive in non-terminal x  
if x ⟹+ x γ for non-empty string of symbols γ  
A grammar is right-recursive in non-terminal x if  
x ⟹+ α x for non-empty string of symbols α 

In expression grammars 
for left associativity, use left recursion 
for right associativity, use right recursion 

Example 
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Extend this grammar to add exponentiation (POW) 
Add exponentiation (POW) to this grammar, with the correct precedence and associativity. 

expr    expr PLUS term  
  |  term 
term    term TIMES factor  
  |  factor 
factor   INTLIT  
  |  LPAREN expr RPAREN 
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List grammars 
Example a list with no separators, e.g., A B C D E F G 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another ambiguous example 
stmt    IF cond THEN stmt  
  |  IF cond THEN stmt ELSE stmt 
  | . . . 

Given this word in this grammar:  if a then if b then s1 else s2 
How would you derive it? 
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