
Week 4 Page 1

CS 536 Announcements for Thursday, February 13, 2025
Programming Assignment 2 – due Tuesday, February 18
Homework 2 – is available
Last Time
• why regular expressions aren't enough
• CFGs

• formal definition
• examples
• language defined by a CFG

• parse trees
• Makefiles
• ambiguous grammars
• grammars for expressions

• precedence
• associativity

• grammars for lists
Today
• syntax-directed translation
• abstract syntax trees
• implementing ASTs

CFG review
prog  BEGIN stmts END
stmts  stmts SEMICOLON stmt
 | stmt
stmt  ID ASSIGN expr
expr  expr PLUS term
 | term
term  term TIMES factor
 | factor
factor  expon POW factor
 | expon
expon  INTLIT
 | LPAREN expr RPAREN

Week 4 Page 2

Overview of CFGs

CFGs for language definition
• the CFGs we've discussed can generate/define languages of valid strings

CFGs for language recognition

CFGs for parsing

Week 4 Page 3

Syntax-directed translation
= translating from a sequence of tokens into a sequence of actions/other form,

based on underlying syntax

To define a syntax-directed translation
Augment CFG with translation rules
• define translation of LHS non-terminal as a function of

•

•

•

To translate a sequence of tokens using SDT

•

• use translation rules to compute translation of

• translation of sequence of tokens is

The type of the translation can be anything:

Note:

Week 4 Page 4

Example: grammar for language of binary numbers

CFG translation rules
b  0 b.trans = 0
 | 1 b.trans = 1
 | b 0 b1.trans = b2.trans * 2
 | b 1 b1.trans = b2.trans * 2 + 1

Week 4 Page 5

Example: grammar for language of variable declarations

CFG Translation rules

declList  ε

 | decl declList

decl  type ID ;

type  INT

 | BOOL

Write a syntax-directed translation for the CFG given above so that the translation of a
sequence of tokens is a string containing the ID's that have been declared.

Week 4 Page 6

Example: grammar for language of variable declarations

CFG Translation rules

declList  ε

 | decl declList

decl  type ID ;

type  INT

 | BOOL

Modify the previous syntax-directed translation so that only declarations of type int are
added to the output string.

Week 4 Page 7

SDT for parsing
Previous examples showed SDT process assigning different types to the translation

• translate tokenized stream to an integer value

• translate tokenized stream to a string

For parsing, we'll need to translate a tokenized stream to an abstract-syntax tree (AST)

Abstract syntax trees
AST = condensed form of parse tree

•

•

•

•

Week 4 Page 8

AST Example

CFG

expr  expr PLUS term
 | term
term  term TIMES factor
 | factor
factor  INTLIT
 | LPAREN expr RPAREN

Week 4 Page 9

SDT review
SDT = translating from a sequence of tokens into a sequence of actions/other form,

based on underlying syntax

To define a syntax-directed translation
• augment CFG with translation rules

• define translation of LHS non-terminal as a function of:

• constants

• translations of RHS non-terminals

• values of terminals (tokens) on RHS

To translate a sequence of tokens using SDT (conceptually)
• build parse tree
• use translation rules to compute translation of each non-terminal (bottom-up)
• translation of sequence of tokens = translation of parse tree's root non-terminal

For parsing, we'll need to translate tokenized stream to abstract-syntax tree (AST)

Week 4 Page 10

Example
expr  expr + term
 | term
term  term * factor
 | factor
factor  INTLIT
 | (expr)

AST for parsing
We've been showing the translation in two steps:

In practice we'll do

Why have an AST?

Week 4 Page 11

AST implementation

Define a class for each kind of AST node

Create a new node object in some rules

• new node object is the value of LHS.trans

• fields of node object come from translations of RHS non-terminals

Week 4 Page 12

Translation rules to build ASTs for expressions
CFG Translation rules

expr  expr + term expr1.trans =

 | term expr.trans =

term  term * factor term1.trans =

 | factor term.trans =

factor  INTLIT factor.trans =

 | (expr) factor.trans =

Week 4 Page 13

ASTs for non-expressions
Example

void foo(int x, int y) {
 if (x == y) {
 return;
 }
 while (x < y) {
 cout << "hello";
 x = x + 1;
 }
 return;
}

Week 4 Page 14

ASTs for lists
CFG
idList  idList COMMA ID
 | ID

Week 4 Page 15

The bigger picture
Scanner
• Language abstraction: regular expressions

• Output: token stream

• Tool: JLex

• Implementation: interpret DFA using table (for δ),
recording most_recent_accepted_position & most_recent_token

Parser
• Language abstraction:

• Output:

• Tool:

• Implementation:

Next Time
• Java CUP
• approaches to parsing
• bottom-up parsing
• CFG transformations
• CYK algorithm

	CS 536 Announcements for Thursday, February 13, 2025
	CFG review
	Overview of CFGs
	Syntax-directed translation
	Example: grammar for language of binary numbers
	Example: grammar for language of variable declarations
	Example: grammar for language of variable declarations
	SDT for parsing
	Abstract syntax trees
	AST Example
	SDT review
	Example
	AST for parsing
	AST implementation
	Translation rules to build ASTs for expressions
	ASTs for non-expressions
	ASTs for lists
	The bigger picture

