
Week 4  Page 1 

CS 536 Announcements for Thursday, February 13, 2025 
Programming Assignment 2 – due Tuesday, February 18 
Homework 2 – is available 
Last Time 
• why regular expressions aren't enough 
• CFGs 

• formal definition 
• examples 
• language defined by a CFG 

• parse trees  
• Makefiles 
• ambiguous grammars 
• grammars for expressions 

• precedence 
• associativity 

• grammars for lists 
Today 
• syntax-directed translation 
• abstract syntax trees 
• implementing ASTs 

 
 
 
 

CFG review 
prog  BEGIN stmts END 
stmts  stmts SEMICOLON stmt 
  |  stmt 
stmt  ID ASSIGN expr 
expr    expr PLUS term  
  |  term 
term    term TIMES factor  
  |  factor 
factor  expon POW factor 
  |  expon 
expon   INTLIT  
  |  LPAREN expr RPAREN 
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Overview of CFGs 
 
 
 
 
CFGs for language definition 
• the CFGs we've discussed can generate/define languages of valid strings 

 
 
 
CFGs for language recognition 
 
 

 

CFGs for parsing 
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Syntax-directed translation 
=  translating from a sequence of tokens into a sequence of actions/other form,  

based on underlying syntax 
 
To define a syntax-directed translation 
Augment CFG with translation rules 
• define translation of LHS non-terminal as a function of 

•   

•   

•   
 
 
To translate a sequence of tokens using SDT 

•  

• use translation rules to compute translation of  

 

• translation of sequence of tokens is  
 
 
The type of the translation can be anything: 
 
Note: 
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Example: grammar for language of binary numbers 

CFG  translation rules 
b   0  b.trans = 0 
 | 1 b.trans = 1 
 | b 0 b1.trans = b2.trans * 2 
 | b 1 b1.trans = b2.trans * 2 + 1 
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Example: grammar for language of variable declarations 

CFG   Translation rules 

declList  ε   

  |  decl declList  

decl  type ID ;  

type  INT  

  | BOOL 
 
Write a syntax-directed translation for the CFG given above so that the translation of a 
sequence of tokens is a string containing the ID's that have been declared. 
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Example: grammar for language of variable declarations 

CFG   Translation rules 

declList  ε   

  |  decl declList  

decl  type ID ;  

type  INT  

  | BOOL 
 
Modify the previous syntax-directed translation so that only declarations of type int are 
added to the output string. 
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SDT for parsing 
Previous examples showed SDT process assigning different types to the translation 

• translate tokenized stream to an integer value 

• translate tokenized stream to a string 

For parsing, we'll need to translate a tokenized stream to an abstract-syntax tree (AST) 
 
 
 
 
 
 
 

 

 

Abstract syntax trees 
AST = condensed form of parse tree 

•   

•   

•   

•   
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AST Example 

CFG    

expr    expr PLUS term  
  |  term 
term    term TIMES factor  
  |  factor 
factor   INTLIT  
  |  LPAREN expr RPAREN 
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SDT review 
SDT = translating from a sequence of tokens into a sequence of actions/other form,  

based on underlying syntax 

To define a syntax-directed translation 
• augment CFG with translation rules 

• define translation of LHS non-terminal as a function of:  

• constants  

• translations of RHS non-terminals  

• values of terminals (tokens) on RHS 

To translate a sequence of tokens using SDT (conceptually) 
• build parse tree 
• use translation rules to compute translation of each non-terminal (bottom-up) 
• translation of sequence of tokens = translation of parse tree's root non-terminal 

For parsing, we'll need to translate tokenized stream to abstract-syntax tree (AST) 
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Example 
expr    expr + term  
  |  term 
term    term * factor  
  |  factor 
factor   INTLIT  
  |  ( expr ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

AST for parsing 
We've been showing the translation in two steps: 
 
 
In practice we'll do 
 
 
Why have an AST? 
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AST implementation 
 
 
Define a class for each kind of AST node 
 
Create a new node object in some rules 

• new node object is the value of LHS.trans 

• fields of node object come from translations of RHS non-terminals 
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Translation rules to build ASTs for expressions 
CFG   Translation rules 

expr    expr + term  expr1.trans = 

  |  term    expr.trans = 

term    term * factor  term1.trans = 

  |  factor    term.trans = 

factor   INTLIT   factor.trans = 

  |  ( expr )  factor.trans  = 
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ASTs for non-expressions 
Example 

void foo(int x, int y) { 
 if (x == y) { 
  return; 
 } 
 while (x < y) { 
  cout << "hello"; 
  x = x + 1; 
 } 
 return; 
} 
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ASTs for lists 
CFG 
idList    idList COMMA ID  
  |  ID 
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The bigger picture 
Scanner 
• Language abstraction: regular expressions 

• Output: token stream 

• Tool: JLex 

• Implementation: interpret DFA using table (for δ),  
recording most_recent_accepted_position & most_recent_token 

Parser 
• Language abstraction:  

• Output:  

• Tool:  

• Implementation:  
 

 

 

 

 

 

 
Next Time 
• Java CUP 
• approaches to parsing 
• bottom-up parsing 
• CFG transformations 
• CYK algorithm 
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