
Week 5 Page 1

CS 536 Announcements for Thursday, February 20, 2025
Last Time
• syntax-directed translation
• abstract syntax trees
• implementing ASTs

Today
• Java CUP
• approaches to parsing
• bottom-up parsing
• CFG transformations

• removing useless non-terminals
• Chomsky normal form (CNF)

• CYK algorithm
Next Time
• Midterm 1, 6:30 – 8 pm (in-class)

Parser generators

Tools that take an SDT spec and build an AST

• YACC

• Java CUP

Conceptually similar to JLex:

• Input: language rules + actions

• Output: Java code

 parser Java CUP parser source
specification symbols

Week 5 Page 2

Java CUP
parser.java

• constructor takes argument of type Yylex

• parse method
• if input correct, returns Symbol whose value field contains translation of root

nonterm
• if input incorrect, quits on first syntax error

• uses output of JLex
• depends on scanner and TokenVal classes
• sym.java defines the communication language

• uses definitions of AST classes (in ast.java)

Parts of Java CUP specification

Grammar rules with actions:
expr ::= INTLIT
 | ID
 | expr PLUS expr
 | expr TIMES expr
 | LPAREN expr RPAREN
 ;

Terminal and nonterminal declarations:
terminal INTLIT;
terminal ID;
terminal PLUS;
terminal TIMES;
terminal LPAREN;
terminal RPAREN;

non terminal expr;

Precedence and associativity declarations:
precedence left PLUS;
precedence left TIMES;

Week 5 Page 3

Java CUP Example
Assume:
• Java class ExpNode with subclasses IntLitNode, IdNode, PlusNode, TimesNode

• PlusNode and TimesNode each have two children

• IdNode has a String field (for the identifier)

• IntLitNode has an int field (for the integer value)

• INTLIT token is represented by IntLitTokenVal class and has field intVal

• ID token is represented by IdTokenVal class and has field idVal

Step 1: add types to terminals and nonterminals

/*
 * Terminal declarations
 */
terminal INTLIT;
terminal ID;
terminal PLUS;
terminal TIMES;
terminal LPAREN;
terminal RPAREN;

/*
 * Nonterminal declarations
 */
non terminal expr;

Step 2: add precedences and associativities

/*
 * Precedence and associativity declarations
 */
precedence left PLUS;
precedence left TIMES;

Week 5 Page 4

Java CUP Example (cont.)

Step 3: add actions to CFG rules

/*
 * Grammar rules with actions
 */
expr ::= INTLIT
 {:

 :}
 | ID
 {:

 :}
 | expr PLUS expr
 {:

 :}
 | expr TIMES expr
 {:

 :}
 | LPAREN expr RPAREN
 {:

 :}
 ;

Week 5 Page 5

Java CUP Example (cont.)
Input: 2 + 3

Week 5 Page 6

Translating lists
Example
 idList → idList COMMA ID | ID

 Left-recursion or right-recursion?

• for top-down parsers

• for Java CUP

Example

CFG: idList → idList COMMA ID | ID

Goal: the translation of an idList is a LinkedList of Strings
Example
 Input: x , y , z
 Output:

Week 5 Page 7

Example (cont.)

Java CUP specification for this syntax-directed translation
Terminal and nonterminal declarations:

Grammar rules and actions:

idList ::= idList COMMA ID
 {:

 :}
 | ID
 {:

 :}
 ;

Week 5 Page 8

Handling unary minus
/*

 * precedences and associativities of operators

 */
precedence left PLUS, MINUS;
precedence left TIMES, DIVIDE;

/*
 * grammar rules
 */
exp ::= . . .

 | MINUS exp:e
 {: RESULT = new UnaryMinusNode(e);
 :}

 | exp:e1 PLUS exp:e2
 {: RESULT = new PlusNode(e1, e2);
 :}

 | exp:e1 MINUS exp:e2
 {: RESULT = new MinusNode(e1, e2);
 :}

 . . .

 ;

Week 5 Page 9

Parsing: two approaches
Top-down / "goal driven"
• start at start nonterminal

• grow parse tree downward until
entire sequence is matched

Bottom-up / "data driven"
• start with terminals (sequence)

• generate ever larger subtrees until
get to single tree whose root is the
start nonterminal

Example:
CFG: expr expr + term | term
 term term * ID | ID
Derive: ID + ID

Week 5 Page 10

Cocke – Younger – Kasami (CYK) algorithm
• Works bottom-up

• Time complexity : O(n3)

• Requires grammar to be in Chomsky Normal Form

Chomsky Normal Form (CNF)
• all rules must be in one of two forms

• x T

• x a b

• only rule allowed to derive epsilon is the start symbol s

Why CNF is helpful?
• nonterminals in pairs

• nonterminals (except start) can't derive epsilon

CYK : Dynamic Programming

x T

x a b

Week 5 Page 11

Running CYK
Track every viable subtree from leaf to root.
All subspans for a sequence (string) with 6 terminals

Week 5 Page 12

CYK Example
f i w

f i y

w l x

x n r

y l r

n ID

n i z

z c n

i ID

l (

r)

c ,

Week 5 Page 13

Eliminating useless nonterminals

Avoid unnecessary work – remove useless rules
1. If a nonterminal cannot derive a sequence of terminal symbols, then it is useless
2. If a nonterminal cannot be derived from the start symbol, then it is useless

Nonterminals that cannot derive a sequence of terminal symbols
mark all terminal symbols

repeat

 if all symbols on the RHS of a production are marked

 mark the LHS nonterminal

until no more nonterminals can be marked

Example
 s x | y
 x ()
 y (y y)

Nonterminals that cannot be derived from the start symbol
mark the start symbol

repeat

 if the LHS of a production is marked

 mark all RHS nonterminals

until no more nonterminals can be marked

Example
 s a b
 a + | – | ε
 b digit | b digit

 c . b

Week 5 Page 14

Chomsky Normal Form
Four steps
• eliminate epsilon productions

• eliminate unit productions

• fix productions with terminal on RHS (along with other symbols)

• fix productions with > 2 nonterminals on RHS

Eliminate (most) epsilon productions
If nonterminal a immediately derives epsilon

• make copies of all rules with a on RHS

• delete all combinations of a in the copies

Example 1
 f ID (a)
 a ε
 a n
 n ID
 n ID , n

Example 2
 x a X a Y a
 a ε
 a Z

Week 5 Page 15

Chomsky Normal Form (cont.)
Eliminate unit productions
Productions of the form a b are called unit productions

If this is the only rule with a on the LHS
• place b anywhere a could have appeared
• remove the unit production a b

Example
 f ID (a)
 f ID ()
 a n
 n ID
 n ID , n

If there are multiple rules with a on the LHS,
• for each rule of the form b δ, add a δ
• remove a b

Example
 a b X
 | c b
 | b
 b Z Y
 | Y c
 c Z a

Week 5 Page 16

Chomsky Normal Form (cont.)
Fix RHS nonterminals
For productions with terminals and something else on the RHS

• for terminal T, add rule x T

• replace T with x in those productions

Example
 f ID (n)
 f ID ()
 n ID
 n ID , n

For productions with > 2 nonterminals on the RHS

• replace all but the 1st nonterminal with a new nonterminal

• add rule with new nonterminal on LHS and replaced nonterminal sequence on RHS

• repeat (as necessary)

Example

	CS 536 Announcements for Thursday, February 20, 2025
	Parser generators
	Java CUP
	Java CUP Example
	Java CUP Example (cont.)
	Java CUP Example (cont.)
	Translating lists
	Example
	Example (cont.)
	Handling unary minus
	Parsing: two approaches
	Cocke – Younger – Kasami (CYK) algorithm
	Running CYK
	CYK Example
	Eliminating useless nonterminals
	Chomsky Normal Form
	Chomsky Normal Form (cont.)
	Chomsky Normal Form (cont.)

