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CS 536 Announcements for Thursday, February 20, 2025 
Last Time 
• syntax-directed translation 
• abstract syntax trees 
• implementing ASTs 

Today 
• Java CUP 
• approaches to parsing 
• bottom-up parsing 
• CFG transformations 

• removing useless non-terminals 
• Chomsky normal form (CNF) 

• CYK algorithm 
Next Time 
• Midterm 1, 6:30 – 8 pm (in-class) 

 
 
 
 
 
 

Parser generators 

Tools that take an SDT spec and build an AST 

• YACC 

• Java CUP 
 

Conceptually similar to JLex: 

• Input: language rules + actions 

• Output: Java code 
 

 

 parser    Java CUP    parser source 
specification    symbols 
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Java CUP 
parser.java 

• constructor takes argument of type Yylex 

• parse method 
• if input correct, returns Symbol whose value field contains translation of root 

nonterm 
• if input incorrect, quits on first syntax error 

• uses output of JLex 
• depends on scanner and TokenVal classes 
• sym.java defines the communication language 

• uses definitions of AST classes (in ast.java) 

 
Parts of Java CUP specification 

Grammar rules with actions: 
expr ::= INTLIT 
      |  ID 
      |  expr PLUS expr 
      |  expr TIMES expr 
      |  LPAREN expr RPAREN 
      ; 

Terminal and nonterminal declarations: 
terminal     INTLIT; 
terminal     ID; 
terminal     PLUS; 
terminal     TIMES; 
terminal     LPAREN; 
terminal     RPAREN; 
 
non terminal expr; 

Precedence and associativity declarations: 
precedence left PLUS; 
precedence left TIMES; 
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Java CUP Example 
Assume: 
• Java class ExpNode with subclasses IntLitNode, IdNode, PlusNode, TimesNode 

• PlusNode and TimesNode each have two children 

• IdNode has a String field (for the identifier) 

• IntLitNode has an int field (for the integer value) 

• INTLIT token is represented by IntLitTokenVal class and has field intVal 

• ID token is represented by IdTokenVal class and has field idVal 

Step 1: add types to terminals and nonterminals 

/*  
 * Terminal declarations  
 */ 
terminal INTLIT; 
terminal ID; 
terminal PLUS; 
terminal TIMES; 
terminal LPAREN; 
terminal RPAREN; 
 
/*  
 * Nonterminal declarations  
 */ 
non terminal expr; 
 

 

 

 

Step 2: add precedences and associativities 

/*  
 * Precedence and associativity declarations  
 */ 
precedence left PLUS; 
precedence left TIMES; 
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Java CUP Example (cont.) 

Step 3: add actions to CFG rules 
 
/*  
 * Grammar rules with actions  
 */ 
expr ::= INTLIT 
         {: 
 
 
         :} 
      |  ID 
         {: 
 
 
         :} 
      |  expr     PLUS  expr 
         {: 
 
 
         :} 
      |  expr     TIMES  expr 
         {: 
 
 
         :} 
      |  LPAREN  expr     RPAREN 
         {: 
 
 
         :} 
      ; 
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Java CUP Example (cont.) 
Input:  2 + 3 
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Translating lists 
Example 
 idList → idList COMMA ID | ID 

 Left-recursion or right-recursion? 

• for top-down parsers 

 

• for Java CUP 

 

 

 

 

 

Example 

CFG:  idList → idList COMMA ID | ID 

Goal: the translation of an idList is a LinkedList of Strings 
Example 
 Input:  x , y , z 
 Output: 
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Example (cont.) 

Java CUP specification for this syntax-directed translation 
Terminal and nonterminal declarations: 
 
 
 
 
Grammar rules and actions: 

 
idList ::= idList       COMMA       ID 
           {: 
 
 
 
 
           :} 
        |  ID 
           {: 
 
 
 
 
 
 
           :} 
        ; 
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Handling unary minus 
/*  

 * precedences and associativities of operators  

 */ 
precedence left PLUS, MINUS; 
precedence left TIMES, DIVIDE; 
 
 
 
 
/*  
 * grammar rules  
 */ 
exp  ::= . . . 

     |    MINUS exp:e 
       {: RESULT = new UnaryMinusNode(e); 
       :} 

     |    exp:e1 PLUS exp:e2 
       {: RESULT = new PlusNode(e1, e2); 
       :} 

     |    exp:e1 MINUS exp:e2 
       {: RESULT = new MinusNode(e1, e2); 
       :} 

        . . . 

     ; 
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Parsing: two approaches 
Top-down / "goal driven" 
• start at start nonterminal 

• grow parse tree downward until 
entire sequence is matched 

 
 
 
 
Bottom-up / "data driven" 
• start with terminals (sequence) 

• generate ever larger subtrees until 
get to single tree whose root is the 
start nonterminal 

 
 
 
 
Example: 
CFG: expr  expr + term | term 
 term  term * ID | ID 
Derive: ID + ID  
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Cocke – Younger – Kasami (CYK) algorithm 
• Works bottom-up 

• Time complexity : O(n3) 

• Requires grammar to be in Chomsky Normal Form 

Chomsky Normal Form (CNF) 
• all rules must be in one of two forms 

• x  T 

• x  a b 

• only rule allowed to derive epsilon is the start symbol s 

Why CNF is helpful? 
• nonterminals in pairs 
 

• nonterminals (except start) can't derive epsilon 
 
 
 
 
 

CYK : Dynamic Programming 

x  T 

x  a b 
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Running CYK 
Track every viable subtree from leaf to root. 
All subspans for a sequence (string) with 6 terminals 
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CYK Example 
f  i w 

f  i y 

w  l x 

x  n r 

y  l r 

n  ID 

n  i z 

z  c n 

i  ID 

l  ( 

r  ) 

c  , 
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Eliminating useless nonterminals 

Avoid unnecessary work – remove useless rules 
1. If a nonterminal cannot derive a sequence of terminal symbols, then it is useless 
2. If a nonterminal cannot be derived from the start symbol, then it is useless 

 

Nonterminals that cannot derive a sequence of terminal symbols 
mark all terminal symbols 

repeat 

 if all symbols on the RHS of a production are marked 

  mark the LHS nonterminal 

until no more nonterminals can be marked 

Example 
 s   x | y 
 x  ( ) 
 y  ( y y ) 

 

Nonterminals that cannot be derived from the start symbol 
mark the start symbol 

repeat 

 if the LHS of a production is marked 

  mark all RHS nonterminals 

until no more nonterminals can be marked 

Example 
 s   a b 
 a  +  |  –  |  ε 
 b  digit | b digit 

 c  . b 
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Chomsky Normal Form 
Four steps 
• eliminate epsilon productions 

• eliminate unit productions 

• fix productions with terminal on RHS (along with other symbols) 

• fix productions with > 2 nonterminals on RHS 
 

Eliminate (most) epsilon productions 
If nonterminal a immediately derives epsilon 

• make copies of all rules with a on RHS 

• delete all combinations of a in the copies 
 
Example 1 
 f  ID ( a ) 
 a  ε 
 a  n 
 n  ID 
 n  ID , n 
 
 
 
Example 2 
 x  a X a Y a 
 a  ε 
 a  Z 
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Chomsky Normal Form (cont.) 
Eliminate unit productions 
Productions of the form a  b are called unit productions 

If this is the only rule with a on the LHS 
• place b anywhere a could have appeared 
• remove the unit production a  b 

 
Example 
 f  ID ( a ) 
 f  ID ( ) 
 a  n 
 n  ID 
 n  ID , n 

 

If there are multiple rules with a on the LHS, 
• for each rule of the form b  δ, add a  δ  
• remove a  b 

 
Example 
 a  b X 
   | c b 
   | b 
 b  Z Y 
   | Y c 
 c  Z a 
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Chomsky Normal Form (cont.) 
Fix RHS nonterminals 
For productions with terminals and something else on the RHS 

• for terminal T, add rule x  T  

• replace T with x in those productions 
 
Example 
 f  ID ( n ) 
 f  ID ( ) 
 n  ID 
 n  ID , n 
 
 
 
 
 
 
 
For productions with > 2 nonterminals on the RHS 

• replace all but the 1st nonterminal with a new nonterminal 

• add rule with new nonterminal on LHS and replaced nonterminal sequence on RHS 

• repeat (as necessary) 
 
Example 
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