CS 536 Announcements for Tuesday, May 3, 2022

Last Time
- wrap up code generation
- dot-access
- control flow and code generation
 - numeric approach
 - control-flow approach

Today
- optimization overview
- peephole optimization
- loop optimizations
- copy propagation

Next Time
- wrap up optimization
- wrap up course / review

Recall example from last time

<table>
<thead>
<tr>
<th>Numeric Approach</th>
<th>Control-flow Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>lw $t0, addr_a</td>
<td>lw $t0, addr_a</td>
</tr>
<tr>
<td>push $t0</td>
<td>push $t0</td>
</tr>
<tr>
<td>lw $t0, addr_b</td>
<td>lw $t0, addr_b</td>
</tr>
<tr>
<td>push $t0</td>
<td>push $t0</td>
</tr>
<tr>
<td>pop $t1</td>
<td>pop $t1</td>
</tr>
<tr>
<td>pop $t0</td>
<td>pop $t0</td>
</tr>
<tr>
<td>sgt $t0, $t0, $t1</td>
<td>bgt $t0, $t1, trueLabel</td>
</tr>
<tr>
<td>push $t0</td>
<td>b newLabel</td>
</tr>
<tr>
<td>pop $t0</td>
<td></td>
</tr>
<tr>
<td>beq $t0, FALSE, continueLabel</td>
<td>beq $t0, FALSE, falseLabel</td>
</tr>
<tr>
<td></td>
<td>trueLabel:</td>
</tr>
<tr>
<td>lw $t0, addr_c</td>
<td>lw $t0, addr_c</td>
</tr>
<tr>
<td>push $t1</td>
<td>beq $t0, FALSE, falseLabel</td>
</tr>
<tr>
<td>b doneOrLabel</td>
<td>b trueLabel</td>
</tr>
<tr>
<td>continueLabel:</td>
<td></td>
</tr>
<tr>
<td>lw $t0, addr_c</td>
<td></td>
</tr>
<tr>
<td>push $t0</td>
<td></td>
</tr>
<tr>
<td>doneOrLabel:</td>
<td>can't be removed</td>
</tr>
<tr>
<td>pop $t0</td>
<td></td>
</tr>
<tr>
<td>beq $t0, FALSE, falseLabel</td>
<td></td>
</tr>
<tr>
<td>. . .</td>
<td></td>
</tr>
</tbody>
</table>
Optimization Overview

Goals
Informally: Produce "better" code that does the "same thing" as the original code.

What are we trying to accomplish?
- faster code
- fewer instructions
- lower power
- smaller footprint
- bug resilience?

Safety guarantee
Informally: Don't change the program's output (observable behavior)
- the same input produces the same output
- if the original program produces an error on a given input, so will the transformed code
- if the original program does not produce an error on a given input, neither will the transformed code

Does order need to be preserved?
- when output is generated
- different order of ops in floating-point arithmetic may produce different results

Aside: evaluating polynomials: \(A x^2 + B x^6 + C x^5 \ldots \) \(O(n^2) \) adds
- can be evaluated as \(\ldots (A x + B) x + C) x + D \ldots \) \(O(n) \) adds

However... There's no perfect way to check equivalence of two arbitrary programs
- if there was, we could use it to solve the halting problem
- we'll attempt to perform behavior-preserving transformations
Program Analysis

A perspective on optimization

- recognize some behavior in a program
- replace it with a "better" version

However, halting problem keeps arising:
- we can only use approximate algorithms to recognize behavior

Two properties of program-analysis/behavior detection algorithms

- **soundness**: all results that are output are valid
- **completeness**: all results that are valid are output

Analysis algorithms with these properties are mutually exclusive:
- if an algorithm was sound and complete, it would either:
 - solve the halting problem, or
 - detect a trivial property

Optimization Overview (cont.)

We want our optimizations to be **sound** transformations

- they are always valid
- but some opportunities for applying a transformation will be missed

Our techniques

- can detect many practical instances of the behavior
- won't cause any harm
- but we still want to consider efficiency

Peephole optimization

- naïve code generator errs on the side of correctness over efficiency
- use pattern-matching to find the most obvious places where code can be improved
- look at only a few instructions at a time

- done after code is generated
Peephole optimization

What can be optimized
- push followed by pop
- pop followed by push
- branch to next instruction
- jump to a jump
- store followed by load
- load followed by store
- useless operations

Replaced with
- nothing
- move $t1, $t0
- load value from top of stack directly into $t0
- label:
- b L1
- L1: b L2
- bne $t0, $t1, L2
- L1:
- sw $t0, addr
- lw $t0, addr
- lw $t0, addr
- add $t0, $t0, 0
- add $t0, $t1, 0
- $t0, $t1
- shift-left (faster)

Do multiple passes?
- Fixed # of passes or until no more changes?

- 2nd pass:
 - pop $t0
 - add $t0, $t0, 0
 - remove on 1st pass
 - push $t0

- 1w $t0, 4($sp)
Loop-Invariant Code Motion (LICM)

Idea: Don't duplicate effort in a loop

Goal: Pull code out of the loop ("loop hoisting")

Important because of "hot spots"
• most execution time due to small regions of deeply-nested loops

Example

```c
for (i=0; i<100; i++) {
    for (j=0; j<100; j++) {
        for (k=0; k<100; k++) {
            A[i][j][k] = i*j*k;
        }
    }
}
```

becomes

```c
for (i=0; i<100; i++) {
    for (j=0; j<100; j++) {
        temp = i*j;
        for (k=0; k<100; k++) {
            A[i][j][k] = temp*k;
        }
    }
}
```

Suppose A is on the stack.
To compute the address of A[i][j][k]:

\[
\text{FP} - \text{offset of A[0][0][0]} + (i*10000*4) + (j*100*4) + (k*4)
\]
Loop-Invariant Code Motion (cont.)

When should we do LICM?
- at IR level, more candidate operations
- assembly might be too low-level
 - need guarantee that the loop is natural – no jumps into the loop

How should we do LICM? Factors to consider
- safety – is the transformation semantics-preserving?
 - make sure – operation is truly loop invariant
 - ordering of events is preserved

- profitability – is there any advantage to moving the instruction?
 - may end up – moving instructions that are never executed
 - performing more intermediate computation than necessary

Other Loop Optimizations

Strength reduction in for-loops
- replace multiplications with additions

Loop unrolling
- for a loop with a small, constant number of iterations, may actually take less time to execute by just placing every copy of the loop body in sequence (no jumps)
- may also consider doing multiple iterations within the body

Loop fusion
- merge 2 sequential, independent loops into a single loop body (fewer jumps)
Copy propagation

Copy statement

- **Definition of x**: \(x = y; \)
 - \(x \) is an L-value
 - \(y \) is a R-value

Use of y

Idea: Suppose we are at **use** \(U \) of \(x \) and a **definition** \(D \) of \(x \) (of the form \(x = y \)) reaches \(U \)

- If
 1) no other definition of \(x \) reaches \(U \) and
 2) \(y \) does not change between \(D \) and \(U \)

- then we can replace the use of \(x \) at \(U \) with \(y \)

Example

\[
\begin{align*}
x &= 3; \\
y &= 5; \\
p &= \color{red}{3}; \\
\text{if} (w * x > 9) \{ \\
&\quad \color{red}{x = 4;} \\
&\quad \color{red}{z = 5 + w * 4;} \\
\} \\
\text{else} \{ \\
&\quad \color{red}{z = 2 * 5 + 4;} \\
\} \\
q &= 5 * p; \\
s &= z + x; \\
t &= s + f;
\end{align*}
\]
Copy propagation (cont.)

How is this an optimization?

- can create **useless code** (which can then be removed)

 \[
 \text{if all uses of } x \text{ reached by } D \text{ are replaced, then definition } D \text{ can be removed} \quad \text{(e.g., } y = 5 \text{)}
 \]

- can create improved code

 \[
 t = s + y \quad \text{RHS requires (at a minimum) 2 loads \& one add}
 \]

 \[
 t = s + 5 \quad \text{RHS requires only 1 load \& one add (can use immediate value in add instr.)}
 \]

- **constant folding**

 \[
 z = 2 \times 5 + 3 \quad \Rightarrow \quad z = 10 + 3 \quad \Rightarrow \quad z = 13
 \]

 now we can propagate this \[
 \text{def of } z
 \]

- if done before other optimizations, can improve results

 \[
 x = 2 \quad \text{if } (x < 7) \quad \text{\hspace{1cm}} \quad \text{// stmts} \quad \text{// stmts}
 \]

 \[
 x = 2 \quad \text{if } (2 < 7) \quad \text{// stmts}
 \]

 \[
 x = 2 \quad \text{// stmts}
 \]