CS 536 Announcements for Wednesday, February 1, 2023

Course websites:
 - pages.cs.wisc.edu/~hasti/cs536
 - www.piazza.com/wisc/spring2023/compsci536

Programming Assignment 1
- test code due Friday, Feb. 3 by 11:59 pm
- other files due Tuesday, Feb. 7 by 11:59 pm

Last Time
- start scanning
- finite state machines
 - formalizing finite state machines
 - coding finite state machines
 - deterministic vs non-deterministic FSMs

Today
- non-deterministic FSMs
- equivalence of NFAs and DFAs
- regular languages
- regular expressions

Next Time
- regular expressions \rightarrow DFAs
- language recognition \rightarrow tokenizers
- scanner generators
- JLex

Recall
- scanner : converts a sequence of characters to a sequence of tokens
- scanner implemented using FSMs
- FSMs can be DFA or NFA

Creating a scanner

\[
\text{scanner} = \text{token to regex} + \text{regex to NFA} + \text{NFA to DFA} + \text{DFA to code}
\]
NFAs, formally
finite state machine $M = (Q, \Sigma, \delta, q_0, F)$

$L(M) =$ the language of FSM $M =$ set of all strings M accepts

Example:

"Running" an NFA
To check if a string is in $L(M)$ of NFA M, simulate set of choices it could make.

The string is in $L(M)$ iff there is at least one sequence of transitions that
- consumes all input (without getting stuck)
- ends in one of the final states
NFA and DFA are equivalent

Two automata M and M^* are equivalent iff $L(M) = L(M^*)$

Lemmas to be proven:

Lemma 1: Given a DFA M, one can construct an NFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Lemma 2: Given an NFA M, one can construct a DFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Proving Lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Part 1: Given an NFA M without ε-transitions, one can construct a DFA M^* that recognizes the same language as M

Part 2: Given an NFA M with ε-transitions, one can construct a NFA M^* without ε-transitions that recognizes the same language as M
NFA without ε-transitions to DFA

Observation: we can only be in finitely many subsets of states at any one time

Idea: to do NFA $M \rightarrow$ DFA M^*, use a single state in M^* to simulate sets of states in M

Suppose M has $|Q|$ states. Then M^* can have only up to $2^{|Q|}$ states.

Why?

Example

NFA without ε-transitions to DFA

Given NFA M:

![Diagram of NFA](image)

Build new DFA M^*

To build DFA: Add an edge from state S on character c to state S^* if S^* represents the set of all states that a state in S could possibly transition to on input c

ε-transitions

Example: x^n, where n is even or divisible by 3

![Diagram of ε-transitions](image)
Eliminating ε-transitions

Goal: given NFA M with ε-transitions, construct an ε-free NFA M^* that is equivalent to M

Definition: epsilon closure

eclose(s) = set of all states reachable from s using 0 or more epsilon transitions
Summary of FSMs

DFAs and NFAs are equivalent
• an NFA can be converted into a DFA, which can be implemented via the table-drive approach

ε-transitions do not add expressiveness to NFAs
• algorithm to remove ε-transitions

Regular Languages and Regular Expressions

Regular language
Any language recognized by an FSM is a regular language
Examples:
• single-line comments beginning with //
• hexadecimal integer literals in Java
• C/C++ identifiers
• {ε, ab, abab, ababab, abababab, …}

Regular expression
= a pattern that defines a regular language
 regular language: set of (potentially infinite) strings
 regular expression: represents a set of (potentially infinite) strings by a single pattern
Example: {ε, ab, abab, ababab, abababab, …} ⟷ (ab)*

Why do we need them?
• Each token in a programming language can be defined by a regular language
• Scanner-generator input = one regular expression for each token to be recognized by the scanner

Formal definition
A regular expression over an alphabet Σ is any of the following:
• ∅ (the empty regular expression)
• ε
• a (for any a ∈ Σ)

Moreover, if R₁ and R₂ are regular expressions over Σ, then so are: R₁ | R₂ , R₁ · R₂ , R₁*
Regular expressions (as an expression language)

regular expression = pattern describing a set of strings

operands: single characters, epsilon

operators:

alternation ("or"):
 a | b

catenation ("followed by"):
 a.b ab

iteration ("Kleene star"):
 a*

Conventions

aa is a.a
a+ is aa*

letter is a|b|c|d|…|y|z|A|B|…|Z

digit is 0|1|2|…|9

not(x) is all characters except x

parentheses for grouping and overriding precedence, e.g., (ab)*

Example: single-line comments beginning with //

Example: hexadecimal integer literals in Java
 • must start 0x or 0X
 • followed by at least one hexadecimal digit (hexdigit)
 • hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F
 • optionally can add long specifier (l or L) at end

Example: C/C++ identifiers (with one added restriction)
 • sequence of letters/digits/underscores
 • cannot begin with a digit
 • cannot end with an underscore