CS 536 Announcements for Tuesday, February 1, 2022

Course websites:
pages.cs.wisc.edu/~hasti/cs536/
www.piazza.com/wisc/spring2022/compsci536

- waitlisted folks: feel free to add yourself to Piazza

Programming Assignment 1
- test code due Friday, Feb. 4 by 11:59 pm
- other files due Tuesday, Feb. 8 by 11:59 pm

Last Time
- start scanning
- finite state machines
 - formalizing finite state machines
 - coding finite state machines
 - deterministic vs non-deterministic FSMs

Today
- non-deterministic FSMs
- equivalence of NFAs and DFAs
- regular languages
- intro regular expressions

Next Time
- regular expressions
- regular expressions \rightarrow DFAs

Recall
- scanner : converts a sequence of characters to a sequence of tokens
- scanner implemented using FSMs
- FSMs can be DFA or NFA

Creating a scanner

scanner $=$

```
  token to regex +
  regex to NFA +
  NFA to DFA +
  DFA to code
```

scanner generator
NFAs, formally

finite state machine $M = (Q, \Sigma, \delta, q, F)$

$L(M) = \text{the language of FSM } M = \text{set of all strings } M \text{ accepts}$

Example:

"Running" an NFA

To check if a string is in $L(M)$ of NFA M, simulate set of choices it could make.

The string is in $L(M)$ iff there is at least one sequence of transitions that

- consumes all input (without getting stuck)
- ends in one of the final states
NFA and DFA are equivalent

Two automata M and M^* are equivalent iff $L(M) = L(M^*)$

Lemmas to be proven:

Lemma 1: Given a DFA M, one can construct an NFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Lemma 2: Given an NFA M, one can construct a DFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Proving Lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M^* that recognizes the same language as M, i.e., $L(M^*) = L(M)$

Part 1: Given an NFA M without ε-transitions, one can construct a DFA M^* that recognizes the same language as M

Part 2: Given an NFA M with ε-transitions, one can construct a NFA M^* without ε-transitions that recognizes the same language as M
NFA without ε-transitions to DFA

Observation: We can only be in finitely many subsets of states at any one time.

Idea: To do NFA $M \rightarrow$ DFA M^*, use a single state in M^* to simulate sets of states in M.

Suppose M has $|Q|$ states. Then M^* can have only up to $2^{|Q|}$ states.

Why?

Example

\[
\begin{align*}
&\begin{array}{ccc}
A & B & C \\
0 & 0 & 0 = & 205 \\
0 & 0 & 1 = & 2C3 \\
0 & 1 & 0 = & 2B3 \\
0 & 1 & 1 = & 2B1C3 \\
1 & 0 & 0 = & 2A3 \\
1 & 0 & 1 = & 2A1C3 \\
1 & 1 & 0 = & 2A1B3 \\
1 & 1 & 1 = & 2A1B1C3
\end{array}
\end{align*}
\]

Example

\[
\begin{array}{ccc}
A & B & C & D \\
A & 2A3 & 2B3 & 2B3 \\
B & 2C3 & 2C3 & 2C3 \\
C & 203 & 203 & 203 \\
D & 23 & 23 & 23
\end{array}
\]
NFA without ε-transitions to DFA

Given NFA M:

Build new DFA M^*

To build DFA: Add an edge from state S on character c to state S^* if S^* represents the set of all states that a state in S could possibly transition to on input c.

Any state whose subset contains a final state of M is final state in M^*.

Part 1: NFA w/o ε \rightarrow DFA \checkmark

ε-transitions

Example: x^n, where n is even or divisible by 3.
Eliminating \(\epsilon \)-transitions

Goal: given NFA \(M \) with \(\epsilon \)-transitions, construct an \(\epsilon \)-free NFA \(M^* \) that is equivalent to \(M \)

Definition: epsilon closure
\[\text{eclose}(s) = \text{set of all states reachable from } s \text{ using } 0 \text{ or more epsilon transitions} \]

\[\begin{array}{c|c}
\text{State} & \text{eclose} \\
\hline
P & \{P, Q, R, S\} \\
Q & \{Q\} \\
R & \{R\} \\
Q_1 & \{Q_1\} \\
R_1 & \{R_1\} \\
R_2 & \{R_2\} \\
\end{array} \]

1) Make \(S \) an accepting state of \(M^* \) iff \(\text{eclose}(S) \) contains an accepting state of \(M \)

2) Add edge from \(S \) to \(T \) labeled \(a \) iff there is an edge labeled \(a \) in \(M \) for some state in \(\text{eclose}(S) \) to \(T \)

3) Delete all edges labeled with epsilon

Part 2: NFA w/\(\epsilon \) \(\rightarrow \) NFA w/o \(\epsilon \)

Lemma: NFA \(\rightarrow \) DFA \(\checkmark \)
Summary of FSMs

DFAs and NFAs are equivalent
- an NFA can be converted into a DFA, which can be implemented via the table-drive approach

\(\varepsilon \)-transitions do not add expressiveness to NFAs
- algorithm to remove \(\varepsilon \)-transitions

Regular Languages and Regular Expressions

Regular language
Any language recognized by an FSM is a **regular language**

Examples:
- single-line comments beginning with `//`
- hexadecimal integer literals in Java
- C/C++ identifiers
- \{\(\varepsilon \), ab, abab, ababab, abababab, …\}

Regular expression \(\text{(regex)} \)
= a pattern that defines a regular language

regular language: set of (potentially infinite) strings

regular expression: represents a set of (potentially infinite) strings by a single pattern

Example: \{\(\varepsilon \), ab, abab, ababab, abababab, …\} \(\leftrightarrow \) (ab)*

Why do we need them?
- Each token in a programming language can be defined by a regular language
- Scanner-generator input = one regular expression for each token to be recognized by the scanner

\(\rightarrow \) **regexs are inputs to scanner generator**
Regular expressions

Formal definition

A regular expression over an alphabet \(\Sigma \) is any of the following:
- \(\emptyset \) (the empty regular expression)
- \(\varepsilon \)
- \(a \) (for any \(a \in \Sigma \))

Moreover, if \(R_1 \) and \(R_2 \) are regular expressions over \(\Sigma \), then so are: \(R_1 \mid R_2 \), \(R_1 \cdot R_2 \), \(R_1^* \)

Regular expressions as an expression language

regular expression = pattern describing a set of strings

operands: single characters, epsilon

operators:
- alternation ("or"): \(a \mid b \)
- concatenation ("followed by"): \(a.b \) \(ab \)
- iteration ("Kleene star"): \(a^* \)

Conventions

\(\begin{align*}
\text{aa} & \text{ is } a.a \\
\text{a}^+ & \text{ is } aa^* \\
\text{letter} & \text{ is } a|b|c|d|...|y|z|A|B|...|Z \\
\text{digit} & \text{ is } 0|1|2|...|9 \\
\text{not(x)} & \text{ is all characters except } x \\
\text{parentheses} & \text{ for grouping and overriding precedence, e.g., (ab)*}
\end{align*} \)

Example: single-line comments beginning with //

Example: hexadecimal integer literals in Java
- must start \(0x \) or \(0X \)
- followed by at least one hexadecimal digit (hexdigit)
 - hexdigit = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F
- optionally can add long specifier (\(I \) or \(L \)) at end