
Distributed Certificate-Chain Discovery in SPKI/SDSI

Stefan Schwoon1, Hao Wang2, Somesh Jha2, and Thomas W. Reps2

1 Institut für Formale Methoden der Informatik, Universität Stuttgart, schwoosn@fmi.uni-stuttgart.de
2 Computer Science Department, University of Wisconsin, {hbwang, jha, reps}@cs.wisc.edu

Technical Report
UW-CS-TR-1526

Abstract. The authorization problem is to decide whether, according to a security policy, some principal should
be allowed access to a resource. In the trust-management system SPKI/SDSI, the security policy is given by a set
of certificates, and proofs of authorization take the form ofcertificate chains. The certificate-chain-discovery prob-
lem is to discover a proof of authorization for a given request. Although certificate-chain-discovery algorithms for
SPKI/SDSI have been investigated by several researchers, previous work did not address how to perform certificate-
chain discovery in distributed environments. We address the certificate-chain-discovery problem where the certifi-
cates are distributed over a number of sites, which then haveto cooperate to identify the proof of authorization for a
given request. We propose two protocols for this purpose. These protocols can also handle cases where certificates
are labeled with weights and where multiple certificate chains must be combined to form a proof of authorization.
We have implemented these protocols in a prototype and report preliminary results of our evaluation.

1. Introduction

In access control of shared computing resources, theauthorization problemaddresses the following question: given
a security policy, should a principal be allowed access to a specific resource? In trust-management systems [1, 2, 3],
such as SPKI/SDSI [4], the security policy is given by a set ofsigned certificates, and a proof of authorization consists
of a set of certificate chains. In SPKI/SDSI, theprincipals are the public keys, i.e., the identity of a principal is
established by checking the validity of the corresponding public key. In SPKI/SDSI,name certificatesdefine the
names available in an issuer’s local name space;authorization certificatesgrant authorizations, or delegate the ability
to grant authorizations. Thecertificate-chain-discovery problemis to discover a certificate chain that is a proof of
authorization for a request to access a resource by a principal.

Schwoon et al. [5] introduced a new algorithm for certificate-chain discovery that translates SPKI/SDSI certifi-
cates to rules in a weighted pushdown system (WPDS) [6]. The algorithm presented by [5] can discover proofs of
authorization that consist of multiple certificate chains.In this approach, we also translate SPKI/SDSI certificates into
rules in a WPDS, where the authorization specifications of the certificates are translated to weights of the rules. This
translation to a WPDS yields a complete certificate-chain-discovery algorithm and is described in Section 4.

Although SPKI/SDSI was designed to provide trust management in distributed environments, its original proposal
did not address how authorization (in the form of certificatechains) can be performed indistributedenvironments.
This issue is also neglected by previous work on certificate-chain discovery. For instance, the algorithms of [7, 8, 5]
assume that the set of all certificates relevant to a given request are known at a single site, at which is compute the
answer to the authorization problem for a given principal and a given resource. In practice, however, there may be no
such central authority. Certificates may be held by a number of different sites, each of which knows only a subset of
the certificate set. If a principalK from siteS1 wants to access a resource at siteS2, the certificate chain authorizingK
to do so may involve certificates from bothS1 andS2 (and possibly a number of other sites in between). For instance,
consider the following example: The Computer Sciences department (CS) at the University of Wisconsin (UW) is part
of the College of Letters and Sciences (LS). The department,the college, and the university could be different sites in
the sense above. UW might grant access to some resourceR to all of its faculty members by issuing a corresponding
authorization certificate. The actual principals authorized to accessR would be specified by name certificates, e.g.,
UW would declare that its faculty members are (among others)those of LS, LS would declare that its faculty members



are (among others) those of CS, and CS would have a list of its faculty members. If members of CS want to accessR,
they need a chain of certificates from UW, LS, and CS, and none of these sites may know all of the certificates involved.
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This paper makes the following contributions:

– We describe a distributed certificate-chain-discovery algorithm where the certificates are distributed across various
sites. This distributed algorithm is described in Section 5.

– The algorithms that are presented in this paper are automaton-based. Compared with the rather limited amount of
previous work that exists on authorization problem in a distributed setting, the automaton-based approach enjoys
certain advantages over other approaches, such as [9]. In particular, (fragments of) automata can be computed at
separate sites, and the information shipped between sites can take the form of (fragments of) automata.

– We have implemented a prototype system that incorporates our algorithm. Our experimental results, presented in
Section 6, demonstrate that our distributed certificate-chain-discovery algorithm is both efficient and scalable.

Our approach also benefits from using WPDS as the underlying technology. Previous work on WPDS [5] pointed
out that weighted domains enable one to address issues such as privacy, recency, validity, and trust. Moreover, weighted
domains allow us to handle authorization specifications in asemantically correct manner.

Additionally, WPDS-based reachability-analysis algorithms can be used to answer certificate-analysis questions,
such as “Is it the case that all authorizations to a resourceR must involve a certificate signed by principalK?” Several
other types of certificate-analysis questions are discussed in [10] and [8]. However, as this is orthogonal to the work
presented here, we will not discuss it in this paper.

2. Related Work

A certificate-chain-discovery algorithm for SPKI/SDSI wasfirst proposed by Clarke et al. [7]. An improved certificate-
chain-discovery based on the theory of pushdown systems waspresented by Jha and Reps [8]. Both of these algorithms
are centralized and assume that the proof of authorization consists of a single certificate chain.

In general, a proof of authorization in SPKI/SDSI requires asetof certificate chains, each of which proves some
part of the required authorization. Hence, the certificate-chain-discovery algorithms presented in [7, 8] are incomplete.
This observation is also the basis for the observation by Li and Mitchell [11] that the “5-tuple reduction rule” of [4] is
incomplete. Our algorithm does not suffer from this problem, due to the translation into WPDS.

The semantics of SPKI/SDSI has also been studied in [12, 13, 14].
In the proof-carrying-authorization (PCA) framework of Appel and Felten [15], a client uses the theorem prover

Twelf [16] to construct a proof of authorization, which the clientpresents to the server. However, they too assume
that all logical facts used by theorem prover reside at a single server. Li et al. [9] presented a distributed credential-
chain-discovery algorithm for the trust management systemRT0. Their algorithm allows credentials to be distributed,
but the proof of authorization is constructed at one site. The credential-chain-discovery algorithms of Li et al. fetches
credentials from other sites as needed. SPKI/SDSI is a subset of RT0 (SPKI/SDSI is equivalent toRT0 without role
intersection). In our distributed credential-chain-discovery algorithm, various sites summarize their part of the proof
of authorization before sending it to other sites; thus, theproof of authorization is distributed. Moreover, summarizing
intermediate results also provides some privacy. We also implemented our algorithm in a trust-management server. To
our knowledge, Li et al. did not implement their algorithm.

The work by Jim and Suciu on SD3 [17, 18], the successor of QCM,is also related to ours. SD3 is a trust-
management system based on Datalog that, like our algorithms, allows for distributed evaluation of authorization
queries. In [17], the author claims that SD3 can express “roughly the same policies as SDSI 2”. While this claim is
not further substantiated in [17], we believe it to be true. However, there are several differences that set our work apart
from SD3:

– SD3 describes a generic evaluation algorithm where each instantiation corresponds to a particular strategy for
distributing the computation. We propose several concreteevaluation strategies and argue that these strategies
have certain advantages with respect to efficiency and privacy.

– Since [17] does not provide a concrete encoding of SPKI/SDSIin SD3, any comparison of the relative merits of
our encoding vs SD3’s is bound to be speculative. However, webelieve that SD3’ssite-safetyrequirement would
limit their evaluation to “forward” mode, whereas our algorithms can search both forward and backward (the latter
is explained in Section 5).
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– Unlike SD3, our framework allows certificates to have weights. As pointed out in [19], this provides a solution
for situations in which proofs of authorization require multiple certificate chains, each of which provepart of the
authorization. This solves the problem of semantic incompleteness pointed out by Li and Mitchell [11]. Moreover,
in [5], we pointed out that weights allow to address such issues as privacy, recency, validity, and trust.

3. Background on SPKI/SDSI

In SPKI/SDSI, allprincipalsare represented by their public keys, i.e., the principalis its public key. A principal can
be an individual, process, host, or any other entity.K denotes the set of public keys. Specific keys are denoted by
K, KA, KB, K ′, etc. Anidentifier is a word over some alphabetΣ. The set of identifiers is denoted byA. Identifiers
will be written in typewriter font, e.g.,A andBob. A term is a key followed by zero or more identifiers. Terms are
either keys, local names, or extended names. Alocal nameis of the formK A, whereK ∈ K andA ∈ A. For example,
K Bob is a local name. Local names are important in SPKI/SDSI because they create a decentralized name space. The
local name space ofK is the set of local names of the formK A. An extended nameis of the formK σ, whereK ∈ K
andσ is a sequence of identifiers of length greater than one. For example,K UW CS faculty is an extended name.

3.1. Certificates

SPKI/SDSI has two types of certificates, or “certs”:
Name Certificates(or name certs): A name cert provides a definition of a local name in the issuer’s local name space.
Only keyK may issue or sign a cert that defines a name in its local name space. A name certC is a signed four-tuple
(K, A, S, V ). The issuerK is a public key and the certificate is signed byK. A is an identifier. The subjectS is a
term. Intuitively,S gives additional meaning for the local nameK A. V is thevalidity specificationof the certificate.
Usually,V takes the form of an interval[t1, t2], i.e., the cert is valid from timet1 to t2 inclusive.
Authorization Certificates (or auth certs): An auth cert grants or delegates a specific authorization from an issuer to
a subject. Specifically, an auth certc is a five-tuple(K, S, D, T, V ). The issuerK is a public key, which is also used
to sign the cert. ThesubjectS is a term. If thedelegation bitD is turned on, then a subject receiving this authorization
can delegate this authorization to other keys. Theauthorization specificationT specifies the permission being granted;
for example, it may specify a permission to read a specific file, or a permission to login to a particular host. Thevalidity
specificationV for an auth cert is the same as in the case of a name cert.

A labeled rewrite ruleis a pair(L −→ R, T ), where the first component is a rewrite rule and the second component
T is an authorization specification. For notational convenience, we will write the labeled rewrite rule(L −→ R, T ) as

L
T

−→ R. We will treat certs as labeled rewrite rules:3

– A name cert(K, A, S, V ) will be written as a labeled rewrite ruleK A
⊤
−→ S, where⊤ is the authorization

specification such that for all other authorization specificationst, ⊤ ∩ t = t, and⊤ ∪ t = ⊤. 4 Sometimes we

will write
⊤
−→ as simply−→, i.e., a rewrite rule of the formL −→ R has an implicit label of⊤.

– An auth cert(K, S, D, T, V ) will be written asK �
T

−→ S � if the delegation bitD is turned on; otherwise, it

will be written asK �
T

−→ S �.

3.2. Authorization

Since we will only use labeled rewrite rules in this paper, wewill refer to them as rewrite rules or simply rules. A
termS appearing in a rule can be viewed as a string over the alphabetK ∪ A, in which elements ofK appear only in
the beginning. For uniformity, we also refer to strings of the formS � andS � as terms. Assume that we are given a

labeled rewrite ruleL
T

−→ R corresponding to a cert. Consider a termS = LX . In this case, the labeled rewrite rule

L
T

−→ R applied to the termS (denoted by(L
T

−→ R)(S)) yields the termRX . Therefore, a rule can be viewed as a
function from terms to terms that rewrites the left prefix of its argument, for example,

(KA Bob −→ KB)(KA Bob myFriends) = KB myFriends

3 In authorization problems, we only consider valid certificates, so the validity specificationV for a certificate is not included in
its rule.

4 The issue of intersection and union of authorization specifications is discussed in detail in [4, 12].
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Consider two rulesc1 = (L1

T
−→ R1) andc2 = (L2

T
′

−→ R2), and, in addition, assume thatL2 is a prefix ofR1, i.e.,

there exists anX such thatR1 = L2X . Then thecompositionc2 ◦ c1 is the ruleL1

T∩T
′

−→ R2X . For example, consider
the two rules:

c1 : KA friends
T

−→ KA Bob myFriends

c2 : KA Bob
T

′

−→ KB

The compositionc2 ◦ c1 is KA friends
T∩T

′

−→ KB myFriends. Two rulesc1 andc2 are calledcompatibleif their
compositionc2 ◦ c1 is well defined.5

3.3. The Authorization Problem in SPKI/SDSI

Assume that we are given a set of certsC and that principalKr owns a set of resources that are identified by authoriza-
tion specifications. Moreover, assume that principalKc wants access specified by authorization specificationT . (In
the following, we callKr theresource ownerandKc theclient.) The authorization question is: “CanKc be granted
access to the resource specified byT?”

A certificate chainch for C is of the formck ◦ ck−1 ◦ · · · ◦ c1, wherec1, c2, · · · , ck are certificates inC. The label
of a certificate chainch is denoted byL(ch). GivenC, Kr, Kc, andT , acertificate-chain-discoveryalgorithm looks
for a finite set of certificate chains proving thatKc is allowed access specified byT .

Formally, certificate-chain discovery attempts to find a finite set{ch1, · · · , chm} of certificate chains such that for
all i, where1 ≤ i ≤ m,

chi(Kr �) ∈ {Kc �, Kc �} and T ⊆

m⋃

i=1

L(chi).

Clarke et al. [7] presented an algorithm for certificate-chain discovery in SPKI/SDSI withO(n2

K
|C|) time com-

plexity, wherenK is the number of keys and|C| is the sum of the lengths of the right-hand sides of all rules in C.
However, this algorithm only solved a restricted version ofcertificate-chain discovery: a solution could only consistof
a singlecertificate chain. For instance, consider the following certificate set:

c1 : (K, KA, 0, ((dir /etc) read), [t1, t2])

c2 : (K, KA, 0, ((dir /etc) write), [t1, t2])

Suppose that Alice makes the request

(KA,((dir /etc) (* set read write))).

In this case, the chain “(c1)” authorizes Alice to read from directory/etc, and a separate chain “(c2)” authorizes
her to write to/etc. Together,(c1) and(c2) prove that she has both read and write privileges for/etc. However, both
of the certificatesc1 andc2 would be removed from the certificate set prior to running thecertificate-chain discovery
algorithm of Clarke et al., becauseread 6⊇ (* set read write) andwrite 6⊇ (* set read write).
Consequently, no proof of authorization for Alice’s request would be found. Schwoon et al. [5] presented algorithms
for full certificate-chain discovery, based on solving reachability problems in weighted pushdown systems. Their
formalization allows a proof of authorization to consist ofa set of certificate chains. This paper uses the WPDS-based
algorithm for certificate-chain discovery introduced by [5].

4. Weighted Pushdown Systems and SPKI/SDSI

In this section, we introduce weighted pushdown systems, briefly review the algorithms proposed for them, and then
show that they are a useful tool for solving problems relatedto certificate-chain discovery in SPKI/SDSI. The follow-
ing definitions are largely taken from [20].

5 In general, the composition operator◦ is not associative. For example,c3 can be compatible withc2 ◦ c1 but not with c2.
Therefore,c3 ◦ (c2 ◦ c1) can exist when(c3 ◦ c2) ◦ c1 does not exist. However, when(c3 ◦ c2) ◦ c1 exists, so doesc3 ◦ (c2 ◦ c1);
moreover, the expressions are equal when both are defined. Thus, we allow ourselves to omit parentheses and assume that◦ is
right associative.
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4.1. Weighted Pushdown Systems

Weighted pushdown systems were introduced in [21, 20, 5]. Inshort, a pushdown system defines an infinite-state
transition system whose states involve a stack of unboundedlength. In a weighted pushdown system, the rules are
given values from some domain of weights. Our weight domainsof interest are the bounded idempotent semirings
defined in Defn. 1.

Definition 1. A bounded idempotent semiringis a quintuple(D,⊕,⊗, 0, 1), whereD is a set,0 and1 are elements
of D, and⊕ (the combine operation) and⊗ (the extend operation) are binary operators onD such that

1. (D,⊕) is a commutative monoid whose neutral element is0, and where⊕ is idempotent.
2. (D,⊗) is a monoid with the neutral element1.
3. ⊗ distributes over⊕, i.e., for alla, b, c ∈ D we havea⊗(b⊕c) = (a⊗b)⊕(a⊗c) and(a⊕b)⊗c = (a⊗c)⊕(b⊗c).
4. 0 is an annihilator with respect to⊗, i.e., for alla ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
5. In the partial order⊑ defined by:∀a, b ∈ D, a ⊑ b iff a ⊕ b = a, there are no infinite descending chains.

Definition 2. A pushdown systemis a triple P = (P, Γ, ∆), whereP and Γ are finite sets called thecontrol
locationsand thestack alphabet, respectively. The elements ofConf (P) := P × Γ ∗ are called theconfigurations
ofP . ∆ contains a finite number ofrules of the form〈p, γ〉 →֒P 〈p′, w〉, wherep, p′ ∈ P , γ ∈ Γ , andw ∈ Γ ∗, which
define a transition relation⇒ between configurations ofP as follows:

If r = 〈p, γ〉 →֒P 〈p′, w〉, then〈p, γw′〉
〈r〉

==⇒P 〈p′, ww′〉 for all w′ ∈ Γ ∗.

We writec ⇒P c′ to express that there exists some ruler such thatc
〈r〉

==⇒P c′; we omit the subscriptP if P is
understood. The reflexive transitive closure of⇒ is denoted by⇒∗.

Given a set of configurationsC, we definepre∗(C)
def
= { c′ | ∃c ∈ C : c′ ⇒∗ c } andpost∗(C)

def
= { c′ | ∃c ∈

C : c ⇒∗ c′ } as the sets of configurations that are reachable—backwards and forwards, respectively—from elements
of C via the transition relation.C is calledregular if for all p ∈ P the language{w | 〈p, w〉 ∈ C } is regular.

Definition 3. A weighted pushdown systemis a triple W = (P ,S, f) such thatP = (P, Γ, ∆) is a pushdown
system,S = (D,⊕,⊗, 0, 1) is a bounded idempotent semiring, andf : ∆ → D is a function that assigns a value
fromD to each rule ofP .

Letσ ∈ ∆∗ be a sequence of rules. Usingf , we can associate a value toσ, i.e., ifσ = [r1, . . . , rk], then we define
v(σ)

def
= f(r1) ⊗ . . . ⊗ f(rk). Moreover, for any two configurationsc andc′ of P , we letpath(c, c′) denote the set of

all rule sequences[r1, . . . , rk] that transformc into c′, i.e.,c
〈r1〉===⇒ · · ·

〈rk〉===⇒ c′.

Definition 4. LetW = (P ,S, f), whereP = (P , Γ, ∆) andS = (D,⊕,⊗, 0, 1), and letC be a set of configurations.
A forwards (resp.backwards) (W , C)-dag is an edge-labeled directed acyclic graph(V, E) whereV ⊆ Conf (P)×
D andE ⊆ V × ∆ × V such that

– if a vertex(c, d) has no incoming edges, thenc ∈ C andd = 1;
– if ((c1, d1), r1, (c, d)), . . . , ((ck, dk), rk, (c, d)), k ≥ 1 are the incoming edges of(c, d), then

• d =
⊕k

i=1
(di ⊗ f(ri)) andci

〈ri〉===⇒P c for all 1 ≤ i ≤ k (in a forwards(W , C)-dag);

• d =
⊕k

i=1
(f(ri) ⊗ di) andc

〈ri〉===⇒P ci for all 1 ≤ i ≤ k (in a backwards(W , C)-dag).

We call a (forwards/backwards)(W , C)-dagD a witness dagfor (c, d) if D is finite and(c, d) is the only vertex with
no outgoing edges inD.

Notice that the extender operation⊗ is used to calculate the value of a path. The value of a set of paths is computed
using the combiner operation⊕. The existence of a witness dag for(c, d) can be considered a proof that there exists
a set of paths fromC to c (or vice versa) whose combined value isd. Because of Defn. 1(5), it is always possible to
identify a finite witness dag if such a set of paths exists.
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4.2. Known Results

We briefly review some known results about (weighted) pushdown systems.
LetP = (P, Γ, ∆) be a pushdown system, and letC be aregularsubset ofConf (P). Then, according to [22, 23],

the setspre∗(C) andpost∗(C) are also regular and effectively computable (in the form of afinite automaton).
The results from [20, 5] show that the result can be extended to generalized pushdown reachability (GPR)

problemson weighted pushdown systems:

Definition 5. Let W = (P ,S, f) be a weighted pushdown system, whereP = (P, Γ, ∆), and letC ⊆ P × Γ ∗

be a regular set of configurations. Thegeneralized pushdown predecessor (GPP) problemis to find for eachc ∈
pre∗(C):

– δ(c)
def
=

⊕
{ v(σ) | σ ∈ path(c, c′), c′ ∈ C };

– a backwards witness dag for(c, δ(c)).

Thegeneralized pushdown successor (GPS) problemis to find for eachc ∈ post∗(C):

– δ(c)
def
=

⊕
{ v(σ) | σ ∈ path(c′, c), c′ ∈ C };

– a forwards witness dag for(c, δ(c)).

In [20, 5], the solutions for GPS and GPP are computed in the form of annotated finite automata. We briefly review
these solutions in Section 4.4.

4.3. The Connection Between SPKI/SDSI and Weighted Pushdown Systems

The following correspondence between SPKI/SDSI and pushdown systems was presented in [5]: letC be a (finite) set
of certificates such thatKC andIC are the keys and identifiers that appear inC, respectively. Moreover, letT be the
set from which the auth specs inC are drawn. ThenSC = (T ,∪,∩,⊥,⊤), where∪,∩ are the union and intersection
of auth specs as discussed in [4, 12], forms a semiring with domainT . Now we can associate withC the weighted
pushdown systemWC = (PC ,SC , f), wherePC = (KC , IC ∪{�, �}, ∆C), i.e., the keys ofC are the control locations
and the identifiers form the stack alphabet; the rule set∆C is defined as the set of labeled rewrite rules derived from
the name specs and auth specs as shown in Section 3.1, andf maps every rule to its corresponding auth spec.

The usefulness of this correspondence stems from the following simple observation: A configuration〈K, σ〉 of
PC can reach another configuration〈K ′, σ′〉 if and only if C contains a chain of certificatesc1, . . . , ck such that
(ck ◦ · · · ◦ c1)(K σ) = K ′ σ′. Moreover, the label of the certificate chain is preciselyv(c1 · · · ck). Thus, solving the
GPP/GPS problem amounts to the finding a set of certificate chains to prove that a certain principalK ′ is allowed to
access a resource of principalK. Moreover, the solution of the problem identifies a set of certificate chains such that
the union of their labels is maximal.

To conclude, in the generalized authorization problem, we pose the following question:

Given a set of certificatesC, a resource ownerKr, an authorization specificationT , and a clientKc, are there
certificate chains inC proving thatKr grants authorizationT to Kc?

This is equivalent to either of the following problems in theWPDS setting:

– As a GPP problem: ForC = {〈Kc, �〉, 〈Kc, �〉} andc = 〈Kr, �〉, computet := δ(c) and a backwards witness
dag for(c, δ(c)).

– As a GPS problem: ForC = {〈Kr, �〉}, c1 = 〈Kc, �〉, andc2 = 〈Kc, �〉, computet := δ(c1) ⊕ δ(c2) and
forwards witness dags for(c1, δ(c1)) and(c2, δ(c2)).

Authorization forKc is granted if and only ift ⊇ T .
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4.4. Algorithms for GPR

We briefly review the solutions for GPR problems given in [20,5], concentrating on the GPP case, because the GPS
case is analogous except for some details.

Our input is a weighted pushdown systemW = (P ,S, f), whereP = (P, Γ, ∆) andS = (D,⊕,⊗, 0, 1), and a
regular setC of configurations. The output isδ(c) and a witness dag for (c, δ(c)) for eachc ∈ pre∗(C).

In general, there are infinitely many configurations inpre∗(C) (and inpost∗(C)) even ifC itself is finite, so we
can only hope to compute the solution symbolically. We use (annotated) finite automata for this purpose:

Definition 6. AP-automaton is a quintupleA = (Q, Γ, η, P, F ) whereQ ⊇ P is a finite set ofstates, η ⊆ Q×Γ ×Q

is the set oftransitions, andF ⊆ Q are thefinal states. Theinitial states of A are the control locationsP . We say
that a sequence of transitions(p, γ1, p1), . . . ,(pn−1, γn, q) ∈ η readsconfiguration〈p, γ1 . . . γn〉 if p1, . . . , pn1

, q are
arbitrary states. The sequence isacceptingiff q is a final state. Ifc is a configuration ofA, we denote byaccA(c) the
set of all accepting paths inA for c; we say thatc is accepted byA if accA(c) is non-empty.

Note that a set of configurations ofP is regular if and only if it is accepted by someP-automaton. In the following
P is fixed, so we usually omit the prefixP and speak simply of “automata”.

A convenient property of regular sets of configurations is that they are closed under forwards and backwards
reachability [23]. In other words, given an automatonA that accepts the setC, one can construct automata that accept
the sets of all configurations that are forward or backwards reachable fromC. Following [20, 5], two additional
labellings for the transitions ofA are computed to solve the GPP and GPS problems. The first,l : η → D assigns a
weight fromD to each automaton transition and allows to computeδ (see below). The second allows to compute theω

function. In the following presentation, we omit the secondlabeling for the sake of simplicity. A detailed presentation
is given in [20], and the method there is straightforward to transfer to the distributed case.

Without loss of generality, we assume henceforth that for every rule〈p, γ〉 →֒ 〈p′, w〉 we have|w| ≤ 2; this is not
restrictive because every pushdown system can be simulatedby another one that obeys this restriction and is larger by
only a constant factor, see e.g. [8].

In the following, we first present an abstract version of the procedure given in [20, 5], which is designed for
centralized computation. Section 5 describes an implementation for the distributed case.

Abstract algorithm Let A = (Q, Γ, η, P, F ) be aP-automaton accepting a set of configurationsC. Without loss of
generality we assume thatA has no transition leading to an initial state.

Initially, we setl(t) := 1 for all t ∈ η. When we say that transitiont should be updated with valued, we mean the
following action: if t is not yet inη, addt to η and setl(t) := d; otherwise, updatel(t) to l(t) ⊕ d.

For GPP, we add new transitions toA according to the following saturation rule:

If r := 〈p, γ〉 →֒ 〈p′, w〉 is a rule,t1 . . . t|w| a sequence that reads〈p, w〉 and ends in stateq, then letd be
l(t1) ⊗ . . . ⊗ l(t|w|) and update(p, γ, q) with the valuef(r) ⊗ d.

The algorithm stops when further applications of the saturation rule cause no further changes inA.
Pseudocode for the algorithm is given in [20] and reproducedin Figure 1. Each iteration of the loop starting at

line 14 executes one or more applications of the saturation rule.

Example Assume that the pushdown system contains the following rules (the meaning of this example is explained
in greater detail in Subsection 6, Case 1):

r1 := 〈Kr, �〉 →֒ 〈Kuw, faculty�〉
r2 := 〈Kuw, faculty〉 →֒ 〈Kls, faculty〉
r3 := 〈Kls, faculty〉 →֒ 〈Kcs, faculty〉
r4 := 〈Kls, faculty〉 →֒ 〈Kbio, faculty〉
r5 := 〈Kcs, faculty〉 →֒ 〈KBob, ε〉

Let f(r1) = t, (i.e., the auth cert grants permissiont), andf(ri) = ⊤ for 2 ≤ i ≤ 5 (i.e., the name certs do not
change permissions). Suppose that Bob wants permissiont from the resource ownerKr. We determine whether Bob
is authorized to do so by solving the GPP problem forC = {〈KBob, �〉, 〈KBob, �〉}.

8



Algorithm 1
Input: a weighted pushdown systemW = (P ,S , f),

whereP = (P, Γ, ∆) andS = (D,⊕,⊗, 0, 1);
an automatonA = (Q, Γ, η0, P, F ) acceptingC,
such thatA has no transitions intoP states.

Output: an automatonA′ = (Q,Γ, η, P, F ) for pre∗(C);
with annotation functionl : η → D

1 procedureupdate(t, v)
2 begin
3 η := η ∪ {t}
4 newValue := l(t) ⊕ v

5 if newValue 6= l(t) then
6 workset := workset ∪ {t}
7 l(t) := newValue

8 end
9

10 η := η0; workset := η0; l := λt.0
11 for all t ∈ η0 do l(t) := 1
12 for all r = 〈p, γ〉 →֒ 〈p′, ε〉 ∈ ∆ do
13 update((p, γ, p′), f(r))
14 while workset 6= ∅ do
15 remove some transitiont = (q, γ, q′) from workset ;
16 for all r = 〈p1, γ1〉 →֒ 〈q, γ〉 ∈ ∆ do
17 update((p1, γ1, q

′), f(r) ⊗ l(t))
18 for all r = 〈p1, γ1〉 →֒ 〈q, γγ2〉 ∈ ∆ do
19 for all t′ = (q′, γ2, q

′′) ∈ η do
20 update((p1, γ1, q

′′), f(r) ⊗ l(t) ⊗ l(t′))
21 for all r = 〈p1, γ1〉 →֒ 〈p′, γ2γ〉 ∈ ∆ do
22 if t′ = (p′, γ2, q) ∈ η then
23 update((p1, γ1, q

′), f(r) ⊗ l(t′) ⊗ l(t))
24 return ((Q, Γ, η, P, F ), l)

Fig. 1. An algorithm for creating a weighted automaton for the GPP
problem.
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Fig. 2. Initial automaton (above) and finalpre∗ automa-
ton created by the algorithm in Figure 1; weights on tran-
sitions are shown in parentheses.
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Fig. 3.Partial automaton computed atCS, LS, andUW

for the querypre∗(〈R, �〉): weights on transitions are
shown in parentheses.

The upper part of Figure 2 shows an automaton that acceptsC. The automaton forpre∗(C), produced by Algo-
rithm 1, is shown in the lower part. There, we can see that〈Kr, �〉 is accepted with weightt, and so Bob’s authorization
is granted. The extra annotations for witness dags (not shown) would let us deduce that the relevant certificate chain is
[r1, r2, r3, r5].

5. Distributed Certificate-Chain Discovery

The algorithms for GPR problems discussed in Section 4.4 work under the assumption that all pushdown rules (or
certificates, resp.) are stored at a single site. In a real-world setting, certificates may be issued by many principals, and
forcing them to be stored at (or shipped to) a single site may not be permitted. We therefore propose versions of these
algorithms that solve GPR problems in a distributed environment.

Remark: Because of the connection between SPKI/SDSI and WPDS explained in Section 4.3, it is safe to use
pushdown and SPKI/SDSI terminology interchangeably, and we shall do so in this section.

We proceed as follows: Section 5.1 introduces some definitions and notation. Section 5.2 gives high-level descrip-
tions of protocols for the communication between the client, the resource, and the servers that co-operate to solve
the distributed certificate-chain-discovery problem. We propose two protocols, one based on the GPP formulation,
the other on the GPS formulation. Both protocols consist of several phases, the core of which is a search phase. The
algorithms used in that phase are described in further detail in Section 5.3. The relative merits of the protocols, as well
as security and privacy-related issues, are discussed in Section 5.4.

9



5.1. Preliminaries

For the rest of the section, let us fix a weighted pushdown systemW = (P ,S, f), whereP = (P, Γ, ∆) andS =
(D,⊕,⊗, 0, 1). We consider the authorization problem where clientKc requests permissionT from the resource
ownerKr.

We assume that the certificates are distributed over a setSites of servers, and that there exists a mappingfS : P →
Sites , which maps each principal to a site that is ‘responsible’ for the principals.

We say that certificate〈p, γ〉 →֒ 〈p′, w〉 crosses a site boundaryif fS(p) 6= fS(p′). If such a cross-boundary
certificate exists, we call the sites responsible forp andp′ neighbouring sites.

Moreover, we denote byT (s) = { 〈p, w〉 | fS(p) = s, w ∈ Γ ∗ } the configurations that begin with the keys for
which sites is responsible. The basic idea behind the distributed algorithms is that every sites computes (an automaton
representation of) the setpre∗(C) ∩ TC(s) or post∗(C) ∩ TC(s), respectively. Moreover,s annotates its automaton
with information that allows recovering part of the witnessdags. This notion is made more precise in the following
definition:

Definition 7. LetD = (V, E) be a(W , C)-dag ands ∈ Sites . Thes-slice ofD is the subgraph ofD induced by the
verticesV s

1 ∪ V s
2 , where

– V s
1

def
= { (c, d) ∈ V | c ∈ T (s) }

– V s
2

def
= { v ∈ V | ∃v′ ∈ V s

1
, r ∈ ∆ : (v′, r, v) ∈ E }

Informally, thes-slice contains the part ofD that consists of configurations for whichs is responsible, and their
immediate successor vertices (reached by cross-boundary certificates). An edge labeled by a cross-boundary certificate
is henceforth called aboundary edge. v is called aboundary node ofs if v is the target of a boundary edge, ands

is responsible for the subject of the rule with which the edgeis labeled.

5.2. The Protocols

Our distributed solutions for the authorization problem make certain assumptions about the storage of certificates:

– In the GPP protocol, we assume that every certificate/rule〈p, γ〉 →֒ 〈p′, w〉 is stored at the site responsible for its
subject, i.e., atfS(p′).

– In the GPS protocol, we assume that every certificate/rule〈p, γ〉 →֒ 〈p′, w〉 is stored at the site responsible for its
issuer, i.e., atfS(p).

These assumptions will make our algorithms more efficient because every site will know which other sites to
contact for information concerning any given principal. The assumptions are realistic: they are basically saying that
if a certificate mentions a principal (either the subject or the issuer), then its site should know about it. (In general, it
would be realistic to assume that each certificate is known tothe sites ofboththe issuer and the subject, but the stated
conditions are the only ones actually required by our algorithms).

In a distributed setting, multiple access requests may happen at the same time. We shall use uniquerequest idsto
distinguish among them. Both protocols consist of three phases,initialization, search, andverification.

The GPP Protocol for Distributed Certificate-Chain Discovery In this setting, the search is started at the site that
is responsible for the client, and the search works its way “up” towards the site that is responsible for the resource
owner from whom the client is requesting permission.

Initialization Initialization consists of the following steps:

1. The client sends a requestT to the resource owner.
2. The resource owner generates a unique request identifierreqid, which will distinguish this request from other

requests that may be in progress now or in the future, until requestreqid is resolved.
3. The resource owner sends the pair(Kr, reqid) to the sitefS(Kr) (called theresource siteand denotesr from

now) to notify it of an ‘incoming’ search. Aftersr has acknowledged receipt of the message,reqid is sent to the
client.
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4. The client sends a message to the sitefS(Kc) (called theclient siteand denotedsc). The message contains (i) its
keyKc, (ii) the request idreqid, (iii) a so-calledclient certificate, i.e. the request id signed by the client.

5. The client site checks that the contents and signature of the client certificate match expectations. If the check is
successful,sc begins the search.

SearchThe client site initiates a GPP query for the setC = {〈Kc, �〉, 〈Kc, �〉}, wherereqid is used to distinguish
this query from others (so that servers may work on multiple requests simultaneously). The query is resolved by
all the sites together; the details of the search algorithm are given in Section 5.3. At this point, it is sufficient to
understand the following:sc starts a local GPP computation, and may (transitively) request other sites to participate
in the computation; each sites constructs the setpre∗(C) ∩ T (s), and maintains information that allows constructing
the s-slice of the required witness dags. Communications between sites are tagged with bothreqid and the client
certificate.

Verification Because of its earlier communication with the resource owner, the resource sitesr knows thatc = 〈Kr, �〉
is the target of the search. Moreover, becausec ∈ T (sr), the resource site will be able to determine whetherc is
reachable fromC, using the setpost∗(C) ∩ T (sr) it has computed. To complete the algorithm, the result must be
reported to the resource owner.

We propose two alternative methods:

– In the first alternative, the resource site starts by constructing thesr-slice of the witness dag. When it reaches
a boundary node of its slice, it requests the sub-dag ‘below’that node from the neighbouring site at that node.
The neighboring site computes this information, which possibly involves recursive queries to sites further ‘down-
stream’, and returns it tosr. Whensr has constructed the full witness dag, it sends it to the resource owner along
with the client certificate. The resource owner verifies the result, i.e., checks the integrity of the dag, the signatures
on all certificates used in the dags, whether the client certificate matchesreqid, and whether its signature matches
the client. Depending on the outcome, access is allowed or denied to the client.

– The second alternative is as follows: instead of constructing the witness graph,sr just reports the certificates issued
by the owner for the resource, the combined values of the paths that start with them, and the client certificate. In
that case, no further communication between the sites is necessary.

The first alternative provides the resource owner with the complete witness set of certificate chains. This may give
the owner a higher degree of confidence and control over the authorization process. On the other hand, the verification
of the complete dag may place a great workload on the resourceowner, which is reduced in the second alternative.
The second alternative may also drastically reduce the amount of network traffic exchanged between sites.

The GPS Protocol for Distributed Certificate-Chain Discovery In this setting, the search is initialized at the re-
source site, and the search works its way “down” to the client.

Initialization

1. The client sends a requestT to the resource owner.
2. The resource owner responds by sending a unique request identifierreqid.
3. The client sends a message to the client sitesc to register the search. Along with the message, it sendsreqid and

the client certificate as in the GPP protocol.
4. The client site again checks correctness of the client certificate. If the check is successful, the client site tells the

client that certificate-chain discovery may begin.
5. The client asks the resource owner to initiate the search.
6. The resource owner sends a message to its resource site containing its public keyKr, the request idreqid, and a

request to initiate a certificate discovery.

SearchThe search stage is analogous to the GPP protocol, except that it is initiated by the resource site and from the
singleton setC = {〈Kr, �〉}. The details of the search algorithm are given in Section 5.3. In brief, a sites becomes
involved in the search ifpost∗(C) intersectsT (s), ands maintains information that allows constructing thes-slice of
the required witness dags.
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Verification Because of steps 3 and 4 in the initialization phase, the client site sc knows thatc1 = 〈Kc, �〉 and
c2 = 〈Kc, �〉 are the targets of the search. Moreover, it can determine whetherc1 andc2 are reachable fromC, using
the setpost∗(C) ∩ T (sc) it has computed. To complete the algorithm, the result must be reported to the resource
owner. In this phase, the direction of the flow of informationis contrary to that of the search phase.

Like in the GPP protocol, we have two alternatives at this stage, which are analogues of the ones provided for GPP.
For a discussion about their relative merits, see the remarks in the GPP protocol.

– In the first alternative, the client site starts by constructing the sc-slice of the witness dags. It then sends the
sub-dags starting at its boundary nodes ‘upstream’ to the corresponding neighboring sites. The neighboring sites
supplement this information with their own sub-dags and send them further upstream untilsr has the full witness
dags forc1 andc2. The result is then reported bysr to the resource owner. Moreover, all communications in this
phase are accompanied by the client certificate mentioned earlier.
The resource owner can now verify the result, and grant or deny access to the client.

– In the second alternative, the sites only report the sum (w.r.t.⊕) of the paths inside their slices of the witness dags.
Then, the result given bysr to the resource owner consists of certificates issued byKr and the combined values
of the paths below them.

5.3. Distributed Search Algorithms

In this section, we give some more details about the Search phase of the protocols.
At an abstract level of description, every sites computes the setpre∗(C) ∩ TC(s) (or post∗(C) ∩ TC(s), respec-

tively). Sites becomes involved in the search if it is discovered that its intersection is non-empty. In the GPP protocol,
the client site starts with the setC = {〈Kc, �〉, 〈Kc, �〉}; in the GPS protocol, the resource site starts with the set
C = {〈Kr, �〉}. If a cross-boundary cert causes some sites to discover terms belonging toTC(s′) (for some other
sites′), thens will send those terms tos′, ands′ continues the computation on those terms. All terms communicated
between sites will be tagged with the request id, so that sites can distinguish among them when working on multiple
queries.

At a more concrete level of description, the resource/client site starts by building an automaton acceptingC, then
carries out the algorithm from Figure 1 (or itspost∗ counterpart [20], respectively), using its own certificates. If it
derives an automaton transitiont = (K, γ, q) that begins at a stateK (key, respectively) for which another site is
responsible, thent and thepart of the automatonreachable fromq are shipped out to that other site. Thus, every site
computes a “partial” automaton (i.e., a fragment of the fullautomaton).

Example: Consider once more the example from Section 4.4, and assumethat the rulesr1 to r5 are distributed
over four sites calledUW , LS, CS, andBio as shown in Figure 4 of Section 6. Suppose that we use the GPP
protocol to decide whether Bob at siteCS is granted permissiont by Kr. Then, the siteCS starts the search with
C = {〈KBob, �〉, 〈KBob, �〉} and discovers, throughr5 and r3, that pre∗(C) intersectsT (LS), so siteLS gets
involved and notices that (because ofr2) siteUW must also take part in the search. The partial automata computed by
CS, LS, andUW are shown in Figure 3; notice that siteBio does not get involved. At the end of the computation,
site UW sees that〈Kr, �〉 is accepted by its partial automaton with weightt, and that is the result reported to the
resource owner.

Bidirectional search The approaches discussed so far allow for unidirectional search, either “forward” (from resource
to client) or “backwards” (from client to resource). Takinga leaf from [9], one could envisage a hybrid algorithm that
works in both directions at once. In this case, the resource site would initiate a GPS query, and the client site would
initiate a GPP query, both with the same request id. All siteswould maintain two automata, one for each direction.
Because the intersection of two automata can be performed efficiently, a site “in the middle” would be able to notice
when the two searches intersect. We have not investigated this approach in our prototype, but it does present an
interesting direction for future work.

5.4. Discussion

Here, we discuss privacy and security-related topics, compare the two protocols, and discuss possible improvements.
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Privacy During the search phase, the parties involved learn the following:

– Only the resource owner and the client know that the client has asked to access the resource.This is because the
resource owner and the client do not give out information about each other when they communicate with their sites.
The sites can determine the outcome of a search just by using the request id, which is generated independently of
either key.

– The resource site knows that a request for the resource has been made, but not by whom.Once again, this is because
the resource site receives only a request id from the resource owner. Moreover, the resource site maintains only a
partial automaton and a slice of the associated witness graph, so it cannot determine anything about principals at
any other site.

– The client site knows only that the client has made a request,but not for what or to whom.This holds for reasons
that are analogous to the previous argument.

– All other sites know only that a request has been made, but notby whom or to whom. They may surmise something
about the nature of the request judging from the identifiers on the transitions, the direction from which the query
comes, and the direction from where a confirmation comes, butthey can only observe the communication with
their neighbor sites.

Thus, the privacy of the access request is ensured during thesearch phase. However, when the witness dag is
constructed during the construction phase, all sites learnthe identity of the client. This can be avoided if the alternative
method is used, in which only the values of certain paths in the dag are transmitted between sites. This alternative
solution also prevents the unnecessary spread of certificates between sites (which might contain sensitive information).

Security against attacks

Spoofing and eavesdropping.To protect the protocol-related communication from attacks such as spoofed messages
or eavesdropping, all messages exchanged in the protocols are encrypted and digitally signed, e.g., using any of the
well-established public-key cryptography systems.

Trusting the sites.Because the main part of the computation is carried out by thesites, the protocols are potentially
susceptible to malicious behavior of the sites. A malicioussite could either invent or ignore certificates. Ignoring
certificates would only be to the detriment of the users for which the site is responsible and seems unlikely to be a
cause for concern.

Inventing certificates is also not a problem if the verification stage constructs the full witness dag because in this
case all certificates (which are signed by their issuers) have to be supplied. The alternative solution, in which only
values are reported, is more problematic: in essence, reporting the value of the paths in a sub-dag rooted at a node
(〈K, w〉, d) amounts to issuing a confirmation (in the name of principalK) that there is a certificate chain from〈K, w〉
to the client. Therefore, the alternative solution requiresK to trust the site to useK ’s certificates truthfully. Note that
if all cross-boundary certificates have subjects that are under direct control of the respective site operator, this is not a
problem.

The client certificate.The resource must verify that the reported result is indeed valid for the client who has initiated
the request. If the verification stage constructs full witness dags, this becomes straightforward: the maximal (minimal,
resp.) nodes of the dags must refer to the client.

If the alternative solution is used in the verification, the client certificate serves this purpose, provided that both
resource and client site verify its correctness.

A comparison of the two protocols In the GPP-based protocol, the search starts at the client site; in the GPS-based
protocol it starts at the resource site. If a site is responsible for a ‘popular’ resource, the GPS-based protocol may put
too much workload on it. Moreover, denial-of-service attacks are conceivable in which a malicious client causes a large
number of GPS computations (under different identities) that are doomed to fail. In the GPP-based protocol, this is less
likely to happen: the workload would fall mostly on the client site, which can be assumed to have a relationship to the
client (e.g., the client’s company, his/her ISP, etc), and thus there is some ‘social safeguard’ against denial-of-service
attacks.

Moreover, the GPP-based solution does not require a separate verification stage when the construction of complete
witness dags is omitted. For these reasons, it seems that theGPP-based solution has some advantages over the GPS-
based solution. However, we have yet to carry out a more precise analysis on this topic.
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Possible improvements

Caching results.Notice that the methods we describe donot have to be carried out every time that a client tries to
access a resource. This would only have to be done for the firstcontact between a given client and a given resource. If
the outcome is successful, the resource may remember this and grant access without a full search next time.

Caching can also be used by the sites: unless a site is the client site or the resource site for some request, the result
of its local search is independent of the request identifier.Therefore, sites may cache recent results and reuse them
when an identical request (moduloreqid) comes along.

In SPKI/SDSI, certificates may be annotated with validity information that specifies how long a certificate is valid
(see Section 3.1). A certificate chain is valid only as long asall certificates on it are valid. In both situations described
above, the caching must take this validity information intoaccount. This requires some straightforward additions to
our algorithms that are omitted here.

Guided search.In both protocols, the setspre∗(C)/post∗(C) may intersect the domains of many sites; therefore, any
request could involve many different sites even if only a fewof them are ‘relevant’ for the search. This increases the
length of the computation as well as the amount of network traffic. Thus, the protocol could be improved by limiting
the scope of the search. It is likely that the client has an idea of whyhe/she should be allowed to access the resource;
therefore, one possibility would be to let the client and/orthe client site suggest a set of sites that are likely to contain
suitable certificates.

Termination. In the distributed GPP/GPS computation, a standard termination-detection algorithm can be applied to
determine that the search has terminated, which entails additional time and communication overhead. However, even
before the search has terminated, or before all relevant certificate chains have been found, the resource site (in the
GPP case) or the client site (in the GPS case) may have discoveredsomepaths with a tentative value (which may be
‘larger’—with respect to the ordering—than theδ value). If the goal of the search is just to establish that theδ value
is no larger than a certain threshold, then this informationcould be used to terminate the search early. For instance, if
Alice is interested in a set of certificate chains that is valid for at least one hour, then the search algorithm could be
stopped as soon as certificate chains are found that are validfor, say, one and a half hours (or any other amount of time
longer than one hour). Moreover, the computation could be limited by a timeout.

6. Implementation

We have implemented a prototype of our distributed certificate-chain-discovery algorithm. We use the prototype to
evaluate the scalability of the algorithm by varying two parameters:configuration topology, andnumber of certificates.
We use response time from the perspective of clients as the performance metrics. Because we currently do not have
the resources to perform a real-world test, all experimentsare configured using synthetic data. However, we tried to
make sure that the configurations mimicked the real world as closely as possible. The two main conclusions that can
be drawn from these experiments are:

– Network overhead is dominant: The results show that the topology of the configuration affects the system per-
formance. However, the most significant factor is network overhead: our experiments show that a significant
percentage (about 80% to 90%) of the total time is spent on network operations. However, since our current
implementation is only a prototype, we can reduce the overhead using optimization techniques.

– Local filtering effect: As one might have expected, the more certificates we have, the longer it takes to perform
certificate-chain discovery. However, the time that it takes to perform certificate-chain discovery increases at a
much smaller rate than the increase in the number of certificates. This is due to what we call thelocal filtering
effect: only local rules are processed at each site (see Sections 5.2 and 5.3).

In summary, the experimental results show that the distributed certificate-chain algorithm implemented on top of
WPDS is both efficient and scalable. In the rest of this section, we explain the experimental design and discussed the
results obtained.
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Configuration Topology The first parameter that we considered is the configuration topology. A configuration of
the SPKI/SDSI system consists of multiple connected sites and is represented as a graph. In our experiments, we
considered three different configurations of varying degrees of complexity, as shown in Figures 4 – 6. In each graph,
shaded nodes represent distinct sites of a distributed SPKI/SDSI system, while labels represent the cross-boundary
SPKI/SDSI certificates. Nodes with a symbol(R) denote the resource from where SPKI/SDSI auth certs are issued.
The dashed lines denote the certificate chain discovered by our algorithms whenBobrequests access to resourceR.

For example, in Case 1, the root nodeUW denotes the University of Wisconsin;LSdenotes the college of Letters
and Science, one of the colleges ofUW; while CSandBIO represent two departments, Computer Science and Biology,
underLS. There is an edge betweenUWandLSbecauseUWhas issued two certificates with respect to siteLS: the auth
certKr �

t

−→ Kuw faculty � grants access rightt to all Kuw’s faculty; the name certKuw faculty→ Kls faculty

states that allKls’s faculty areKuw’s faculty.
Case 1 represents the simplest topology of the three configurations. Case 2 adds additional complexity on top of

Case 1 by forming a DAG. As a result, a certificate chain may consist of multiple paths, as demonstrated by the dashed
lines in Figure 5. Case 3 builds on top of the first two and formsa more complex configuration.
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Number of Certificates
Configuration Small Medium Large
Case 1 1 : 5 3 : 57 30 : 570
Case 2 2 : 4 4 : 56 40 : 560
Case 3 3 :13 5 :155 50 :1550

Table 1. Test Configurations. Each cell contains two num-
bers: the first is the number of auth certs used in the run and
the second number of name certs.

Number of Certificates The second parameter that we con-
sidered is the number of certificates. In a real-world envi-
ronment every principal has a key and can issue certificates.
Consequently, we expect a SPKI/SDSI system to contain
thousands or more certificates, distributed over the various
sites in the system. Hence, for each of the three configura-
tions, we varied the number of certificates used in the exper-
iments ranged from 6 to 1600. We consider only the num-
ber of reachable certificates since unreachable ones do not
contribute to certificate-chain discovery. Table 1 shows the
breakdown of the certificates of the experiments.

6.1. Analysis

In this section, we report on the results of the experiments.We use response time from the perspective of clients as the
performance metric. All tests were conducted under a simulated environment: each site runs on a separate machine
on a local area network. All test machines have identical configurations: 800 MHz Pentium III with 256MB RAM,
running TAO Linux version 1.0.

Table 2 shows the performance results for the three configurations. Each configuration is run three times, with in-
creasing numbers of certificates. For comparison purposes,we also collected performance data for running certificate-
chain discovery in centralized mode (i.e., with all the certificates stored at a fixed site), using the largest number of
certificates.

Topology effect: The data from Table 2 shows that the
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effect of configuration topology varies from case to case.
For instance, comparing Cases 1 and 2 one can observe that
the performance difference is small. This indicates that the
path-combining operation (in Case 2) adds little overhead.
However, in Case 3, we see a substantial variance in the
time to process queries. One obvious observation is that the
certificate-chain length affects the performance, as shownby
the top line in Figure 7. In comparison, the flat line in the
same figure shows the response time had we centralized all
the certificates at one location. This time reflects the cost
of running the GPS algorithm at one site, plus the network
overhead of the two communicating between the client and
the site (request and reply). This reveals that the most sig-
nificant factor isnetwork overhead. We collected additional
data that confirmed this hypothesis: in distributed certificate-
chain discovery, about 80% to 93% of the time is spent on network-related operations, such as establishing TCP
connections, sending and receiving messages. Since this iscurrently a prototype, we are investigating optimization
techniques to improve the average performance.

Number of certificates: Table 2 shows that there is an insignificant change in performance when the number of
certificates increases fromsmall to mediumand a very small increase (about 4% on average) frommediumto large.
We attribute this to two reasons. First, thelocal filtering effectcaused only relevant rules to be composed at each site.
This corresponds to Lines 12-13 of the algorithm shown in Figure 1. Second, the WPDS methodology is efficient.
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