Distributed Certificate-Chain Discovery in SPKI/SDSI

Stefan Schwoohn Hao Wang, Somesh Jifa and Thomas W. Reps

L Institut fiir Formale Methoden der Informafikiniversitat Stuttgartschwoosn@fmi.uni-stuttgart.de
2 Computer Science Departmebiniversity of Wisconsin{hbwang, jha, reps@cs.wisc.edu

Technical Report
UW-CS-TR-1526

Abstract. The authorization problem is to decide whether, according $ecurity policy, some principal should
be allowed access to a resource. In the trust-managemeaatrs@KI/SDSI, the security policy is given by a set
of certificates, and proofs of authorization take the formestificate chains. The certificate-chain-discovery prob-
lem is to discover a proof of authorization for a given requaithough certificate-chain-discovery algorithms for
SPKI/SDSI have been investigated by several researcherdops work did not address how to perform certificate-
chain discovery in distributed environments. We addressértificate-chain-discovery problem where the certifi-
cates are distributed over a number of sites, which then tees@operate to identify the proof of authorization for a
given request. We propose two protocols for this purposesg&lprotocols can also handle cases where certificates
are labeled with weights and where multiple certificate mhanust be combined to form a proof of authorization.
We have implemented these protocols in a prototype andtrppeliminary results of our evaluation.

1. Introduction

In access control of shared computing resourcesatttrorization problemaddresses the following question: given
a security policy, should a principal be allowed access tpegific resource? In trust-management systems [1, 2, 3],
such as SPKI/SDSI [4], the security policy is given by a sedigified certificates, and a proof of authorization consists
of a set of certificate chains. In SPKI/SDSI, thencipals are the public keys.e., the identity of a principal is
established by checking the validity of the correspondinblip key. In SPKI/SDSIname certificateslefine the
names available in an issuer’s local name spaa#horization certificategrant authorizations, or delegate the ability
to grant authorizations. Theertificate-chain-discovery problem to discover a certificate chain that is a proof of
authorization for a request to access a resource by a paincip

Schwoon et al. [5] introduced a new algorithm for certifieal&in discovery that translates SPKI/SDSI certifi-
cates to rules in a weighted pushdown system (WPDS) [6]. Tdmrithm presented by [5] can discover proofs of
authorization that consist of multiple certificate chainghis approach, we also translate SPKI/SDSI certificattes i
rules in a WPDS, where the authorization specifications etctrtificates are translated to weights of the rules. This
translation to a WPDS yields a complete certificate-chaécaVery algorithm and is described in Section 4.

Although SPKI/SDSI was designed to provide trust managématistributed environments, its original proposal
did not address how authorization (in the form of certificett@ins) can be performed distributedenvironments.
This issue is also neglected by previous work on certificht@n discovery. For instance, the algorithms of [7, 8, 5]
assume that the set of all certificates relevant to a givemestcare known at a single site, at which is compute the
answer to the authorization problem for a given principa argiven resource. In practice, however, there may be no
such central authority. Certificates may be held by a numbéifferent sites, each of which knows only a subset of
the certificate set. If a principd@ from site.S; wants to access a resource at Siiethe certificate chain authorizirfg
to do so may involve certificates from bath and.S; (and possibly a number of other sites in between). For iestan
consider the following example: The Computer Sciencesdeyat (CS) at the University of Wisconsin (UW) is part
of the College of Letters and Sciences (LS). The departnisat;ollege, and the university could be different sites in
the sense above. UW might grant access to some res@ui@all of its faculty members by issuing a corresponding
authorization certificate. The actual principals authedizo acces® would be specified by name certificates, e.g.,
UW would declare that its faculty members are (among othibose of LS, LS would declare that its faculty members

are (among others) those of CS, and CS would have a list afdtdty members. If members of CS want to accBss
they need a chain of certificates from UW, LS, and CS, and nbtese sites may know all of the certificates involved.

This paper makes the following contributions:

— We describe a distributed certificate-chain-discovergidilgm where the certificates are distributed across variou
sites. This distributed algorithm is described in Section 5

— The algorithms that are presented in this paper are autorimtsed. Compared with the rather limited amount of
previous work that exists on authorization problem in aritisted setting, the automaton-based approach enjoys
certain advantages over other approaches, such as [9]rtlaytar, (fragments of) automata can be computed at
separate sites, and the information shipped between siteake the form of (fragments of) automata.

— We have implemented a prototype system that incorporateslgorithm. Our experimental results, presented in
Section 6, demonstrate that our distributed certificatgirediscovery algorithm is both efficient and scalable.

Our approach also benefits from using WPDS as the underlgaimblogy. Previous work on WPDS [5] pointed
out that weighted domains enable one to address issuesspakiacy, recency, validity, and trust. Moreover, weighte
domains allow us to handle authorization specificationssaraantically correct manner.

Additionally, WPDS-based reachability-analysis aldaris can be used to answer certificate-analysis questions,
such as “Is it the case that all authorizations to a resolincrist involve a certificate signed by princiggl?” Several
other types of certificate-analysis questions are disclisspl0] and [8]. However, as this is orthogonal to the work
presented here, we will not discuss it in this paper.

2. Related Work

A certificate-chain-discovery algorithm for SPKI/SDSI wist proposed by Clarke et al. [7]. An improved certificate-
chain-discovery based on the theory of pushdown systemprgaented by Jha and Reps [8]. Both of these algorithms
are centralized and assume that the proof of authorizatinsists of a single certificate chain.

In general, a proof of authorization in SPKI/SDSI requiresetof certificate chains, each of which proves some
partof the required authorization. Hence, the certificateftttiscovery algorithms presented in [7, 8] are incomplete.
This observation is also the basis for the observation byhtiMitchell [11] that the “5-tuple reduction rule” of [4] is
incomplete. Our algorithm does not suffer from this probléeore to the translation into WPDS.

The semantics of SPKI/SDSI has also been studied in [12,4]3, 1

In the proof-carrying-authorization (PCA) framework of gpgd and Felten [15], a client uses the theorem prover
Twelf[16] to construct a proof of authorization, which the cligmesents to the server. However, they too assume
that all logical facts used by theorem prover reside at aaisgrver. Li et al. [9] presented a distributed credential-
chain-discovery algorithm for the trust management sysedim Their algorithm allows credentials to be distributed,
but the proof of authorization is constructed at one site @itedential-chain-discovery algorithms of Li et al. fedsh
credentials from other sites as needed. SPKI/SDSI is a subsgl, (SPKI/SDSI is equivalent t&1; without role
intersection). In our distributed credential-chain-digery algorithm, various sites summarize their part of traop
of authorization before sending it to other sites; thus pitoof of authorization is distributed. Moreover, summiarz
intermediate results also provides some privacy. We alpteimented our algorithm in a trust-management server. To
our knowledge, Li et al. did not implement their algorithm.

The work by Jim and Suciu on SD3 [17, 18], the successor of QiSMJso related to ours. SD3 is a trust-
management system based on Datalog that, like our algajtatiows for distributed evaluation of authorization
queries. In [17], the author claims that SD3 can expressghbuthe same policies as SDSI 2”. While this claim is
not further substantiated in [17], we believe it to be truewldver, there are several differences that set our work apar
from SD3:

— SD3 describes a generic evaluation algorithm where eacanitiation corresponds to a particular strategy for
distributing the computation. We propose several conazetduation strategies and argue that these strategies
have certain advantages with respect to efficiency andgyiva

— Since [17] does not provide a concrete encoding of SPKI/SBSD3, any comparison of the relative merits of
our encoding vs SD3’s is bound to be speculative. Howevehelieve that SD3'site-safetyequirement would
limit their evaluation to “forward” mode, whereas our algioms can search both forward and backward (the latter
is explained in Section 5).

— Unlike SD3, our framework allows certificates to have wesglits pointed out in [19], this provides a solution
for situations in which proofs of authorization require tiple certificate chains, each of which prgvart of the
authorization. This solves the problem of semantic incatgpless pointed out by Li and Mitchell [11]. Moreover,
in [5], we pointed out that weights allow to address suchdssas privacy, recency, validity, and trust.

3. Background on SPKI/SDSI

In SPKI/SDSI, allprincipalsare represented by their public keys, i.e., the prindgés public key. A principal can

be an individual, process, host, or any other entitydenotes the set of public keys. Specific keys are denoted by
K, K4, Kp, K', etc. Anidentifieris a word over some alphab&t The set of identifiers is denoted bi: Identifiers

will be written in typewriter font, e.g.A andBob. A termis a key followed by zero or more identifiers. Terms are
either keys, local names, or extended naméscal names of the formK A, whereK € K andA € A. For example,

K Bobis alocal name. Local names are important in SPKI/SDSI bexthey create a decentralized name space. The
local name space df is the set of local names of the fori A. An extended namis of the formK o, whereK € K
ando is a sequence of identifiers of length greater than one. Faonpie, K UW CS faculty is an extended name.

3.1. Certificates

SPKI/SDSI has two types of certificates, or “certs”:
Name Certificates(or name certs A name cert provides a definition of a local name in the isslecal name space.
Only key K may issue or sign a cert that defines a name in its local nanoce spaname cer€’ is a signed four-tuple
(K,A,S,V). The issuerK is a public key and the certificate is signed By A is an identifier. The subjed is a
term. Intuitively, S gives additional meaning for the local narfieA. V is thevalidity specificatiorof the certificate.
Usually,V takes the form of an intervédil , t2], i.e., the cert is valid from time, to ¢, inclusive.
Authorization Certificates (or auth cert$: An auth cert grants or delegates a specific authorizatmm fain issuer to
a subject. Specifically, an auth ceris a five-tuple(K, S, D, T, V). TheissuerK is a public key, which is also used
to sign the cert. TheubjectS is a term. If thedelegation bitD is turned on, then a subject receiving this authorization
can delegate this authorization to other keys. dh#horization specificatiofi’ specifies the permission being granted,;
for example, it may specify a permission to read a specificdil@ permission to login to a particular host. Madidity
specification/ for an auth cert is the same as in the case of a name cert.

A labeled rewrite rulgs a pair(L. — R, T'), where the first componentis a rewrite rule and the seconghoasnt
T is an authorization specification. For notational conveode we will write the labeled rewrite ruld. — R, T') as

L = R. We will treat certs as labeled rewrite rul@s:

— A name cert(K,A, S, V) will be written as a labeled rewrite rul® A LI S, whereT is the authorization
specification such that for all other authorization speaifanst, TNt = ¢t,andT Ut = T.* Sometimes we
will write —— as simply—, i.e., a rewrite rule of the fornh, — R has an implicit label ofT.

— An auth cert(K, S, D, T, V) will be written asK O T, s Oifthe delegation bitD is turned on; otherwise, it
will be written ask O —— S M.

3.2. Authorization

Since we will only use labeled rewrite rules in this paper,witk refer to them as rewrite rules or simply rules. A
term S appearing in a rule can be viewed as a string over the alptfabet, in which elements ok appear only in
the beginning. For uniformity, we also refer to strings of form.S (0 and.S W as terms. Assume that we are given a
labeled rewrite ruld, —— R corresponding to a cert. Consider a te$m= LX. In this case, the labeled rewrite rule
L-5R applied to the tern$ (denoted by(L AN R)(9)) yields the termR X . Therefore, a rule can be viewed as a
function from terms to terms that rewrites the left prefixtsfargument, for example,

(K4 Bob — Kp)(K4 BobmyFriends) = Kp myFriends

% In authorization problems, we only consider valid certifisa so the validity specificatiov for a certificate is not included in
its rule.
“ The issue of intersection and union of authorization spetifins is discussed in detail in [4, 12].

Consider two rules; = (L4 z, Ry)andcs = (La x, R>), and, in addition, assume thh is a prefix ofR,, i.e.,

there exists alX such thatR; = L, X. Then thecompositiore; o ¢; is the rulel; 1] R, X. For example, consider
the two rules:
c1: K4 friends x, K 4 Bob myFriends

T/
co: K4 Bob— Kp

The compositiores o ¢; is K4 friends RN Kp myFriends. Two rulesc; ande, are calledcompatibleif their
compositionc; o ¢; is well defined?®

3.3. The Authorization Problem in SPKI/SDSI

Assume that we are given a set of cétand that principalk, owns a set of resources that are identified by authoriza-
tion specifications. Moreover, assume that princifgalwants access specified by authorization specificafiofin
the following, we callK,. theresource ownerand K. theclient.) The authorization question is: “Cdt,. be granted
access to the resource specifiedts’

A certificate chairch for C is of the formeg o ¢ o -+ - 0 ¢, Wherecy, co, - - -, ¢, are certificates i€. The label
of a certificate chairh is denoted by..(ch). GivenC, K., K., andT, acertificate-chain-discoverglgorithm looks
for a finite set of certificate chains proving thidt is allowed access specified By

Formally, certificate-chain discovery attempts to find adisiet{chy, - - - , ch,,, } of certificate chains such that for
all 7, wherel < ¢ < m,

chi(K, D) € {K.O,K. B} and T C | JL(ch:).
i=1
Clarke et al. [7] presented an algorithm for certificatetoteiscovery in SPKI/SDSI withO(n?%|C|) time com-
plexity, wheren is the number of keys anld| is the sum of the lengths of the right-hand sides of all rufes.i
However, this algorithm only solved a restricted versionatificate-chain discovery: a solution could only conefst
asinglecertificate chain. For instance, consider the followingdifieate set:

c1: (K, Ka,0, ((dir /etc) read), [t1,t2])
co: (K, Ka,0,((dir /etc) wite), [t1,t2])

Suppose that Alice makes the request

(Ka,((dir /etc) (* set read wite))).

In this case, the chain(¢;)" authorizes Alice to read from directofyet ¢, and a separate chaifz)” authorizes
her to write td/ et c. Together(c;) and(cq) prove that she has both read and write privilege$ &trc. However, both
of the certificateg; andc, would be removed from the certificate set prior to runningdésificate-chain discovery
algorithm of Clarke et al., becausead 2 (* set read wite) andwite 2 (* set read wite).
Consequently, no proof of authorization for Alice’s requssuld be found. Schwoon et al. [5] presented algorithms
for full certificate-chain discovery, based on solving teataility problems in weighted pushdown systems. Their
formalization allows a proof of authorization to consisiddet of certificate chains. This paper uses the WPDS-based
algorithm for certificate-chain discovery introduced by, [5

4. Weighted Pushdown Systems and SPKI/SDSI

In this section, we introduce weighted pushdown systenisflyoreview the algorithms proposed for them, and then
show that they are a useful tool for solving problems relabezkrtificate-chain discovery in SPKI/SDSI. The follow-
ing definitions are largely taken from [20].

®In general, the composition operatoris not associative. For example; can be compatible witla; o ¢; but not withc,.
Thereforecs o (c2 0 ¢1) can exist wherjcs o ¢2) o ¢1 does not exist. However, whéns o ¢2) o ¢; exists, so doess o (c2 0 ¢1);
moreover, the expressions are equal when both are defined, We allow ourselves to omit parentheses and assume ibat
right associative.

4.1. Weighted Pushdown Systems

Weighted pushdown systems were introduced in [21, 20, S5khiort, a pushdown system defines an infinite-state
transition system whose states involve a stack of unboutatagh. In a weighted pushdown system, the rules are
given values from some domain of weights. Our weight domafrigterest are the bounded idempotent semirings
defined in Defn. 1.

Definition 1. A bounded idempotent semiringis a quintuple(D, &, ®, 0, 1), whereD is a set,0 and1 are elements
of D, and® (the combine operation) and (the extend operation) are binary operators brsuch that

1. (D, ®) is a commutative monoid whose neutral elemeft end whered is idempotent.

2. (D, ®) is a monoid with the neutral element

3. @ distributes over, i.e., foralla, b, c € D we havei® (bdc) = (a®b)®(a®c) and(a®b) ®c = (a®c)®(bRc).
4. 0is an annihilator with respect t®, i.e., foralla € D,a®0=0=0® a.

5. In the partial orderC defined by¥a,b € D, a C biff a © b = a, there are no infinite descending chains.

Definition 2. A pushdown systemis a triple P = (P, I, A), where P and I" are finite sets called theontrol
locationsand thestack alphabet respectively. The elements@bnf (P) := P x I'* are called theconfigurations
of P. A contains a finite number otiles of the form(p, v) —p (p’, w), wherep,p’ € P, v € I', andw € I'*, which
define a transition relatioss between configurations &t as follows:

If r = (p,v) —p (p',w), then(p, yw’) ﬁ}p (p',ww') forall w' € I'*.

We writec =p ¢’ to express that there exists some rulsuch thatc %p c’; we omit the subscripP if P is

understood. The reflexive transitive closure=sis denoted by=-*.
def

Given a set of configurationS, we defingpre*(C) = {¢/ | 3¢ € C: ¢ =* ¢} andpost*(C) £ {¢ | 3¢
C': c=* ¢} as the sets of configurations that are reachable—backward$@rwards, respectively—from elements
of C' via the transition relationC is calledregular if for all p € P the language w | {(p, w) € C'} is regular.

Definition 3. A weighted pushdown systenis a triple W = (P, S, f) such thatP = (P, I, A) is a pushdown
systemsS = (D, ®,®,0,1) is a bounded idempotent semiring, afid A — D is a function that assigns a value
from D to each rule ofP.

Leto € A* be a sequence of rules. Usirffigwe can associate a value#gi.e., ifoc = [r1, ..., 7], then we define
v(o) £ f(r1) ® ... ® f(r). Moreover, for any two configurationsand¢’ of P, we letpath(c, ¢’) denote the set of
all rule sequencep, ..., r] that transformeinto ¢/, i.e.,c SGED N (2 N

Definition 4. LetW = (P, S, f), whereP = (P, I, A) andS = (D, ®,®,0, 1), and letC be a set of configurations.
Aforwards (resp.backwards) (W, C)-dagis an edge-labeled directed acyclic grapii E) whereV C Conf (P) x
DandE CV x A x V such that

— ifa vertex(c, d) has no incoming edges, there C andd = 1;

—if ((e1,d1),71,(c,d)), ..., ((ck, dg), rk, (¢,d)), k > 1 are the incoming edges ¢4, d), then
o d= @1 1(di ® f(n)) andc; :>7> cforall 1 <i <k (in aforwards(W, C)-dag);
e d= @1 1(f(ri) ® d;) andc %p ¢; forall 1 < i <k (in a backward§W, C)-dag).

We call a (forwards/backwardg)V, C')-dagD a witness dagfor (c, d) if D is finite and(c, d) is the only vertex with
no outgoing edges if.

Notice that the extender operati@nis used to calculate the value of a path. The value of a settb§pgmcomputed
using the combiner operatiab. The existence of a witness dag fet d) can be considered a proof that there exists
a set of paths frond’ to ¢ (or vice versa) whose combined valuedisBecause of Defn. 1(5), it is always possible to
identify a finite witness dag if such a set of paths exists.

6

4.2. Known Results

We briefly review some known results about (weighted) pushdsystems.

LetP = (P, I, A) be a pushdown system, and {ete aregular subset ofConf (P). Then, according to [22, 23],
the setgpre*(C) andpost*(C') are also regular and effectively computable (in the form fafide automaton).

The results from [20, 5] show that the result can be extendegkheralized pushdown reachability (GPR)
problemson weighted pushdown systems:

Definition 5. LetW = (P, S, f) be a weighted pushdown system, whBre= (P, I, A), and letC C P x I'*
be a regular set of configurations. Tlgeneralized pushdown predecessor (GPP) problems to find for each: €
pre*(C):

- 5(c) E®{v(0) | o € path(c,d),d € C};
— abackwards witness dag fé¢, 5(c)).

Thegeneralized pushdown successor (GPS) probleimto find for each € post*(C):

— 8(c) Z2D{v(o) | o € path(¢,c),cd € CY;
— aforwards witness dag fak, §(c)).

In [20, 5], the solutions for GPS and GPP are computed in tha &f annotated finite automata. We briefly review
these solutions in Section 4.4.

4.3. The Connection Between SPKI/SDSI and Weighted Pushdowsystems

The following correspondence between SPKI/SDSI and pushdystems was presented in [5]: (ebe a (finite) set
of certificates such thdf: andZ. are the keys and identifiers that appea€ jrespectively. Moreover, [€f” be the
set from which the auth specséhare drawn. Thed: = (7,U,N, L, T), whereu, N are the union and intersection
of auth specs as discussed in [4, 12], forms a semiring withailoZ7. Now we can associate with the weighted
pushdown systemVc = (Pc, Se, f), wherePe = (K¢, Zc U{T, B}, Ac), i.e., the keys of are the control locations
and the identifiers form the stack alphabet; the rulefgeis defined as the set of labeled rewrite rules derived from
the name specs and auth specs as shown in Section 3.1,raafs every rule to its corresponding auth spec.

The usefulness of this correspondence stems from the fiolipgimple observation: A configuratidi, o) of
Pc can reach another configuratidi’, o’) if and only if C contains a chain of certificates, ..., ¢; such that
(cko---0c1)(K o) = K’ o’. Moreover, the label of the certificate chain is precisgly - - - ¢;). Thus, solving the
GPP/GPS problem amounts to the finding a set of certificatiasha prove that a certain principal’ is allowed to
access a resource of principdl Moreover, the solution of the problem identifies a set ofifieate chains such that
the union of their labels is maximal.

To conclude, in the generalized authorization problem, agephe following question:

Given a set of certificates, a resource ownek’,., an authorization specificatidh, and a clientX ., are there
certificate chains i€ proving thatk,. grants authorizatiofi’ to K.?

This is equivalent to either of the following problems in DS setting:
— As a GPP problem: Faf' = {(K.,0), (K.,®)} andc = (K,,0), computet := §(c) and a backwards witness
dag for(c, §(c)).
— As a GPS problem: Fof' = {(K,,0)}, &1 = (K., 0), andey = (K.,), computet := §(c1) @ d(c2) and
forwards witness dags fde;, 6(c1)) and(cz, d(c2)).

Authorization forK, is granted if and only it D T'.

4.4. Algorithms for GPR

We briefly review the solutions for GPR problems given in [8]),concentrating on the GPP case, because the GPS
case is analogous except for some details.

Our input is a weighted pushdown systéth= (P, S, f), whereP = (P, I, A) andS = (D, ®,®,0,1),and a
regular setC of configurations. The output & c) and a witness dag for(d(c)) for eache € pre*(C).

In general, there are infinitely many configurationgia*(C') (and inpost*(C)) even if C itself is finite, so we
can only hope to compute the solution symbolically. We us@d@éated) finite automata for this purpose:

Definition 6. AP-automatonis a quintupld = (@, I, n, P, F) whereQ O P is afinite set oftatesn C Q x I'x Q
is the set ofransitions, and F' C @ are thefinal states Theinitial states of A are the control locationd®. We say
that a sequence of transitiofig, v1, p1), - - -+ (Pn—1, Y, q) € 1 readsconfiguration(p, v1 ... v,) if p1,...,pn,, g are
arbitrary states. The sequencesisceptingiff ¢ is a final state. I is a configuration of4, we denote byicc 4(c) the
set of all accepting paths i for ¢; we say that is accepted by if acc4(c) is non-empty.

Note that a set of configurationsBfis regular if and only if it is accepted by sonfe-automaton. In the following
P is fixed, so we usually omit the preffR and speak simply of “automata”.

A convenient property of regular sets of configurations it tiney are closed under forwards and backwards
reachability [23]. In other words, given an automatéthat accepts the sét, one can construct automata that accept
the sets of all configurations that are forward or backwaedshable fronC. Following [20, 5], two additional
labellings for the transitions afl are computed to solve the GPP and GPS problems. Thelfirgt,~ D assigns a
weight fromD to each automaton transition and allows to compu&ee below). The second allows to computeithe
function. In the following presentation, we omit the sectatukling for the sake of simplicity. A detailed presentatio
is given in [20], and the method there is straightforwardamsfer to the distributed case.

Without loss of generality, we assume henceforth that fenewle(p, v) — (p’, w) we havelw| < 2; this is not
restrictive because every pushdown system can be simudgtadother one that obeys this restriction and is larger by
only a constant factor, see e.g. [8].

In the following, we first present an abstract version of thecpdure given in [20, 5], which is designed for
centralized computation. Section 5 describes an impleatientfor the distributed case.

Abstract algorithm Let A = (Q, I',n, P, F') be aP-automaton accepting a set of configuratichsVithout loss of
generality we assume that has no transition leading to an initial state.

Initially, we setl(¢) := 1 for all t € n. When we say that transitigrshould be updated with valug we mean the
following action: ift is not yet inn, add¢ to n and set(¢) := d; otherwise, updat&t) to I(t) & d.

For GPP, we add new transitionstbaccording to the following saturation rule:

If r:=(p,7) — (p',w)isarulet, ...t, asequence that reads w) and ends in statg, then letd be
I(t1) ® ... ®I(t,,) and updatép, v, ¢) with the valuef () ® d.

The algorithm stops when further applications of the saimmaule cause no further changesdn
Pseudocode for the algorithm is given in [20] and reprodundeigure 1. Each iteration of the loop starting at
line 14 executes one or more applications of the saturatiten r

Example Assume that the pushdown system contains the followingftlee meaning of this example is explained
in greater detail in Subsection 6, Case 1):

r1 = (K,,0) — (K, faculty)

ro := (Kyuw, faculty) — (K5, faculty)

r3 := (Kjs, faculty) — (K., faculty)

rq = (K5, faculty) — (Kp0, faculty)
= (K

5 s, faculty) — (Kpgop, €)

Let f(r1) = t, (i.e., the auth cert grants permissiQnand f(r;) = T for 2 < ¢ < 5 (i.e., the name certs do not
change permissions). Suppose that Bob wants permis$iom the resource ownek’,.. We determine whether Bob
is authorized to do so by solving the GPP problem@oe {(K g, O), (Kpoy, W) }.

Algorithm 1

Input: a weighted pushdown systewi = (P, S, f), va
whereP = (P, I, A) andS = (D, ®,®,0, 1); @
an automatod = (Q, I', no, P, F') acceptingC,

such that4 has no transitions int& states. @ @ @ @
Output: an automatord’ = (Q, I, n, P, F) for pre* (C);
with annotation functiord: n — D

1 procedureupdatét, v)

2 begin

3 n:=qnuU{t}

4 newValue := [(t) ® v

5 if newValue # [(¢t) then

6 workset := workset U {t}

7 U(t) == newValue Fig. 2. Initial automaton (above) and finake* automa-

8 end ton created by the algorithm in Figure 1; weights on tran-
9 sitions are shown in parentheses.

10 7 :=mno; workset :=no; 1 := At.0)

11 forall t € no dol(t) :=1 s om

12 forall r = (p,y) — (p',e) € Ado .Bc’b &) ’
13 update((p, 1.p'), £(r)) @;/“

14 while workset # () do

15 remove some transitidn= (g, v, ¢’) from workset; Ls:

16 forall r = (p1,m1) — (¢,7) € Ado
17 update((p1,71,4"), f(r) @ I(¢)) 0 0

18 forall » = (p1,71) — {(g,772) € Ado W

19 forall ' = (¢',72,¢") € ndo
20 update((p1,71,4"), f(r) @ U(t) @ 1)) 0 0

21 forall r = (p1,11) — (p',727) € Ado @/

®

22 if ' = (p’,v2,q) € nthen
23 update((p1,71,4'), f(r) @ I(t") @ 1(t))
24 return ((Q,I,n, P, F),1) Fig. 3. Partial automaton computed@is, LS, andUW

for the querypre* ((R,d)): weights on transitions are
Fig. 1. An algorithm for creating a weighted automaton for the GPRhown in parentheses.
problem.

The upper part of Figure 2 shows an automaton that ac¢epi$ie automaton fopre*(C), produced by Algo-
rithm 1, is shown in the lower part. There, we can see{hat (1) is accepted with weight and so Bob’s authorization
is granted. The extra annotations for witness dags (notshawuld let us deduce that the relevant certificate chain is

[7'157'27T37T5]-

5. Distributed Certificate-Chain Discovery

The algorithms for GPR problems discussed in Section 4.4« wader the assumption that all pushdown rules (or
certificates, resp.) are stored at a single site. In a reddgetting, certificates may be issued by many principald, a
forcing them to be stored at (or shipped to) a single site neayoa permitted. We therefore propose versions of these
algorithms that solve GPR problems in a distributed envirent.

Remark: Because of the connection between SPKI/SDSI and WPDS iegplan Section 4.3, it is safe to use
pushdown and SPKI/SDSI terminology interchangeably, aadiall do so in this section.

We proceed as follows: Section 5.1 introduces some defirst@md notation. Section 5.2 gives high-level descrip-
tions of protocols for the communication between the cliém resource, and the servers that co-operate to solve
the distributed certificate-chain-discovery problem. Weppse two protocols, one based on the GPP formulation,
the other on the GPS formulation. Both protocols consiseséral phases, the core of which is a search phase. The
algorithms used in that phase are described in furtherldetaection 5.3. The relative merits of the protocols, ad wel
as security and privacy-related issues, are discussedtinS&.4.

9

5.1. Preliminaries

For the rest of the section, let us fix a weighted pushdowresy®v = (P, S, f), whereP = (P, I, A) andS =
(D,®,®,0,1). We consider the authorization problem where cli&ht requests permissioff from the resource
ownerk,.

We assume that the certificates are distributed over &igatof servers and that there exists a mappifig P —
Sites, which maps each principal to a site that is ‘responsiblettie principals.

We say that certificatép,v) — (p’,w) crosses a site boundaryf fs(p) # fs(p'). If such a cross-boundary
certificate exists, we call the sites responsiblegfandp’ neighbouring sites

Moreover, we denote by (s) = { (p,w) | fs(p) = s, w € I'* } the configurations that begin with the keys for
which sites is responsible. The basic idea behind the distributed #lgos is that every site computes (an automaton
representation of) the sete*(C) N Z¢(s) or post*(C) N Tc(s), respectively. Moreoveg annotates its automaton
with information that allows recovering part of the withetsys. This notion is made more precise in the following
definition:

Definition 7. LetD = (V, E) be a(W, C)-dag ands € Sites. Thes-slice of D is the subgraph oP induced by the
verticesV® U Vi, where

— VP E{(c.d) eV]ceT(s)}
-~y E{veV | eV re A (vorv) € B}

Informally, the s-slice contains the part gD that consists of configurations for whichis responsible, and their
immediate successor vertices (reached by cross-bounddificates). An edge labeled by a cross-boundary certiicat
is henceforth called doundary edge v is called aboundary node of s if v is the target of a boundary edge, ard

is responsible for the subject of the rule with which the eddabeled.

5.2. The Protocols
Our distributed solutions for the authorization problenkmaertain assumptions about the storage of certificates:

— In the GPP protocol, we assume that every certificate{le) — (p’, w) is stored at the site responsible for its
subject, i.e., afs(p’).

— In the GPS protocol, we assume that every certificate{le) — (p’, w) is stored at the site responsible for its
issuer, i.e., afs(p).

These assumptions will make our algorithms more efficiembbee every site will know which other sites to
contact for information concerning any given principal eTdssumptions are realistic: they are basically saying that
if a certificate mentions a principal (either the subjecthar issuer), then its site should know about it. (In general, i
would be realistic to assume that each certificate is knoviheites oboththe issuer and the subject, but the stated
conditions are the only ones actually required by our athors).

In a distributed setting, multiple access requests maydrappthe same time. We shall use unigeguest idso
distinguish among them. Both protocols consist of threesphitialization, search andverification

The GPP Protocol for Distributed Certificate-Chain Discovey In this setting, the search is started at the site that
is responsible for the client, and the search works its way’ tawards the site that is responsible for the resource
owner from whom the client is requesting permission.

Initialization Initialization consists of the following steps:

1. The client sends a requésto the resource owner.

2. The resource owner generates a unique request idemtifief, which will distinguish this request from other
requests that may be in progress now or in the future, umfilestreqid is resolved.

3. The resource owner sends the gdif,, reqid) to the sitefs(K,) (called theresource siteand denotes, from
now) to notify it of an ‘incoming’ search. Aftes,. has acknowledged receipt of the messageid is sent to the
client.

10

4. The client sends a message to the itd{.) (called theclient siteand denoted.). The message contains (i) its
key K, (i) the request id-eqid, (iii) a so-calledclient certificatei.e. the request id signed by the client.

5. The client site checks that the contents and signatureeoclient certificate match expectations. If the check is
successfuls. begins the search.

Search The client site initiates a GPP query for the 6et= {(K., W), (K., [0)}, wherereqgid is used to distinguish
this query from others (so that servers may work on multiplguests simultaneously). The query is resolved by
all the sites together; the details of the search algoritpengiven in Section 5.3. At this point, it is sufficient to
understand the followings. starts a local GPP computation, and may (transitively) estjother sites to participate
in the computation; each siteconstructs the setre*(C) N 7 (s), and maintains information that allows constructing
the s-slice of the required witness dags. Communications beivetes are tagged with bottegid and the client
certificate.

Verification Because of its earlier communication with the resource ovthe resource site. knows that = (K.,)
is the target of the search. Moreover, because 7 (s,), the resource site will be able to determine whethés
reachable fromC, using the sepost*(C) N T (s,) it has computed. To complete the algorithm, the result mast b
reported to the resource owner.

We propose two alternative methods:

— In the first alternative, the resource site starts by consirg the s,.-slice of the witness dag. When it reaches
a boundary node of its slice, it requests the sub-dag ‘betbat node from the neighbouring site at that node.
The neighboring site computes this information, which gagsnvolves recursive queries to sites further ‘down-
stream’, and returns it te.. Whens,. has constructed the full witness dag, it sends it to the mesoawner along
with the client certificate. The resource owner verifies trilt, i.e., checks the integrity of the dag, the signatures
on all certificates used in the dags, whether the clientf@até matcheseqid, and whether its signature matches
the client. Depending on the outcome, access is allowedraed¢o the client.

— The second alternative is as follows: instead of consingdtie witness graph,. just reports the certificates issued
by the owner for the resource, the combined values of thesghtt start with them, and the client certificate. In
that case, no further communication between the sites sssacy.

The first alternative provides the resource owner with thepete witness set of certificate chains. This may give
the owner a higher degree of confidence and control over tt@azation process. On the other hand, the verification
of the complete dag may place a great workload on the res@wvoer, which is reduced in the second alternative.
The second alternative may also drastically reduce the atafunetwork traffic exchanged between sites.

The GPS Protocol for Distributed Certificate-Chain Discovey In this setting, the search is initialized at the re-
source site, and the search works its way “down” to the client

Initialization

1. The client sends a requésto the resource owner.

2. The resource owner responds by sending a unique reqeesifier reqid.

3. The client sends a message to the clientsit® register the search. Along with the message, it seagis! and
the client certificate as in the GPP protocol.

4. The client site again checks correctness of the clienificate. If the check is successful, the client site tells th
client that certificate-chain discovery may begin.

5. The client asks the resource owner to initiate the search.

6. The resource owner sends a message to its resource disngugits public keyk,, the request idegid, and a
request to initiate a certificate discovery.

SearchThe search stage is analogous to the GPP protocol, excejitithmitiated by the resource site and from the
singleton setC = {(K,,)}. The details of the search algorithm are given in SectionlB.Brief, a sites becomes
involved in the search ifost* (C') intersectsT (s), ands maintains information that allows constructing thelice of
the required witness dags.

11

Verification Because of steps 3 and 4 in the initialization phase, thatctige s. knows thate; = (K,.,0) and
¢y = (K., W) are the targets of the search. Moreover, it can determinéhehg andc, are reachable fror@, using
the setpost*(C') N 7 (s.) it has computed. To complete the algorithm, the result mastelported to the resource
owner. In this phase, the direction of the flow of informatiscontrary to that of the search phase.

Like in the GPP protocol, we have two alternatives at thigestavhich are analogues of the ones provided for GPP.
For a discussion about their relative merits, see the resnarhe GPP protocol.

— In the first alternative, the client site starts by consingcthe s.-slice of the witness dags. It then sends the
sub-dags starting at its boundary nodes ‘upstream’ to thesponding neighboring sites. The neighboring sites
supplement this information with their own sub-dags anaigaem further upstream unti. has the full witness
dags fore; andes. The result is then reported By to the resource owner. Moreover, all communications in this
phase are accompanied by the client certificate mentionédrea
The resource owner can now verify the result, and grant oy deoess to the client.

— Inthe second alternative, the sites only report the sumt (@) of the paths inside their slices of the witness dags.
Then, the result given by, to the resource owner consists of certificates issuef’band the combined values
of the paths below them.

5.3. Distributed Search Algorithms

In this section, we give some more details about the Searabepbif the protocols.

At an abstract level of description, every siteomputes the satre*(C) N 7¢(s) (or post™(C) N ¢ (s), respec-
tively). Sites becomes involved in the search if it is discovered that isrgection is non-empty. In the GPP protocol,
the client site starts with the sét = {(K,.,0O), (K., l)}; in the GPS protocol, the resource site starts with the set
C = {(K,,0)}. If a cross-boundary cert causes some site discover terms belonging tf:(s’) (for some other
site s’), thens will send those terms tg/, ands’ continues the computation on those terms. All terms comoated
between sites will be tagged with the request id, so thas si@ distinguish among them when working on multiple
gueries.

At a more concrete level of description, the resource/théa starts by building an automaton acceptifighen
carries out the algorithm from Figure 1 (or itest* counterpart [20], respectively), using its own certificati it
derives an automaton transition= (X, q) that begins at a stat® (key, respectively) for which another site is
responsible, thenand thepart of the automatoneachable frony are shipped out to that other site. Thus, every site
computes a “partial” automaton (i.e., a fragment of theduliomaton).

Example: Consider once more the example from Section 4.4, and asthahéhe rules; to r5 are distributed
over four sites called/W, LS, CS, and Bio as shown in Figure 4 of Section 6. Suppose that we use the GPP
protocol to decide whether Bob at siféS is granted permissionby K,. Then, the site”'S starts the search with
C = {(Kpob,O), (Kpo», M)} and discovers, through; andrs, that pre*(C) intersectsT (LS), so siteLS gets
involved and notices that (because-gf site UV must also take part in the search. The partial automata ctau by
CS, LS, andUW are shown in Figure 3; notice that sif&o does not get involved. At the end of the computation,
site UW sees thatK,.,) is accepted by its partial automaton with weightind that is the result reported to the
resource owner.

Bidirectional search The approaches discussed so far allow for unidirectiorzaitée either “forward” (from resource
to client) or “backwards” (from client to resource). Takiadeaf from [9], one could envisage a hybrid algorithm that
works in both directions at once. In this case, the resouteavduld initiate a GPS query, and the client site would
initiate a GPP query, both with the same request id. All sitesld maintain two automata, one for each direction.
Because the intersection of two automata can be perfornfieeafly, a site “in the middle” would be able to notice
when the two searches intersect. We have not investigatedipiproach in our prototype, but it does present an
interesting direction for future work.

5.4. Discussion

Here, we discuss privacy and security-related topics, @vefhe two protocols, and discuss possible improvements.

12

Privacy During the search phase, the parties involved learn theviiallg:

— Only the resource owner and the client know that the cliestdsked to access the resourthis is because the
resource owner and the client do not give out informationudbach other when they communicate with their sites.
The sites can determine the outcome of a search just by dstngguest id, which is generated independently of
either key.

— The resource site knows that a request for the resource tesrhade, but not by whoi@nce again, this is because
the resource site receives only a request id from the resawoer. Moreover, the resource site maintains only a
partial automaton and a slice of the associated withesgsapt cannot determine anything about principals at
any other site.

— The client site knows only that the client has made a reqbastot for what or to whonirhis holds for reasons
that are analogous to the previous argument.

— All other sites know only that a request has been made, bitynohom or to whom. They may surmise something
about the nature of the request judging from the identifierthe transitions, the direction from which the query
comes, and the direction from where a confirmation comesthayt can only observe the communication with
their neighbor sites.

Thus, the privacy of the access request is ensured duringetieh phase. However, when the witness dag is
constructed during the construction phase, all sites leridentity of the client. This can be avoided if the altée
method is used, in which only the values of certain paths endhg are transmitted between sites. This alternative
solution also prevents the unnecessary spread of ceriibatween sites (which might contain sensitive infornmtio

Security against attacks

Spoofing and eavesdroppingo protect the protocol-related communication from attaslich as spoofed messages
or eavesdropping, all messages exchanged in the protaeoenarypted and digitally signed, e.g., using any of the
well-established public-key cryptography systems.

Trusting the sitesBecause the main part of the computation is carried out bgitks, the protocols are potentially
susceptible to malicious behavior of the sites. A malicisiis could either invent or ignore certificates. Ignoring
certificates would only be to the detriment of the users foicllthe site is responsible and seems unlikely to be a
cause for concern.

Inventing certificates is also not a problem if the verifioatstage constructs the full witness dag because in this
case all certificates (which are signed by their issuersg t@be supplied. The alternative solution, in which only
values are reported, is more problematic: in essence, tiegdhe value of the paths in a sub-dag rooted at a node
({K,w), d) amounts to issuing a confirmation (in the name of principathat there is a certificate chain froff, w)
to the client. Therefore, the alternative solution reggiiketo trust the site to us&’’s certificates truthfully. Note that
if all cross-boundary certificates have subjects that adeudirect control of the respective site operator, thisisan
problem.

The client certificate The resource must verify that the reported result is indedid for the client who has initiated
the request. If the verification stage constructs full wsthdags, this becomes straightforward: the maximal (mikhima
resp.) nodes of the dags must refer to the client.

If the alternative solution is used in the verification, thiertt certificate serves this purpose, provided that both
resource and client site verify its correctness.

A comparison of the two protocols In the GPP-based protocol, the search starts at the clienirsthe GPS-based
protocol it starts at the resource site. If a site is respmeador a ‘popular’ resource, the GPS-based protocol may put
too much workload on it. Moreover, denial-of-service dttaare conceivable in which a malicious client causes a large
number of GPS computations (under different identitiea) #ne doomed to fail. In the GPP-based protocol, this is less
likely to happen: the workload would fall mostly on the clieite, which can be assumed to have a relationship to the
client (e.g., the client’s company, his/her ISP, etc), dngstthere is some ‘social safeguard’ against denial-oficer
attacks.

Moreover, the GPP-based solution does not require a sepandfication stage when the construction of complete
witness dags is omitted. For these reasons, it seems th@&RRebased solution has some advantages over the GPS-
based solution. However, we have yet to carry out a more geaialysis on this topic.

13

Possible improvements

Caching results.Notice that the methods we describe miat have to be carried out every time that a client tries to
access a resource. This would only have to be done for thedirsact between a given client and a given resource. If
the outcome is successful, the resource may remember tthigrant access without a full search next time.

Caching can also be used by the sites: unless a site is tin¢ gilie or the resource site for some request, the result
of its local search is independent of the request identifieerefore, sites may cache recent results and reuse them
when an identical request (modulegid) comes along.

In SPKI/SDSI, certificates may be annotated with validifiphmation that specifies how long a certificate is valid
(see Section 3.1). A certificate chain is valid only as longlbsertificates on it are valid. In both situations desaiibe
above, the caching must take this validity information iat@ount. This requires some straightforward additions to
our algorithms that are omitted here.

Guided searchln both protocols, the sefge*(C)/post*(C') may intersect the domains of many sites; therefore, any
request could involve many different sites even if only a téithem are ‘relevant’ for the search. This increases the
length of the computation as well as the amount of networfkid¢rd hus, the protocol could be improved by limiting
the scope of the search. It is likely that the client has aa @favhy he/she should be allowed to access the resource;
therefore, one possibility would be to let the client andhar client site suggest a set of sites that are likely to d¢onta
suitable certificates.

Termination. In the distributed GPP/GPS computation, a standard tetimmaetection algorithm can be applied to
determine that the search has terminated, which entaii@uil time and communication overhead. However, even
before the search has terminated, or before all relevatificate chains have been found, the resource site (in the
GPP case) or the client site (in the GPS case) may have diszts@mepaths with a tentative value (which may be
‘larger—with respect to the ordering—than thevalue). If the goal of the search is just to establish thatthealue

is no larger than a certain threshold, then this informatiounld be used to terminate the search early. For instance, if
Alice is interested in a set of certificate chains that isd/édir at least one hour, then the search algorithm could be
stopped as soon as certificate chains are found that ardeglghy, one and a half hours (or any other amount of time
longer than one hour). Moreover, the computation couldrnédid by a timeout.

6. Implementation

We have implemented a prototype of our distributed certiéigdnain-discovery algorithm. We use the prototype to
evaluate the scalability of the algorithm by varying twoaraetersconfiguration topologyandnumber of certificates
We use response time from the perspective of clients as tfierpgnce metrics. Because we currently do not have
the resources to perform a real-world test, all experimargsconfigured using synthetic data. However, we tried to
make sure that the configurations mimicked the real world@sety as possible. The two main conclusions that can
be drawn from these experiments are:

— Network overhead is dominant The results show that the topology of the configurationcff¢he system per-
formance. However, the most significant factor is networkrbead: our experiments show that a significant
percentage (about 80% to 90%) of the total time is spent owarktoperations. However, since our current
implementation is only a prototype, we can reduce the owethising optimization techniques.

— Local filtering effect: As one might have expected, the more certificates we hagdottger it takes to perform
certificate-chain discovery. However, the time that it &ake perform certificate-chain discovery increases at a
much smaller rate than the increase in the number of cetéicdhis is due to what we call thecal filtering
effect only local rules are processed at each site (see Sectidram. 5.3).

In summary, the experimental results show that the dig&ibaertificate-chain algorithm implemented on top of

WPDS is both efficient and scalable. In the rest of this sactie explain the experimental design and discussed the
results obtained.

14

K.OL Ky faculty B
Ky faculty — Ky faculty

Fig. 4. (Case 1.)R grantsr ead permis-
sion to directory/ et ¢ to UWs faculty: ¢

= ((dir /etc) read); Bobrequests

Kis faculty — Ky, facul ty r ead access for the directoryet c.

K faculty — Kpop

KrDl>Kcsfacultyl % N KrDt—2>KbiofacuItyl

Fig.5.(Case 2.): Authorization Over Multi-
ple PathsR grantsr ead privilege to direc-
tory / et ¢ to CSs faculty: t1 = ((dir
/etc) read), and wite privilege
to BIO's faculty: t2 = ((dir /etc)
write); Bobrequests(read wite)
access for the directoryet c.

Kyio faculty — Kajice
K faculty — Kypes faculty N “ Kpio facul ty — Ky facul ty

Kyes faculty — Kpop

K, O K. gov O
Kpss gOV — Kgov

K, O K, edu prograns B
Kost edu — Keau

t
Kgow O -2, Kgouprograms Ml

Keaqu Prograns — KmanagerA
Kgoy programs — Knanagers

N
Keaqu pPrograns — Keqy SChool s faculty
Keau SChool s — Kyisc SChool s

Kgoy prograns — Ky, PubSchool s faculty
Kgoy PubSchool s — Ky school s

| Kaisc School s — Ky,

b
Ky facult Y — Kchancellor

Fig.6. (Case 3.):R authorizes all NSF’s

EDU programs toapply for fundA:
Kisfaculty — Kuofaculty ¢; = (fundA apply), and all NSF's
GOV programs canappl y for fundB:
to = (fundB appl y) ; Bobattempts to
appl y for f undA.

K faculty — Kpop

Configuration Topology The first parameter that we considered is the configuratipaltgy. A configuration of
the SPKI/SDSI system consists of multiple connected sitesis represented as a graph. In our experiments, we
considered three different configurations of varying degref complexity, as shown in Figures 4 — 6. In each graph,
shaded nodes represent distinct sites of a distributed /SB¥§Il system, while labels represent the cross-boundary
SPKI/SDSI certificates. Nodes with a symi§®) denote the resource from where SPKI/SDSI auth certs aredssu
The dashed lines denote the certificate chain discoveredtglgorithms wherBobrequests access to resouRe

For example, in Case 1, the root nad@/ denotes the University of WisconsibS denotes the college of Letters
and Science, one of the colleged 8, while CSandBIO represent two departments, Computer Science and Biology,
underLS. There is an edge betweklW andLSbecaus&W has issued two certificates with respect to klethe auth
certk. 04 K, facul ty B grants access rightto all K,’s faculty; the name celk,, f acul ty — Ky, facul ty
states that alK;;'s faculty areK;’s faculty.

Case 1 represents the simplest topology of the three coafigus. Case 2 adds additional complexity on top of
Case 1 by forming a DAG. As a result, a certificate chain magisbof multiple paths, as demonstrated by the dashed
lines in Figure 5. Case 3 builds on top of the first two and foamsore complex configuration.

15

Number of Certificates The second parameter that we con- Number of Certificates

sidered is the number of certificates. In a real-world envi-Configuration || Small | Medium | Large

ronment every principal has a key and can issue certificaje€ase 1 1:5 3:57 30:570
Consequently, we expect a SPKI/SDSI system to contpi@ase 2 2:4 4:56 40 : 560
thousands or more certificates, distributed over the varipuCase 3 3:13 | 5:155 50 :1550

sites in the system. Hence, for each of the three configura- .))

tions, we varied the number of certificates used in the expggple 1. Test Configurations. Each cell contains two num-

iments ranged from 6 to 1600. We consider only the numers: the first is the number of auth certs used in the run and
e ! the fc,econd number of name certs.

ber of reachable certificates since unreachable ones do no

contribute to certificate-chain discovery. Table 1 showes th

breakdown of the certificates of the experiments.
6.1. Analysis

In this section, we report on the results of the experiméfiesuse response time from the perspective of clients as the
performance metric. All tests were conducted under a sitedlanvironment: each site runs on a separate machine
on a local area network. All test machines have identicafigarations: 800 MHz Pentium Il with 256MB RAM,
running TAO Linux version 1.0.

Table 2 shows the performance results for the three confignsa Each configuration is run three times, with in-
creasing numbers of certificates. For comparison purpasealso collected performance data for running certificate-
chain discovery in centralized mode (i.e., with all the ifiedtes stored at a fixed site), using the largest number of
certificates.

Topology effect The data from Table 2 shows that the ‘ ‘ ‘ ‘ o
effect of configuration topology varies from case to case. ww| .
For instance, comparing Cases 1 and 2 one can observe that
the performance difference is small. This indicates that th **r xT
path-combining operation (in Case 2) adds little overhead.
However, in Case 3, we see a substantial variance in the ™[
time to process queries. One obvious observation is that t@es00

certificate-chain length affects the performance, as staywn & VAR T
- . o gl B (fundd cboy
the top line in Figure 7. In comparison, the flat line in the «of oy (unda ooy 3
. . . Bob (fundB apply) ®
same figure shows the response time had we centralized all dsvithed =

200

the certificates at one location. This time reflects the cost
of running the GPS algorithm at one site, plus the network ‘ ‘ ‘ ‘
overhead of the two communicating between the client and ° ' ? cobons CrnLergth ’

the site (request and reply). This reveals that the most s;g .)

nificant factor isnetwork overheadWe collected additional Fig. 7-Response Time vs. Chain Length (Case 3. com-
data that confirmed this hypothesis: in distributed cestitie Plex configuration)

chain discovery, about 80% to 93% of the time is spent on ndtnalated operations, such as establishing TCP
connections, sending and receiving messages. Since tbisrisntly a prototype, we are investigating optimization
techniques to improve the average performance.

%

*

Number of certificates Table 2 shows that there is an insignificant change in perdoice when the number of
certificates increases froamallto mediumand a very small increase (about 4% on average) frediumto large.
We attribute this to two reasons. First, tleal filtering effecicaused only relevant rules to be composed at each site.
This corresponds to Lines 12-13 of the algorithm shown iruFédL. Second, the WPDS methodology is efficient.

References

[1] Blaze, M., Feigenbaum, J., loannidis, J., Keromytis, Phe KeyNote trust-management system version 2. RFC 272e0j1

[2] Blaze, M., Feigenbaum, J., loannidis, J., Keromytis, Ahe role of trust management in distributed systems sgcuim
Vitek, Jensen, eds.: Secure Internet Programming: Sgdssiies for Mobile and Distributed Objects. (1999) 185-PNCS
1603.

16

Table 2. Performance Results

Time (ms)

Distributed Centralized

Configuration|Client Request Small [Medium [Large Large
|Case 1 |Bob [(dir /etc (read)) I 661] 685 713] 54
Case 2 Bob (dir /etc (read)) 663 685 716 55
Bob (dir /etc (read wite)) 723 736 741 55
ManagerA(f undA appl y) 654 683 664 118
ManagerB(f undB appl y) 793 769 796 116
Case 3 Chancellof(f undA appl y) 979 960 996 107
Bob (fundA apply) 114§ 1133 1218 110
Bob (fundB appl y) 1132 1150 1232 115

[3] Weeks, S.: Understanding trust management systemsPrbteedings of the IEEE Symposium on Research in Security
and Privacy. Research in Security and Privacy, Oakland,|IEBE Computer Society, Technical Committee on Security and
Privacy, IEEE Computer Society Press (2001)

[4] Ellison, C.M., Frantz, B., Lampson, B., Rivest, R., ThasnB., Ylonen, T.: RFC 2693: SPKI Certificate Theory. Thiednet
Society. (1999)

[5] Schwoon, S., Jha, S., Reps, T., Stubblebine, S.: On gkped authorization problems. In: Proceedings of the 16&E
Computer Security Foundations Workshop (CSFW), IEEE CderpBociety (2003) 202—-218

[6] Reps, T., Schwoon, S., Jha, S.: Weighted pushdown sgséem their application to interprocedural dataflow analy$n:
Proceedings of the 10th Internation Static Analysis SynymgSAS), San Diego, CA (2003)

[7] Clarke, D., Elien, J.E., Ellison, C.M., Fredette, M., Mos, A., Rivest, R.L.: Certficate chain discovery in SPKIFS. Journal
of Computer Securit (2001) 285-322

[8] Jha, S., Reps, T.: Analysis of SPKI/SDSI certificatesigsinodel checking. In: Proceedings of the 15th IEEE Computer
Security Foundations Workshop (CSFW), IEEE Computer $p¢R002) 129-146

[9] Li, N., Winsborough, W.H., Mitchell, J.C.: Distributeztedential chain discovery in trust management. Journ@loofiputer
Securityl1 (2003) 35-86

[10] Li, N., Winsborough, W.H., Mitchell, J.C.: Beyond preof-compliance: Safety and availability analysis in trom&nagement.
In: Proceedings of 2003 IEEE Symposium on Security and &yiy@akland), Berkeley, CA (2003)

[11] Li, N., Mitchell, J.: Understanding SPKI/SDSI usingsfirorder logic. In: Proceedings of the 16th IEEE Computeugiy
Foundations Workshop (CSFW), IEEE Computer Society (2003)

[12] Howell, J., Kotz, D.: A formal semantics for SPKI. Tedtal Report 2000-363, Department of Computer Science nbauth
College, Hanover, NH (2000)

[13] Abadi, M.: On SDSI’s linked local name spaces. Jourd@omputer Security (1998) 3-21

[14] Halpern, J., van der Meyden, R.: A logical reconstrorctof SPKI. In: Proceedings of the 14th IEEE Computer Segurit
Foundations Workshop, IEEE Computer Society Press (2081)®

[15] Appel, A., Felten, E.: Proof-carrying authenticatidn: Conf. on Comp. and Commun. Sec. (1999)

[16] Pfenning, F., Schirmann, C.: System description:|Twea meta-logical framework for deductive systems. In Gager,
H., ed.: Int. Conf. on Auto. Deduc., Springer-Verlag, LNA3R2 (1999) 202—-206

[17] Jim, T.: SD3: A trust management system with certifiedleation. In: SP '01: Proceedings of the IEEE Symposium on
Security and Privacy, IEEE Computer Society (2001) 106

[18] Jim, T., Suciu, D.: Dynamically distributed query evalion. In: PODS '01: Proceedings of the twentieth ACM SIGMO
SIGACT-SIGART symposium on Principles of database systé@$/1 Press (2001) 28-39

[19] Jha, S., Reps, T.: Model checking SPKI/SDSI. Journ&afputer Securityt2 (2004) 317-353

[20] Reps, T., Schwoon, S., Jha, S., Melski, D.: Weightechdawn systems and their application to interproceduraftaty
analysis. Science of Computer Programming (To appear)

[21] Bouajjani, A., Esparza, J., Touili, T.: A generic apach to the static analysis of concurrent programs with phocs. In:
Proceedings of POPL'03. (2003)

[22] Esparza, J., Hansel, D., Rossmanith, P., Schwoon fi&idht algorithms for model checking pushdown system&rmerson,
E.A., Sistla, A.P., eds.: Proceedings of CAV’2000. Volund&3 of Lecture Notes in Computer Science., Springer (2082}-2
247

[23] Bouajjani, A., Esparza, J., Maler, O.: Reachabilityalgsis of pushdown automata: Application to model-chegkirin:
Proceedings of CONCUR’97. Volume 1243 of Lecture Notes imPoter Science., Springer (1997) 135-150

17

