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Abstract

Trust-management systems address the authorizationepndhl distributed systems by defining a
formal language for expressing authorization and accest-l policies, and relying on an algorithm
to determine when a specific request can be granted. Forraation in distributed systems, trust-
management systems offer several advantages over otheyagpps, such as support for delegation
and making authorization decisions in a decentralized manhhis paper focuses on a popular trust-
management system SPKI/SDSI. Although SPKI/SDSI is aaétire system for authorization in dis-
tributed systems, it has seen limited deployment. One ofrthr hurdles in deploying SPKI/SDSI is
that it is PKl-based, i.e., every principal is required towéna public-private key pair. We present an
approach that combines SPKI/SDSI with a widely-deploydtientication system, Kerberos, to reduce
reliance of SPKI/SDSI on PKI. In our approach, only siteschpablic-private key pairs. We believe
that reducing the reliance of SPKI/SDSI on PKI will facitiéaits wider deployment. We also have
implemented a prototype of our technique.

1 Introduction

Systems with shared resources use access-control mauisafoisprotection. There are three fundamental
problems in access contra@uthenticationauthorization andenforcementAuthentication deals with veri-
fying the identity of a principal. Authorization addressles following problem: should a requesby a spe-
cific principal A be allowed? Enforcement addresses the problem of implémgethe authorization during
an execution. In a centralized system, authorization iedbas the closed-world assumption, i.e., all of the
parties are known or their identity can be established wsmguthentication system. In a distributed system,
the closed-world assumption is not valid. Trust-managérsgstems [2] solve the authorization problem in
distributed systems by defining a formal language for exgingsauthorization and access-control policies,
and relying on an algorithm to determine when a specific retiseallowable. Hence, trust-management



systems decouple specification of the security policy frorforeement. Therefore, in the context of au-
thorization in distributed systems, trust-managemertiesys offer several advantages, such as support for
delegation, no (conceptual) requirement for a centralaiith and the ability to make authorization deci-
sions in a truly distributed fashion. A survey of trust-mgement systems, along with a formal framework
for understanding them, is presented in [25]. Two promitierst-management systems are Keynote [1] and
SPKI/SDSI [8].

In this paper, we focus on the trust-management system SBISI; however, the basic ideas introduced
in this paper are applicable to other trust-managemenemssstin SPKI/SDSIname certificateslefine the
names available in an issuer’s local name spaaghorization certificategrant authorizations, or delegate
the ability to grant authorizations. SPKI/SDSI has beerstigated by several researchers. Authorization
decisions in SPKI/SDSI are based certificate chainswhich are proofs that a client’s public key is one
of the keys that has been authorized to access a given reseaither directly or transitively, via one or
more name-definition or authorization-delegation stepssdile its many advantages, SPKI/SDSI has seen
limited deployment. The two major hurdles in deploying SFSI are:

e The need for a distributed certificate-chain discovery tigm.
e The need for every principal to have a public-private key.pai

The first hurdle has been partially addressed by work onillisé&d certificate-chain discovery algorithms for
trust-management systerhén this paper we focus on the second hurdle. The goal of thgsipa toreduce
the dependence of SPKI/SDSI on public-key infrastructek)( Reducing the reliance of SPKI/SDSI on
PKI will hopefully lead to its wider deployment.

Our main approach is to leverage an existing widely deplogethentication system, namely, Ker-
beros [20]. Specifically, we demonstrate that using SPK8EID conjunction with Kerberos reduces the
reliance on PKI by requiring only one public-private keymaer site, whereas “vanilla” SPKI/SDSI requires
each principal to have a public-private key pair. Our apphomaintains all the advantages of SPKI/SDSI,
such as support for delegation and the ability to make aizidtion decisions in a distributed fashion. In
our approach, there are two levels of certificates; eaclh fegembles vanilla SPKI/SDSI. We call these K-
SPKI/SDSI (for SPKI/SDSI with Kerberos), and E-SPKI/SD8F extended SPKI/SDSI). Users work at the
K-SPKI/SDSI level; E-SPKI/SDSI is the implementation |evEhe distinction between these levels is dis-
cussed further in Section 3.1. In our solution, we allow antltated Kerberos users to issue K-SPKI/SDSI
certificates, and therefore eliminate the requirementetiaty user possess a public/private key pair. Our
K-SPKI/SDSI server accepts certificates from authentitdterberos users and generates corresponding
E-SPKI/SDSI certificates on behalf of the users. Theseficaties are used by the K-SPKI/SDSI server
for answering authorization queries (by invoking certifiicahain discovery at the E-SPKI/SDSI level). By
providing a solution that is built on top of Kerberos, an autication system that is widely deployed in
various organizations, ranging from research institubesorporations, we hope that our approach will be
easier to adopt.

The contributions of this paper are as follows:

e We show how to reduce the dependence of SPKI/SDSI on PKI leydeging Kerberos.
e This insight behind the work is that when a user authenticating Kerberos, they acquire a session
key that serves as evidence of who they are. This properisess as a substitute for the signing actions

that vanilla SPKI/SDSI requires, which provides the apitd participate in a SPKI/SDSI-like scheme
without the requirement to have a public-private key pair.

Prior work (i.e., [15, 17]) has addressed systems similasubnot identical to, SPKI/SDSI. In our work, we used a distred
certificate-chain discovery algorithm that generalizesrton-distributed algorithm of Jha and Reps [12].



e We have created a prototype that implements the techniquem®asurements show that performance
depends on how K-SPKI/SDSI certificates are distributedragrsites.

Background on SPKI/SDSI is given in Section 2. Our methodc@wnbining SPKI/SDSI and Kerberos
is described in Section 3. Some applications of our systendigcussed in Section 4. Section 5 discusses
deployment and performance issues of our prototype. Se6tiiscusses related work.

2 Background on SPKI/SDSI

In SPKI/SDSI, allprincipals are represented by their public keys, i.e., the principdls public key. A
principal can be an individual, process, host, or any othétye K denotes the set of public keys. Specific
keys are denoted b, K 4, K5, K’, etc. Anidentifieris a word over some alphabgt The set of identifiers

is denoted byA. Identifiers will be written in typewriter font, e.gA andBob. A termis a key followed
by zero or more identifiers. Terms are either keys, local ameextended names. l&cal nameis of the
form K A, whereK € K andA € A. For exampleX Bob is a local name. Local names are important in
SPKI/SDSI because they create a decentralized name spaedocl name space & is the set of local
names of the fornk’ A. An extended namis of the formK o, where K € K ando is a sequence of
identifiers of length greater than one. For exampleJw CS faculty is an extended name.

2.1 Certificates

SPKI/SDSI has two types of certificates, or “certs”
Name Certificates(or name certs A name cert provides a definition of a local nhame in the issuecal
name space. Only kelf may issue or sign a cert that defines a name in its local nance spaname cer¢’
is a signed four-tuplé K, A, S, V). The issuelK is a public key and the certificate is signed By A is an
identifier. The subject is a term. Intuitively,S gives additional meaning for the local nafieA. V is the
validity specificatiorof the certificate. Usuallyl” takes the form of an intervat,, ¢5], i.e., the cert is valid
from timet; to t5 inclusive.
Authorization Certificates (or auth cert$: An auth cert grants or delegates a specific authorizatimm fin
issuer to a subject. Specifically, an auth eed a five-tuple(K, S, D, T, V). TheissuerK is a public key,
which is also used to sign the cert. ThebjectS is a term. If thedelegation bitD is turned on, then a subject
receiving this authorization can delegate this authdomatio other keys. Thauthorization specificatioff”
specifies the permission being granted; for example, it magify a permission to read a specific file, or a
permission to login to a particular host. Thalidity specificationV for an auth cert is the same as in the
case of a name cert.

A labeled rewrite rules a pair(L — R, T"), where the first component is a rewrite rule and the second
componenf’ is an authorization specification. For notational convecée we will write the labeled rewrite

rule(L — R,T) asL L, R. We will treat certs as labeled rewrite rufs:
e Aname cer( K, A, S, V) will be written as a labeled rewrite rul§ A LN S, whereT is the authoriza-
tion specification such that for all other authorizationdfieationst, TNt = t,andT Ut = TS

Sometimes we will write— as simply—, i.e., a rewrite rule of the forni. — R has an implicit
label of T.

2In authorization problems, we only consider valid certifisa so the validity specificatidii for a certificate is not included in
its rule.
3The issue of intersection and union of authorization spetitins is discussed in detail in [8, 10].



e An auth cert(K, S, D, T, V) will be written asK O T, s Oif the delegation bitD is turned on;
otherwise, it will be written ag [ I, sm.

2.2 Authorization

Because we only use labeled rewrite rules in this paper, fee t@them as rewrite rules or simply rules. A
term.S appearing in a rule can be viewed as a string over the alpiabed, in which elements of” appear
only in the beginning. For uniformity, we also refer to sggnof the formS [0 and.S B as terms. Assume

that we are given a labeled rewrite rdle s R corresponding to a cert. Consider a tesm= L X. In this
case, the labeled rewrite rule TR applied to the ternt (denoted by(L z, R)(S9)) yields the term

RX. Therefore, a rule can be viewed as a function from termsrtogehat rewrites the left prefix of its
argument, for example,

(K4 Bob — Kp)(K 4 BobmyFriends) = Kp myFriends

Consider two rules; = (L, z, Ry) andcy = (Lo , Ry), and, in addition, assume thag is a prefix

of Ry, i.e., there exists ai such thatk?; = L, X. Then thecompositiornc; o ¢; is the ruleL iz Ry X.
For example, consider the two rules:

c1: Ky friends AN K 4 Bob myFriends
co: K4 Bob z, Kp

The compositione; o ¢; is K4 friends L Kp myFriends. Two rulesc; andc, are calledcompatible
if their compositione; o ¢; is well definedt

2.3 The Authorization Problem in SPKI/SDSI

Assume that we are given a set of ceft@nd that principalK’ wants access specified by authorization
specification?’. The authorization question is: “Cdi be granted access to the resource specifiefi By

A certificate chainch for C is of a sequence of certificatés, c2, -+ ,cx] in C. The label of a cer-
tificate chainch = [c1,--- , ¢k (denoted byL(ch)) is the label obtained fromy o ¢x_1 - - o ¢; (denoted
by compose(ch)). We assume that the authorization specificaflois associated with a unique principal
Kounerr) (the resource to whiclf” refers). Given a set of certificat€s an authorization specificatidh,
and a principalk, a certificate-chain-discoveralgorithm looks for a finite set of certificate chains that
“prove” that principal K is allowed access specified By

Formally, certificate-chain discovery attempts to find atdirset{ch,,--- ,ch,,} of certificate chains
such thatforalll <7 <m

Compose(Chi)(Kowner[T] D) € {K U, K .} ’

andT C U™, L(chy).

“In general, the composition operatois not associative. For example, can be compatible with, o ¢1, butes might not be
compatible withco. Thereforegs o (¢2 o ¢1) can exist wherfes o ¢2) o ¢1 does not exist. However, whens o ¢2) o ¢1 exists, so
doescs o (e2 o ¢1); moreover, the expressions are equal when both are defiers, We allow ourselves to omit parentheses and
assume that is right associative.



Clarke et al. [6] presented an algorithm for certificateietdiscovery in SPKI/SDSI withO(n%|C|)
time complexity, where: g is the number of keys anid| is the sum of the lengths of the right-hand sides
of all rules inC. However, this algorithm only solved a restricted versibrertificate-chain discovery: a
solution could only consist of singlecertificate chain. For instance, consider the followingdifieate set:

c1: (K, Ka, 0, ((dir /etc) read), [t,t2])
cy: (K, Ka,0,((dir /etc) wite), [t1,t2])

Suppose that Alice makes the request
(Ka,((dir /etc) (* set read wite))).

In this case, the chaife; | authorizes Alice to read from directofet ¢, and a separate chdi| authorizes
her to write to/ et c. Together, the sef[c], [c2]} proves that she has both read and write privileges for
/ et c. However, both of the certificates andc, would be removed from the certificate set prior to running
the certificate-chain discovery algorithm of Clarke etlabécause ead 2 (* set read wite) and
wite 2 (* set read wite). Consequently, no proof of authorization for Alice’s reguwould

be found. Schwoon et al. [22] presented algorithms for tectrtificate-chain-discovery problem, based
on solving reachability problems in weighted pushdowneayst (WPDSs). Their formalization allows a
proof of authorization to consist of a set of certificate agaiThis paper uses the WPDS-based algorithm
for certificate-chain-discovery introduced by [22].

3 SPKI/SDSI and Kerberos

We describe the authorization scenario in SPKI/SDSI. Inti8ec3.1 we describe how the reliance of
SPKI/SDSI on PKI can be reduced by using Kerberos. First,m@duce a small example that will be
used throughout this section.

Example 3.1. Imagine that there are two site8io and C'S, which correspond to the biology and the
computer science department respectively. Let us say thédgsorBob in the biology department wants
to provide access to a serverto all his students and students of profesdaice in the computer science

department.

Assume that there are two siteg and st that have SPKI/SDSI servers;;, and Sy, respectively.
In the context of our example, sit€sS and Bio have SPKI/SDSI serverScs and Sg;,. There are three
components to a SPKI/SDSI authorization scenario.

Certificate issuance. Each user sends signed auth and name certs to the SPKI/Sb&I aetheir site.
The SPKI/SDSI server verifies the signatures on the certsigifature verification fails on a cert, it is
rejected; otherwise it is stored by the SPKI/SDSI servepunexample Alice sends toS g the following
name certs, which are signed Hyice:

K pjice students — Kx
K pjice students — Ky
K pjice students — Ky

The three name certs essentially state tHatyY’, and Z are students ofdlice. Bob sends toSp;, the
following signed auth certs, which are signed Byb:
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T

Kpo, O =5 Kpyp students B
T

Kpo, O = K pjice students H

The two auth certs state that studentsiof;.. and K p;, can access servéf (denoted by authorization
specificationy), but the students cannot delegate this right.

Certificate-chain discovery. Suppose a usdr (with public key Kp;) at site A wants to access a re-
source at site3 according to authorization specificatidn UserU sends a certificate-chain-discovery
request forl" (denoted byCCDrequest(Ky,T)) to the SPKI/SDSI servefcs. The SPKI/SDSI server
Scgs executes a distributed certificate-chain-discovery @lgorand returns a finite set of certificate chains
{chy, -+ ,chy,} to U. In Example 3.1, suppose that us€rsends the certificate-chain discovery request
CCDrequest(K x,Ty) to serverScs. ServerSg executes a distributed certificate-chain discovery algo-
rithm and returns the set of chaifish; }, wherech; = [c1, ¢2] (c2 ande; are shown below.)

Ty
co = Kpopy 05 Kyjice students B

c1 = Kyjjee students — Ky

Requesting a resource. Assume that usdr wants to access a resource according to authorizationfispeci
cation?'. First,U requests that certificate-chain discovery be carried ogebding a requestCDrequest( Ky, T')
to the SPKI/SDSI server at its site, and obtains back a segrtificate chainsSCH = {chy,--- ,chpy}.
UserU presents the set of certificate chai$6'H to the principal Kt (recall thatKr is the owner of the
resource to whicH’ refers). The principak authorized” iff 7' C (J;", L(ch;) (this step is usually called
compliance checking The labelL(ch;) of a chainch; is described in Section 2.2.

In Example 3.1, useX wants access to servéf according to the authorization specificati@fy .
After making a certificate-chain discovery request, obtains the se{ch;}, wherech; = [c1, 2],
compose(ch1)(Kpnp) € {Kx O, Kx B}, andTy C L(chy). X presentsch; } to serverV. V checks
thatTy C L(chq), which is true, and henc grantsU access.

3.1 SPKI/SDSI and Kerberos

Notice that, to use SPKI/SDStyery useneeds to have public/private key pair. In this section, wacdbe
an authorization protocol that uses a distributed autbatitin system, such as Kerberos, but only requires
a public/private key paiper site Our new authorization system is called K-SPKI/SDSI.

We assume that the reader is familiar with Kerberos (for aildbet description of Kerberos see [20]).
We make the following assumptions:

e Each site is a Kerberos realm. The KDC at sités denoted by DC;.
e The K-SPKI/SDSI server at each site is Kerberoized.

e The KDC and the K-SPKI/SDSI server at a siieshare a public/private key pair. The public key of
site st is denoted byi(;.

Next we describe all three components of our authorizati@mario in the new context.

Certificate issuance. To issue K-SPKI/SDSI certificates, a Kerberos user firstenttbates with the local
KDC using the standard Kerberos authentication protocdlraceives a Ticket Granting Ticket (TGT) from
the KDC. Using the TGT, the client requests a Service Grgriinket (SGT) for accessing the Kerberoized
SPKI/SDSI (K-SPKI/SDSI) server. Throughout the rest of eetion, assume that the user has obtained
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an SGT for the K-SPKI/SDSI server at its site. Using the S@G®, ¢lient issues requests for generating
SPKI/SDSI name certs or auth certs. Communication on thargHaover which the requests are sent is
encrypted using the session k&Y provided in the SGT. To issue a hame cert, a et sitest sends an
encrypted name cert request to the SPKI/SDSI server:

Er,[UA S V],

whereU is the name of the usel, is an identifier,S is a subject, and” is a validity specification. As
before, we will write the name cef g [U, A, S, V] asU A — S. Upon receiving the encrypted name cert
FEk. U, A, S, V] the local K-SPKI/SDSI server ascertains its validity, ainthé name cert is valid, it creates
a new name cert of the forfil(; U, A, K, S, V], signs it with its private key, and stores it in the database
of certificates. Notice that in the new name cert the public Ke; of site st is added beforé/ andS. In

our example Alice sends the following name certs encrypted with the sessiprisketo the K-SPKI/SDSI
server at its site.

Alice students — X
Alice students — Y
Alice students — Z

The K-SPKI/SDSI server verifies the encrypted name certsvshabove and creates the following E-
SPKI/SDSI name certs and signs them.

Kcg Alice students — Kgg X
Kcg Alice students — Kgg Y
Kcg Alice students — KgZ

A userU at sitest sends an auth cefix, [U, S, D,T,V] encrypted with the session key from the TGT
to the K-SPKI/SDSI server. Upon receiving the encryptedh aetrt Ex [U, S, D, T, V] the K-SPKI/SDSI
server ascertains its validity, and if the auth cert is valictreates a new E-SPKI/SDSI auth cert of the
form [Ky U, Ks S,D,T, V] signs it with its private key, and stores it in the databaseeofificates. In
our example,Bob sends the following auth certs encrypted with the sessignfiken the TGT to the K-
SPKI/SDSI servels g, .

Ty
Bob [0 —% Bob students B
Bob [ i CS Alice students

The two auth certs state that student$ob (at the current site) andlice (at siteC'S) can access servét
(denoted by authorization specificati@ky), but the students cannot delegate this right. The K-SHXHIS
serverSp;, verifies the encrypted auth certs shown above, and creaef®ltbwing E-SPKI/SDSI auth
certs, and signs them.

T
Kpi, Bob O —% Kp,, Bob students W
T
Kpi, Bobd —% Kpi, CS Alice students B

The K-SPKI/SDSI servers also adds name certs corresponaditige K-SPKI/SDSI servers of other sites.
In our exampleS¢s signs and adds the name cé&its Bio — K p;,, Which states that the public key of
the siteBio is K p;,. Similarly, Sp;, signs and adds the name cérg;, CS — K¢g.

Note: K-SPKI/SDSI servers must support an extended version of|/SB¥SI: the left-hand sides of ex-

tended auth and name certs have three symbols; the leftdidadf an extended auth cert is of the form
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K,ull or K, UM, whereK,, is the public key of sitex andU is a user; the left-hand side of an extended
name cert if of the formk,U A, where bothJ andA are identifiers. However, in SPKI/SDSI the left-hand
sides of auth and name certs have just two symbols. Vario#s3/SPSI algorithms must be extended to

implement E-SPKI/SDSI; however, this is possible becaussPKI/SDSI is a special case of left-prefix

rewriting, and the primitives generalize to arbitrary dpfefix rewriting systems [4].

Requesting a resource. Using the SGT, a usdV at sitest; sends a request to the local K-SPKI/SDSI
server, asking to access the remote selwéocated in a different sitets. This request is encrypted using
the session keyK; provided by the SGT.

EKS [Stg, V, T]

The K-SPKI/SDSI serves;, atsitest; initiates a distributed certificate-chain discovery res§{0& Drequest( K, U, T')
on behalf ofU. This process involves K-SPKI/SDSI servers, both local mmdote, that contain related E-
SPKI/SDSI certificates. If the requeStC Drequest(K g, U, T) is successful and returns a set of certificate

chains SCH, usdV receives the following token frorfiy, .

TokenU = EKS (Kl)TiCketU
TicketU = E‘[{St2 (KQ) EK2 [Stg, Kl, V, T, SCH, TSl, Lz'fetimel]

In Example 3.1, usek receives a token with the set of certificate chains SEH{ch, }, wherech; is the
certificate chairjcy, co, c3]. Certificates:, co, andcs are shown below.

T
¢ = Kpgj, Bobd % Kp,, CS Alice students W
ca = Kpi CS — Kgg
c3 = Kcgg Alice students — Kog X

Notice thatcompose([c1, c2, c3]) (K pi,Bob ) € {K¢s X O, Kog X B} andTy C L([cq, c2, c3]).
Upon receivingTokeny, userU decryptsE ., (K7 ) and retrieves the kel(; (recall thatK; is the session
key in the TGT for the K-SPKI/SDSI server at site ). UserU constructs the following authenticator:

Authenticatory = Eg,[IDyl||ADy||T'Ss|| Lifetime,)]
UserU sends the following message to the sefveat sitests:
Tickety Authenticatory

ServerV requests its local K-SPKI/SDSI server to verify the messdde K-SPKI/SDSI server at site,
performs the following steps:

o Decrypts the messagéy.,, (K2) with its private key, and retrieves the session k&y

e Decrypts the messageéx, [sto, K1, V, T, SCH TSy, Lifetime, | and ascertains its freshness using the
time-stamp7'S;. Moreover, the server verifies usirgfetime; that the token has not expired. The
K-SPKI/SDSI server also performs the compliance-checkileg on the set of certificate chains SCH.

e Similarly, the K-SPKI/SDSI server ascertains the validityhe authenticatoF i, [I Dy | ADy || T'Sa || Lifetimes).
Notice that the server knows the session k&yfrom Ticket.

If all the steps given above are successful, then the K-SSIXH server sends a messagéd/tindicating
thatU should be granted access.



3.2 Threat Analysis

The message exchange for requesting a resource describiedig&ery similar to the exchange of messages
between the client and KDC in Kerberos. In essence, the atithéor Authenticator; states that “anyone
who usesK; is U”. Notice that since in the tokeAokeny the session keys; is encrypted withK,
which can only be known by the usér (becauseX is in the SGT issued t&/). Therefore, assuming
the authentication in Kerberos is correct, oblycould have knowri;. An adversary can still replay the
messag€ickety Authenticatory to the servel” and masquerade &5 Since the authenticator is intended
for use only once, it can have a very short lifetime, and heheeisk of a replay attack is minimal.

4  Applications

Our work is only a first step towards building a practical wdlistted authorization system. In this section,
we discuss how existing applications can benefit from thePKIESDSI approach.

4.1 Authorization for Distributed File Systems

AFS [21] is a popular distributed file system in active usedose it provides users with a consistent name
space, regardless of the users’s physical location. Aizidtion in AFS is an important issue because all
AFS users share the same view of the entire AFS. Currentl§ rekes on Kerberos for authentication, and
uses Access Control Lists (ACLs), which may contain useragmroup names, or both, to control who can
access the data inside each AFS directory. The ACL systerkswoell for managing permissions within
one site; however, if users from different sites plan to sHiées, the ACL system becomes less efficient to
use and is difficult to maintain. This is because in AFS, atizhation is performed locally at each AFS cell.

To illustrate this, we use a concrete example to show how AESsAvork in a cross-site environment.
Then we explain how our approach can simplify cross-sita@igation in AFS.

Cross-site ACLs in AFS. Let us assume that Professor Bob, from the Bite, plans to grant access to
directorydat a to students of Professor Alice from the s@@&. Using existing AFS, Alice and Bob must
follow these steps to accomplish this goal:

1. Initial authentication: At site Bi o, Bob authenticates with the AFS system (through Kerbeooslptain
an AFS token that is used to access AFS and create ACLs.

2. Alice creates a list of her studentét site CS, Alice creates a list of her students, as shown in Figure 1
(@).°

3. Bob sets up a group for Alice’s studenBob creates an AFS group, calléli ce@CS: st udent s,
for Alice’s students inBi 0. He then populates the group with Alice’s students. Thishiews in
Figure 1 (b).

4. Bob grants access to Alice’s studenBob grants access to directahat a to the group that he created
in the previous step, as shown in Figure 1 (c).

The problem with the above approach is that the gilupce @S: st udent s, maintained by Bob, is
redundant and must be kept in sync with Alice’s own list. Agssuit, this approach is not efficient and does
not scale. Consider the following two scenarios:

®In addition, the AFS server froS must set up a special group callegst em aut huser @s for this to work.
5\We are not concerned with how this list is created and maiathi The relevant issue here is that someone f88meeds to
create and maintain a list of Alice’s students.



Alice’s students (CS) Al i ce@S: st udent s ACL list for dat a

studentX studentX@cs system:administrator: rlidwka
studentY studentY@cs system:anyuser I
studentZ studentZ@cs = Alice@CS:students rl
: E Bob rlidwka
(a.) Alice’s list of her students (b.) Bob’s ACL group (c.) Bob grants access

Figure 1: An example of using AFS ACLs for cross-site accesdrol. In (a), Alice maintains a list of her
students at sit€S. In (b), at siteBi o, Bob creates the groufil i ce@CS: st udent s and adds Alice’s
students to the group. In (c), Bob grants access to directatya to the groupAl i ce@CS: st udent s
(third entry); the other three ACL entries are managed by AFS

e If Alice adds or removes a student from her list, then Bob nalszt update his list accordingly.

e If three more professors from three different sites planrtmgaccess permissions to Alice’s students,
then each of these professors must also create and mairgapy ®f Alice’s student list.

AFS Authorization Using K-SPKI/SDSI. In contrast, the K-SPKI/SDSI approach greatly simplifies
cross-site authorization. Here are the steps:
1. Initial authentication: Alice and Bob authenticate with their KDCs to obtain SGTstfmir respective
K-SPKI/SDSI servers.
2. Alice issues name certgit site CS, using the K-SPKI/SDSI server, Alice issues a name certdche

one of her students:
Kgg Ali ce students — Kgg student X

This essentially creates a group call&ds Al i ce st udent s at siteCS.

3. Bob grants access to Alice’s studentt site Bio, through the K-SPKI/SDSI server, Bob issumse
auth cert granting access to Alice’s students, using themcoeated a€S:

data rl
—_

Kpg;, Bob O Kpi, CS Alice students i

Here, because Alice is the only one who manages the list desta, and Bob refers to the symbolic
nameCS Al i ce students, Bob nolonger needs to create a copy of Alice’s list of stisleAs a result,
this approach is simpler to use and is also more scalabl@gsite environments:

e When Alice adds or removes a student from her list, Bob doés@ed to make any changes on his
side.

e If three more professors from three different sites wantrémgaccess permissions to Alice’s students,
all they need to do is to issue auth certs at their sites, anduptcate lists of students need to be
created.

4.2 Accessing Kerberos Services through Web Services

Web services are traditionally built on top of public-keymtography, such as SSL. Kerberos services, on
the other hand, rely on secret-key cryptography. As a reiiias been a challenge to integrate these two
systems so that users can access Kerberos services threligbewices. In this example, we consider a
case where a user, say Alice, wants to access her data thaough service (usually running inside a web
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) ) _ _ Figure 3: Accessing a Kerberos service
Figure 2: Accessing a Kerberos service using K-PKI. using K-SPKI/SDSI.

server). We compare two approaches, one based on the K-Blecp[16], and the other based on our
approach.

A previous approach. The K-PKI [16] project addresses the integration problenplyviding a mech-
anism that translates Kerberos credentials to X.509 aatiés, and vice versa. Figure 2 illustrates how a
client, say Alice, accesses a Kerberos service through ssemice. For the remainder of the example, it is
assumed that Alice already has a TGT, and all communicadionsecure.

1. Alice requests for an X.509 certificat&lice first generates a public/private key pair for hers&@he
then obtains an SGT for théerberos Certification Authorityor KCA, and authenticates with the KCA.
As part of the authentication process, she sends the pudgtitokthe KCA to be signed.

2. KCA generates an X.509 certificat€he KCA, after authenticating Alice, signs Alice’s publieykand
returns the signed certificate back to Alice.

3. Alice authenticates with web servicalice uses the newly generated certificate to authenticaitsetf
with the web service.

4. Web service matches a request for a Kerberos tickee web service authenticates itself with #er-
beros Credential Translatoor KCT, and provides KCT with evidence that it has propetlthenticated
with Alice.

5. KCT generates a Kerberos tickdCT, upon validating the identity and the request of the watvise,
generates a Kerberos tickasing Alice’s identityfor the web service and returns the ticket to the web
service.

6. Accessing the Kerberos servicEhe web service, using the Kerberos ticket returned by K@m,mow
access the Kerberos service on behalf of Alice.

The drawback of this approach is that it has to translate éesocredentials to PKI certificates, and vice
versa. We achieve the same objective, but in a simpler wayg asir K-SPKI/SDSI approach.

K-SPKI/SDSI approach. Using K-SPKI/SDSI, Alice can grant access permission towed service
directly, thereby avoiding the credential conversiond @@ required in the K-PKI approach. Figure 3
shows the setup of our system. In our system, Alice uses tlmvfog steps to access a Kerberos service
through the web:

1. Alice grants access to the web servid@dice first obtains an SGT for the K-SPKI/SDSI server. Using
the SGT, she issues an auth cert through the K-SPKI/SDSésagranting rights to the web service,
along with validity information.

Kog Alice 0% KesWeb W
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2. Alice authenticates with the web service.

3. Web service requests for access tokeéfter authenticating Alice, the web service queries the K-
SPKI/SDSI server for a token for accessing data on behalflicEA

4. K-SPKI/SDSI server checks for permissidine K-SPKI/SDSI server performs a distributed certificate-
chain discovery to check the requested access permiskibe; Gheck is successful, the K-SPKI/SDSI
server returns an access token to the web service.

5. Accessing the Kerberos servicEhe web service, using the token returned by the K-SPKI/Se8ler,
can now access the Kerberos service.

This approach is also flexible to use. Because Alice is igsauth certs directly, she may limit the
access privileges granted to the web service accordingrtgdeeirity objectives. For example, she may
use a short validity period to limit the time window during isth the web service can access the data she
specifies; she may also restrict the web service’s accdss iy granting specific access privileges.

5 Implementation and Evaluation

We have built a prototype system to evaluate our approach.implementation uses MITKerberosdis-
tribution (version 1.3.1 [20]) and thBistributed SPKI/SDSlibrary that is based on a model checker for
pushdown systems [22]. We evaluated our approach using titasia: ease of deploymernd perfor-
mance Because our implementation is still a prototype, and wes et deployed the system in a real-
world environment, we evaluated the prototype in a simdlatevironment, using synthetic data. However,
as the experimental results demonstrate, we believe thaapproach does achieve the goal of reducing
SPKI/SDSI's dependence on public-key infrastructure, tad it is easy to implement and deploy such a
system. We summarize the results based on these two criteria

e Ease of deployment:Three steps are required to deploy our system, assumingdhlaeros is already
installed.

1. Install a public/private key pairiin our approach, only one public/private key pair is needsd f
each Kerberos site. In comparison, PKI's systems requigyaysser to have a key pair. In addition,
sites need to exchange their public keys. However, we leetieat this is a reasonable requirement
because the exchange is done only once.

2. Install the K-SPKI/SDSI serveEach Kerberos site must have its own logical K-SPKI/SDSleser
Because K-SPKI/SDSI server is implemented as a Kerberagceetthis does not require any
changes to Kerberos besides setting up the secret key rethwed<DC and the K-SPKI/SDSI
server.

3. Update Kerberos clientKerberos clients must be updated to take advantage of theKI/SDSI
server. However, all clients need to do is to use a new libcaty/to access the K-SPKI/SDSI
server.

e Performance: The experimental results demonstrate that the performaindistributed authorization
is highly dependent on how E-SPKI/SDSI certificates areridigied among the sites: the more dis-
tributed the certs are, the more sites are needed to readtlverezation queries, and the longer it takes
to process an authorization query. In our study, distrithatethorization performed well: in a test en-
vironment with about 1,500 certificates and eight Kerbeites sit took about 1 second to process a
complex authorization request, and took half as long togee@ simple one. Because this is only a
prototype implementation, there is still plenty room fotiogpzations that would improve the perfor-
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mance.

5.1 Ease of deployment

The objective of this work is to make SPKI/SDSI, and potdiytiather trust-management systems, less
reliant on PKI and hence easier to deploy in the real world.adldeve this goal by two means. First, we
reduce SPKI/SDSI’s reliance on PKI by relying on authetiicaprovided by existing infrastructures, such
as Kerberos, that are proven and in use. The approach trimakte SPKI/SDSI fit into existing systems
seamlessly, instead of introducing drastic changes thaidvoe hard to have accepted. Deploying our
system in environments where Kerberos is installed onlyireq a few small changes.

Second, in terms of implementation, we tried to make suredbaapproach does not introduce too
many changes to Kerberos, because changes usually resultbran complications for deployment. We
achieved this goal by implementing the K-SPKI/SDSI sergasimindependent unit, instead of changing the
KDC. Clients can simply interact with the K-SPKI/SDSI sartterough the standard request/reply model.
As a result, our implementation requires no changes to th€ Kahd only one minor modification to the
Kerberos library!

However, this approach also has some drawbacks. First, ing asseparate server, clients must be
modified to use the provided features—even though the chianggy simple. The alternative is to provide
these functionalities inside the KDC. When a Kerberos tlieguests an SGT for a service, the KDC
automatically performs the necessary authorization qoeidyehalf of the client and stores the authorization
token as part of the SGT. This approach makes the autharizatiocess transparent to the clients, but it
does require changes to the KDC. This technique is also ugedthlers for adding authorization support
inside Kerberos [9, 7, 16, 3]. We are currently evaluatinthtapproaches.

In addition to the changes above, when deploying our systach) site must install a public/private key
pair. Furthermore, each site needs to send its public keyher sites with which it plans to collaborate.
However, we believe that this is a reasonable requiremerduse setting up collaboration is an admin-
istrative task that only needs to be done once for each aolédr. For example, in Kerberos, cross-site
authentication requires participating sites to exchahg# secret keys in advance.

5.2 Performance

We also evaluated the performance of our system in a singuthstributed environment. We only consid-
ered the performance for distributed authorization bes#@siling certificates is an infrequent administrative
task. The simulated test environment consists of eight éedsites, as shown in Figure 4. Each node in
the graph represents a Kerberos site; nodes with a syRitegiresent a resource/service that Kerberos users
can access. To illustrate what goes on, some of the certifiasged in the experiments are shown next to
each site. Because in a distributed environment every Keslsite stores its own certificates, distributed au-
thorization must involve two or more sites, depending on tlesvE-SPKI/SDSI certificates are distributed.
For instance, in Figure 4 whevlinager from the siteGOV attempts to access the resouR&om NSF,
only these two sites are involved in distributed authorirgtas denoted by the solid arrow. In contrast,
whenAl i ce, from CS, wants to access the same resowRcmultiple sites (along the dashed arrows) must
participate in the distributed authorization. Therefave,expect the number of sites involved in distributed
authorization to be an important factor in performance. thi@ reason, we tested distributed authorization
using three different scenarios, shown by the three typasrofvs in Figure 4.

"We changed the functiokuser ok, which, upon called, evaluates whether a Kerberos prih@@mlowed to login to a host.
Our change provides an option for callers of this functionge the K-SPKI/SDSI server to check for authorization.
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Figure 4: Test setup:R grantst;: (fundA apply) to all NSF's EDU programs, and delegates. (f undB
appl y) to all NSF'sGOV programs. Each type of arrows represent one test scenario.

Table 1: Distributed Authorization Performance Results

Scenario # of sites Request Time (ms)
Manager@GQOV 2 (fundB apply) 581
Chancellor@Uw 4 (fundA apply) 930
Alice@CS 6 (fundA apply) 1128

We populated the test environment with 1500 name certs arauB0certs, distributed over different
sites. Each site runs on a separate machine on a local amwarketAll test machines have identical
configurations: 800 MHz Pentium Il with 256 MB RAM, runningAD Linux version 1.0.

Table 1 shows the results of the experiments. As expectedhumber of sites involved in distributed
authorization has direct impact on the performance of tistesy. In the most complex casél ( ce @CS),
where six Kerberos sites are involved, distributed augaion took almost twice as long as what it takes
in the simplest casdvinager @QV), where two sites are involved. However, as this is only dqiype,
we expect to be able to improve the performance in the futu@ptimizing the code. Furthermore, our test
setup is an extreme case where every Kerberos site has itptoysital KDC. In practice, logical Kerberos
sites can share one physical KDC, which would improve thewead performance. For example, because
CS, Bl O LS and UWare logical sites insid&W it might be feasible and reasonable to have one physical
KDC for all of them, and this would reduce the network overheansiderably.

6 Related Work

Leveraging the advantages of both Kerberos and Public-Keegdtructure (PKI) has been explored before.
PKINIT [24] is an IETF proposal that extends Kerberos by using pthaly cryptography during the initial
authentication between clients and the KDC. After a su¢akasthentication, the KDC returns a standard
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Kerberos TGT to the client, who can then use the TGT to acdbes Kerberos services. While PKINIT ad-
dresses how to use PKI within a Kerberos redf{CROS$11] extends the idea of using PKI in Kerberos
cross-realm authentication. KDCs in different realms exge their public keys and use public-key cryp-
tography for authentication and ticket exchang&DA [23] changes Kerberos by eliminating the KDC and
the initial TGT exchange. With PKDA, a Kerberos client ditg@uthenticates with the application server
using public-key cryptography and receives a Service @Grgricket (SGT) generated by the application
server. Consequently, no TGT is needed in PKDA. However, Wity et al. pointed out that PKDA can
be implemented using PKINIT [18], albeit some changes ageired. The aforementioned work differs
from ours because their objective is to extend Kerberos eqpublic-key infrastructures for authentication
purposes. Our work has a different goal, namayise Kerberos to reduce the dependence of SPKI/SDSI
on PKI. Furthermore, their approaches require modifications tdo&@s infrastructure itself, while our
approach does not.

K-PKI [5, 16] addresses the problem of accessing Kerberos serfrima PKl-based systems, such as
web applications. K-PKI provides a special Kerberos sed€&A, which can generate short-term X.509
certificates for authenticated Kerberos clients. Laterwanen a client tries to access Kerberos services
through some web applications, she first authenticatestidtliveb services using the generated certificate.
The web services, in turn, can obtain necessary Kerberaemtials and access the Kerberos services on
behalf of the client. While K-PKI provides a glue between lenos and PKI world, the complexity of the
PKI systems is not reduced: all clients still need certiisatOur work, on the other hand, tries to reduce
the reliance of trust-management systems on PKI. As a resitiit our approach, clients no longer need to
have public/private key pairs.

Another aspect of our work is to bring trust management, siscBPKI/SDSI, to Kerberos-based infras-
tructures. Although there has been some previous work andixtg Kerberos'’s authentication framework
with authorization services, that work generally assumesnéralized authority and does not address cross-
realm authorization. Of these, Neuman’s workrestricted proxy[19] is the closest to ours. Restricted
proxy is a model for building various authorization sergiceich as authorization servers, capabilities, and
access control. However, SPKI/SDSI is a superset of réstriproxy, and it offers other features, such as
distributed trust management. DCHEsivilege Service (PS)R], ECMAs SESAMH7], and Microsoft's
Kerberos extension [3] provide authorization capabilltyough the use of an optional field (called-
thorization data provided by Kerberos. For each authenticated Kerbereat;IDCE'’s Privilege Service
generates a ticket, calledraivilege Attribute Certificateor PAC, which contains membership information
for the corresponding principal. The client then presemis Kerberos ticket, together with the PAC, to
Kerberos services that the client wants to access. The SESgygtem from ECMA also defines and uses
PAC to assert a principal’s access rights. Microsoft’s KD@&asion stores authorization information, such
as security identifiers and group membership informatiosidie the TGTs issued by the KDC. This autho-
rization data is used by application servers to check usergss privileges. These works have the common
drawback that, unlike SPKI/SDSI, they rely on a centraliaathority for granting access privileges, and the
authorization authority must know about every user. Ini@stf our approach uses SPKI/SDSI, which does
not require a central authority, and authorization denisiare made in a decentralized manner.

SPKI/SDSI [8], based on public-key-infrastructure, wasigeed to address theentralized authority
issue of conventional PKI-based systems. SPKI/SDSI pesvadnovel framework for managing trust (in the
form of certificates) using an entirely decentralized appho In SPKI/SDSI, no central authority is needed
because each principal can issue her own certificates. Muble previous work on SPKI/SDSI focuses on
theoretic aspects of SPKI/SDSI. Clarke et al. [6] proposedoriginal certificate-chain-discovery algorithm
for answering authorization queries in SPKI/SDSI. Jha apgdsRmade an improvement to Clarke et al.'s
algorithm by applying pushdown-system theory to the cesatié-chain-discovery problem [13, 14]. Both
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algorithms require certificates to be centralized. Li e{&l] presented a system, callédl}, in which
certificate-chain discovery can be done in a distributedrmearDespite this work, SPKI/SDSI has not been
adopted in the real world, primarily due to the difficulty afykmanagement issues in PKI-based systems.
Our work addresses this problem by reducing SPKI/SDSliamek on PKI, and making use of Kerberos,
essentially unchanged. By relying on Kerberos, a systeinisharoven—and, more importantly, widely
used—our approach can make SPKI/SDSI easier to be adoptieel ieal world.
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