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Abstract

Trust-management systems address the authorization problem in distributed systems by defining a
formal language for expressing authorization and access-control policies, and relying on an algorithm
to determine when a specific request can be granted. For authorization in distributed systems, trust-
management systems offer several advantages over other approaches, such as support for delegation
and making authorization decisions in a decentralized manner. This paper focuses on a popular trust-
management system SPKI/SDSI. Although SPKI/SDSI is an attractive system for authorization in dis-
tributed systems, it has seen limited deployment. One of themajor hurdles in deploying SPKI/SDSI is
that it is PKI-based, i.e., every principal is required to have a public-private key pair. We present an
approach that combines SPKI/SDSI with a widely-deployed authentication system, Kerberos, to reduce
reliance of SPKI/SDSI on PKI. In our approach, only sites need public-private key pairs. We believe
that reducing the reliance of SPKI/SDSI on PKI will facilitate its wider deployment. We also have
implemented a prototype of our technique.

1 Introduction

Systems with shared resources use access-control mechanisms for protection. There are three fundamental
problems in access control:authentication, authorization, andenforcement. Authentication deals with veri-
fying the identity of a principal. Authorization addressesthe following problem: should a requestr by a spe-
cific principalA be allowed? Enforcement addresses the problem of implementing the authorization during
an execution. In a centralized system, authorization is based on the closed-world assumption, i.e., all of the
parties are known or their identity can be established usingan authentication system. In a distributed system,
the closed-world assumption is not valid. Trust-management systems [2] solve the authorization problem in
distributed systems by defining a formal language for expressing authorization and access-control policies,
and relying on an algorithm to determine when a specific request is allowable. Hence, trust-management
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systems decouple specification of the security policy from enforcement. Therefore, in the context of au-
thorization in distributed systems, trust-management systems offer several advantages, such as support for
delegation, no (conceptual) requirement for a central authority, and the ability to make authorization deci-
sions in a truly distributed fashion. A survey of trust-management systems, along with a formal framework
for understanding them, is presented in [25]. Two prominenttrust-management systems are Keynote [1] and
SPKI/SDSI [8].

In this paper, we focus on the trust-management system SPKI/SDSI; however, the basic ideas introduced
in this paper are applicable to other trust-management systems. In SPKI/SDSI,name certificatesdefine the
names available in an issuer’s local name space;authorization certificatesgrant authorizations, or delegate
the ability to grant authorizations. SPKI/SDSI has been investigated by several researchers. Authorization
decisions in SPKI/SDSI are based oncertificate chains, which are proofs that a client’s public key is one
of the keys that has been authorized to access a given resource—either directly or transitively, via one or
more name-definition or authorization-delegation steps. Despite its many advantages, SPKI/SDSI has seen
limited deployment. The two major hurdles in deploying SPKI/SDSI are:

• The need for a distributed certificate-chain discovery algorithm.

• The need for every principal to have a public-private key pair.

The first hurdle has been partially addressed by work on distributed certificate-chain discovery algorithms for
trust-management systems.1 In this paper we focus on the second hurdle. The goal of this paper is toreduce
the dependence of SPKI/SDSI on public-key infrastructure (PKI). Reducing the reliance of SPKI/SDSI on
PKI will hopefully lead to its wider deployment.

Our main approach is to leverage an existing widely deployedauthentication system, namely, Ker-
beros [20]. Specifically, we demonstrate that using SPKI/SDSI in conjunction with Kerberos reduces the
reliance on PKI by requiring only one public-private key pair per site, whereas “vanilla” SPKI/SDSI requires
each principal to have a public-private key pair. Our approach maintains all the advantages of SPKI/SDSI,
such as support for delegation and the ability to make authorization decisions in a distributed fashion. In
our approach, there are two levels of certificates; each level resembles vanilla SPKI/SDSI. We call these K-
SPKI/SDSI (for SPKI/SDSI with Kerberos), and E-SPKI/SDSI (for extended SPKI/SDSI). Users work at the
K-SPKI/SDSI level; E-SPKI/SDSI is the implementation level. The distinction between these levels is dis-
cussed further in Section 3.1. In our solution, we allow authenticated Kerberos users to issue K-SPKI/SDSI
certificates, and therefore eliminate the requirement thatevery user possess a public/private key pair. Our
K-SPKI/SDSI server accepts certificates from authenticated Kerberos users and generates corresponding
E-SPKI/SDSI certificates on behalf of the users. These certificates are used by the K-SPKI/SDSI server
for answering authorization queries (by invoking certificate-chain discovery at the E-SPKI/SDSI level). By
providing a solution that is built on top of Kerberos, an authentication system that is widely deployed in
various organizations, ranging from research institutes to corporations, we hope that our approach will be
easier to adopt.

The contributions of this paper are as follows:

• We show how to reduce the dependence of SPKI/SDSI on PKI by leveraging Kerberos.

• This insight behind the work is that when a user authenticates using Kerberos, they acquire a session
key that serves as evidence of who they are. This property is uses as a substitute for the signing actions
that vanilla SPKI/SDSI requires, which provides the ability to participate in a SPKI/SDSI-like scheme
without the requirement to have a public-private key pair.

1Prior work (i.e., [15, 17]) has addressed systems similar to, but not identical to, SPKI/SDSI. In our work, we used a distributed
certificate-chain discovery algorithm that generalizes the non-distributed algorithm of Jha and Reps [12].
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• We have created a prototype that implements the technique. Our measurements show that performance
depends on how K-SPKI/SDSI certificates are distributed among sites.

Background on SPKI/SDSI is given in Section 2. Our method forcombining SPKI/SDSI and Kerberos
is described in Section 3. Some applications of our system are discussed in Section 4. Section 5 discusses
deployment and performance issues of our prototype. Section 6 discusses related work.

2 Background on SPKI/SDSI

In SPKI/SDSI, allprincipals are represented by their public keys, i.e., the principalis its public key. A
principal can be an individual, process, host, or any other entity. K denotes the set of public keys. Specific
keys are denoted byK,KA,KB ,K ′, etc. Anidentifier is a word over some alphabetΣ. The set of identifiers
is denoted byA. Identifiers will be written in typewriter font, e.g.,A andBob. A term is a key followed
by zero or more identifiers. Terms are either keys, local names, or extended names. Alocal nameis of the
form K A, whereK ∈ K andA ∈ A. For example,K Bob is a local name. Local names are important in
SPKI/SDSI because they create a decentralized name space. The local name space ofK is the set of local
names of the formK A. An extended nameis of the formK σ, whereK ∈ K andσ is a sequence of
identifiers of length greater than one. For example,K UW CS faculty is an extended name.

2.1 Certificates

SPKI/SDSI has two types of certificates, or “certs”:
Name Certificates(or name certs): A name cert provides a definition of a local name in the issuer’s local
name space. Only keyK may issue or sign a cert that defines a name in its local name space. A name certC
is a signed four-tuple(K, A, S, V ). The issuerK is a public key and the certificate is signed byK. A is an
identifier. The subjectS is a term. Intuitively,S gives additional meaning for the local nameK A. V is the
validity specificationof the certificate. Usually,V takes the form of an interval[t1, t2], i.e., the cert is valid
from timet1 to t2 inclusive.
Authorization Certificates (or auth certs): An auth cert grants or delegates a specific authorization from an
issuer to a subject. Specifically, an auth certc is a five-tuple(K,S,D, T, V ). TheissuerK is a public key,
which is also used to sign the cert. ThesubjectS is a term. If thedelegation bitD is turned on, then a subject
receiving this authorization can delegate this authorization to other keys. Theauthorization specificationT
specifies the permission being granted; for example, it may specify a permission to read a specific file, or a
permission to login to a particular host. Thevalidity specificationV for an auth cert is the same as in the
case of a name cert.

A labeled rewrite ruleis a pair(L −→ R,T ), where the first component is a rewrite rule and the second
componentT is an authorization specification. For notational convenience, we will write the labeled rewrite

rule (L −→ R,T ) asL
T

−→ R. We will treat certs as labeled rewrite rules:2

• A name cert(K, A, S, V ) will be written as a labeled rewrite ruleK A
⊤

−→ S, where⊤ is the authoriza-
tion specification such that for all other authorization specificationst, ⊤ ∩ t = t, and⊤ ∪ t = ⊤.3

Sometimes we will write
⊤

−→ as simply−→, i.e., a rewrite rule of the formL −→ R has an implicit
label of⊤.

2In authorization problems, we only consider valid certificates, so the validity specificationV for a certificate is not included in
its rule.

3The issue of intersection and union of authorization specifications is discussed in detail in [8, 10].
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• An auth cert(K,S,D, T, V ) will be written asK �
T

−→ S � if the delegation bitD is turned on;

otherwise, it will be written asK �
T

−→ S �.

2.2 Authorization

Because we only use labeled rewrite rules in this paper, we refer to them as rewrite rules or simply rules. A
termS appearing in a rule can be viewed as a string over the alphabetK∪A, in which elements ofK appear
only in the beginning. For uniformity, we also refer to strings of the formS � andS � as terms. Assume

that we are given a labeled rewrite ruleL
T

−→ R corresponding to a cert. Consider a termS = LX. In this

case, the labeled rewrite ruleL
T

−→ R applied to the termS (denoted by(L
T

−→ R)(S)) yields the term
RX. Therefore, a rule can be viewed as a function from terms to terms that rewrites the left prefix of its
argument, for example,

(KA Bob −→ KB)(KA Bob myFriends) = KB myFriends

Consider two rulesc1 = (L1
T

−→ R1) andc2 = (L2
T ′

−→ R2), and, in addition, assume thatL2 is a prefix

of R1, i.e., there exists anX such thatR1 = L2X. Then thecompositionc2 ◦ c1 is the ruleL1
T∩T ′

−→ R2X.
For example, consider the two rules:

c1 : KA friends
T

−→ KA Bob myFriends

c2 : KA Bob
T ′

−→ KB

The compositionc2 ◦ c1 is KA friends
T∩T ′

−→ KB myFriends. Two rulesc1 andc2 are calledcompatible
if their compositionc2 ◦ c1 is well defined.4

2.3 The Authorization Problem in SPKI/SDSI

Assume that we are given a set of certsC and that principalK wants access specified by authorization
specificationT . The authorization question is: “CanK be granted access to the resource specified byT?”

A certificate chainch for C is of a sequence of certificates[c1, c2, · · · , ck] in C. The label of a cer-
tificate chainch = [c1, · · · , ck] (denoted byL(ch)) is the label obtained fromck ◦ ck−1 · · · ◦ c1 (denoted
by compose(ch)). We assume that the authorization specificationT is associated with a unique principal
Kowner[T ] (the resource to whichT refers). Given a set of certificatesC, an authorization specificationT ,
and a principalK, a certificate-chain-discoveryalgorithm looks for a finite set of certificate chains that
“prove” that principalK is allowed access specified byT .

Formally, certificate-chain discovery attempts to find a finite set{ch1, · · · , chm} of certificate chains
such that for all1 ≤ i ≤ m

compose(chi)(Kowner[T ] �) ∈ {K �,K �} ,

andT ⊆
⋃

m

i=1 L(chi).

4In general, the composition operator◦ is not associative. For example,c3 can be compatible withc2 ◦ c1, butc3 might not be
compatible withc2. Therefore,c3 ◦ (c2 ◦ c1) can exist when(c3 ◦ c2) ◦ c1 does not exist. However, when(c3 ◦ c2) ◦ c1 exists, so
doesc3 ◦ (c2 ◦ c1); moreover, the expressions are equal when both are defined. Thus, we allow ourselves to omit parentheses and
assume that◦ is right associative.
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Clarke et al. [6] presented an algorithm for certificate-chain discovery in SPKI/SDSI withO(n2
K
|C|)

time complexity, wherenK is the number of keys and|C| is the sum of the lengths of the right-hand sides
of all rules inC. However, this algorithm only solved a restricted version of certificate-chain discovery: a
solution could only consist of asinglecertificate chain. For instance, consider the following certificate set:

c1 : (K, KA, 0, ((dir /etc) read), [t1, t2])

c2 : (K, KA, 0, ((dir /etc) write), [t1, t2])

Suppose that Alice makes the request

(KA,((dir /etc) (* set read write))).

In this case, the chain[c1] authorizes Alice to read from directory/etc, and a separate chain[c2] authorizes
her to write to/etc. Together, the set{[c1], [c2]} proves that she has both read and write privileges for
/etc. However, both of the certificatesc1 andc2 would be removed from the certificate set prior to running
the certificate-chain discovery algorithm of Clarke et al.,becauseread 6⊇ (* set read write) and
write 6⊇ (* set read write). Consequently, no proof of authorization for Alice’s request would
be found. Schwoon et al. [22] presented algorithms for the full certificate-chain-discovery problem, based
on solving reachability problems in weighted pushdown systems (WPDSs). Their formalization allows a
proof of authorization to consist of a set of certificate chains. This paper uses the WPDS-based algorithm
for certificate-chain-discovery introduced by [22].

3 SPKI/SDSI and Kerberos

We describe the authorization scenario in SPKI/SDSI. In Section 3.1 we describe how the reliance of
SPKI/SDSI on PKI can be reduced by using Kerberos. First, we introduce a small example that will be
used throughout this section.

Example 3.1. Imagine that there are two sites,Bio and CS , which correspond to the biology and the
computer science department respectively. Let us say that professorBob in the biology department wants
to provide access to a serverV to all his students and students of professorAlice in the computer science
department.

Assume that there are two sitesst1 andst2 that have SPKI/SDSI serversSst1 andSst2 , respectively.
In the context of our example, sitesCS andBio have SPKI/SDSI serversSCS andSBio. There are three
components to a SPKI/SDSI authorization scenario.

Certificate issuance. Each user sends signed auth and name certs to the SPKI/SDSI server at their site.
The SPKI/SDSI server verifies the signatures on the certs. Ifsignature verification fails on a cert, it is
rejected; otherwise it is stored by the SPKI/SDSI server. Inour example,Alice sends toSCS the following
name certs, which are signed byAlice:

KAlice students −→ KX

KAlice students −→ KY

KAlice students −→ KZ

The three name certs essentially state thatX, Y , andZ are students ofAlice. Bob sends toSBio the
following signed auth certs, which are signed byBob:
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KBob �
TV−→ KBob students �

KBob �
TV−→ KAlice students �

The two auth certs state that students ofKAlice andKBio can access serverV (denoted by authorization
specificationTV ), but the students cannot delegate this right.

Certificate-chain discovery. Suppose a userU (with public key KU ) at siteA wants to access a re-
source at siteB according to authorization specificationT . UserU sends a certificate-chain-discovery
request forT (denoted byCCDrequest(KU , T )) to the SPKI/SDSI serverSCS . The SPKI/SDSI server
SCS executes a distributed certificate-chain-discovery algorithm and returns a finite set of certificate chains
{ch1, · · · , chm} to U . In Example 3.1, suppose that userX sends the certificate-chain discovery request
CCDrequest(KX , TV ) to serverSCS . ServerSCS executes a distributed certificate-chain discovery algo-
rithm and returns the set of chains{ch1}, wherech1 = [c1, c2] (c2 andc1 are shown below.)

c2 = KBob �
TV−→ KAlice students �

c1 = KAlice students −→ KX

Requesting a resource. Assume that userU wants to access a resource according to authorization specifi-
cationT . First,U requests that certificate-chain discovery be carried out bysending a requestCCDrequest(KU , T )
to the SPKI/SDSI server at its site, and obtains back a set of certificate chainsSCH = {ch1, · · · , chm}.
UserU presents the set of certificate chainsSCH to the principalKT (recall thatKT is the owner of the
resource to whichT refers). The principalKT authorizesU iff T ⊆

⋃
m

i=1 L(chi) (this step is usually called
compliance checking). The labelL(chi) of a chainchi is described in Section 2.2.

In Example 3.1, userX wants access to serverV according to the authorization specificationTV .
After making a certificate-chain discovery request,X obtains the set{ch1}, wherech1 = [c1, c2],
compose(ch1)(KBob�) ∈ {KX �,KX �}, andTV ⊆ L(ch1). X presents{ch1} to serverV . V checks
thatTV ⊆ L(ch1), which is true, and henceV grantsU access.

3.1 SPKI/SDSI and Kerberos

Notice that, to use SPKI/SDSI,every userneeds to have public/private key pair. In this section, we describe
an authorization protocol that uses a distributed authentication system, such as Kerberos, but only requires
a public/private key pairper site. Our new authorization system is called K-SPKI/SDSI.

We assume that the reader is familiar with Kerberos (for a detailed description of Kerberos see [20]).
We make the following assumptions:

• Each site is a Kerberos realm. The KDC at sitest is denoted byKDCst.

• The K-SPKI/SDSI server at each site is Kerberoized.

• The KDC and the K-SPKI/SDSI server at a sitest share a public/private key pair. The public key of
sitest is denoted byKst.

Next we describe all three components of our authorization scenario in the new context.

Certificate issuance. To issue K-SPKI/SDSI certificates, a Kerberos user first authenticates with the local
KDC using the standard Kerberos authentication protocol and receives a Ticket Granting Ticket (TGT) from
the KDC. Using the TGT, the client requests a Service Granting Ticket (SGT) for accessing the Kerberoized
SPKI/SDSI (K-SPKI/SDSI) server. Throughout the rest of thesection, assume that the user has obtained

6



an SGT for the K-SPKI/SDSI server at its site. Using the SGT, the client issues requests for generating
SPKI/SDSI name certs or auth certs. Communication on the channel over which the requests are sent is
encrypted using the session keyKs provided in the SGT. To issue a name cert, a userU at sitest sends an
encrypted name cert request to the SPKI/SDSI server:

EKs
[U, A, S, V ] ,

whereU is the name of the user,A is an identifier,S is a subject, andV is a validity specification. As
before, we will write the name certEKs

[U, A, S, V ] asU A −→ S. Upon receiving the encrypted name cert
EKs

[U, A, S, V ] the local K-SPKI/SDSI server ascertains its validity, and if the name cert is valid, it creates
a new name cert of the form[Kst U, A,Kst S, V ], signs it with its private key, and stores it in the database
of certificates. Notice that in the new name cert the public key Kst of sitest is added beforeU andS. In
our example,Alice sends the following name certs encrypted with the session key Ks to the K-SPKI/SDSI
server at its site.

Alice students −→ X

Alice students −→ Y

Alice students −→ Z

The K-SPKI/SDSI server verifies the encrypted name certs shown above and creates the following E-
SPKI/SDSI name certs and signs them.

KCS Alice students −→ KCS X

KCS Alice students −→ KCS Y

KCS Alice students −→ KCSZ

A userU at sitest sends an auth certEKs
[U,S,D, T, V ] encrypted with the session key from the TGT

to the K-SPKI/SDSI server. Upon receiving the encrypted auth certEKs
[U,S,D, T, V ] the K-SPKI/SDSI

server ascertains its validity, and if the auth cert is valid, it creates a new E-SPKI/SDSI auth cert of the
form [Kst U,Kst S,D, T, V ] signs it with its private key, and stores it in the database ofcertificates. In
our example,Bob sends the following auth certs encrypted with the session key from the TGT to the K-
SPKI/SDSI serverSBio .

Bob �
TV−→ Bob students �

Bob �
TV−→ CS Alice students �

The two auth certs state that students ofBob (at the current site) andAlice (at siteCS) can access serverV

(denoted by authorization specificationTV ), but the students cannot delegate this right. The K-SPKI/SDSI
serverSBio verifies the encrypted auth certs shown above, and creates the following E-SPKI/SDSI auth
certs, and signs them.

KBio Bob �
TV−→ KBio Bob students �

KBio Bob �
TV−→ KBio CS Alice students �

The K-SPKI/SDSI servers also adds name certs correspondingto the K-SPKI/SDSI servers of other sites.
In our example,SCS signs and adds the name certKCS Bio −→ KBio , which states that the public key of
the siteBio is KBio . Similarly, SBio signs and adds the name certKBio CS −→ KCS .
Note: K-SPKI/SDSI servers must support an extended version of SPKI/SDSI: the left-hand sides of ex-
tended auth and name certs have three symbols; the left-handside of an extended auth cert is of the form
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KαU� or KαU�, whereKα is the public key of siteα andU is a user; the left-hand side of an extended
name cert if of the formKαU A, where bothU andA are identifiers. However, in SPKI/SDSI the left-hand
sides of auth and name certs have just two symbols. Various SPKI/SDSI algorithms must be extended to
implement E-SPKI/SDSI; however, this is possible because E-SPKI/SDSI is a special case of left-prefix
rewriting, and the primitives generalize to arbitrary left-prefix rewriting systems [4].

Requesting a resource. Using the SGT, a userU at sitest1 sends a request to the local K-SPKI/SDSI
server, asking to access the remote serverV located in a different sitest2. This request is encrypted using
the session keyKs provided by the SGT.

EKs
[st2, V, T ]

The K-SPKI/SDSI serverSst1 at sitest1 initiates a distributed certificate-chain discovery requestCCDrequest(Kst1 U, T )
on behalf ofU . This process involves K-SPKI/SDSI servers, both local andremote, that contain related E-
SPKI/SDSI certificates. If the requestCCDrequest(Kst1 U, T ) is successful and returns a set of certificate
chains SCH, userU receives the following token fromSst1 .

TokenU = EKs
(K1)TicketU

TicketU = EKst2
(K2) EK2

[st2,K1, V, T, SCH, TS1,Lifetime1]

In Example 3.1, userX receives a token with the set of certificate chains SCH= {ch1}, wherech1 is the
certificate chain[c1, c2, c3]. Certificatesc1, c2, andc3 are shown below.

c1 = KBio Bob �
TV−→ KBio CS Alice students �

c2 = KBio CS −→ KCS

c3 = KCS Alice students −→ KCS X

Notice thatcompose([c1, c2, c3])(KBioBob �) ∈ {KCS X �,KCS X �} andTV ⊆ L([c1, c2, c3]).
Upon receivingTokenU , userU decryptsEKs

(K1) and retrieves the keyK1 (recall thatKs is the session
key in the TGT for the K-SPKI/SDSI server at sitest1). UserU constructs the following authenticator:

AuthenticatorU = EK1
[IDU‖ADU‖TS2‖Lifetime2]

UserU sends the following message to the serverV at sitest2:

TicketU AuthenticatorU

ServerV requests its local K-SPKI/SDSI server to verify the message. The K-SPKI/SDSI server at sitest2
performs the following steps:

• Decrypts the messageEKst2
(K2) with its private key, and retrieves the session keyK2.

• Decrypts the messageEK2
[st2,K1, V, T, SCH, TS1,Lifetime1] and ascertains its freshness using the

time-stampTS1. Moreover, the server verifies usingLifetime1 that the token has not expired. The
K-SPKI/SDSI server also performs the compliance-checkingstep on the set of certificate chains SCH.

• Similarly, the K-SPKI/SDSI server ascertains the validityof the authenticatorEK1
[IDU‖ADU‖TS2‖Lifetime2].

Notice that the server knows the session keyK1 from TicketU .

If all the steps given above are successful, then the K-SPKI/SDSI server sends a message toV indicating
thatU should be granted access.
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3.2 Threat Analysis

The message exchange for requesting a resource described earlier is very similar to the exchange of messages
between the client and KDC in Kerberos. In essence, the authenticatorAuthenticatorU states that “anyone
who usesK1 is U ”. Notice that since in the tokenTokenU the session keyK1 is encrypted withKs,
which can only be known by the userU (becauseKs is in the SGT issued toU ). Therefore, assuming
the authentication in Kerberos is correct, onlyU could have knownK1. An adversary can still replay the
messageTicketU AuthenticatorU to the serverV and masquerade asU . Since the authenticator is intended
for use only once, it can have a very short lifetime, and hencethe risk of a replay attack is minimal.

4 Applications

Our work is only a first step towards building a practical distributed authorization system. In this section,
we discuss how existing applications can benefit from the K-SPKI/SDSI approach.

4.1 Authorization for Distributed File Systems

AFS [21] is a popular distributed file system in active use because it provides users with a consistent name
space, regardless of the users’s physical location. Authorization in AFS is an important issue because all
AFS users share the same view of the entire AFS. Currently, AFS relies on Kerberos for authentication, and
uses Access Control Lists (ACLs), which may contain user names, group names, or both, to control who can
access the data inside each AFS directory. The ACL system works well for managing permissions within
one site; however, if users from different sites plan to share files, the ACL system becomes less efficient to
use and is difficult to maintain. This is because in AFS, authorization is performed locally at each AFS cell.

To illustrate this, we use a concrete example to show how AFS ACLs work in a cross-site environment.
Then we explain how our approach can simplify cross-site authorization in AFS.

Cross-site ACLs in AFS. Let us assume that Professor Bob, from the siteBio, plans to grant access to
directorydata to students of Professor Alice from the siteCS. Using existing AFS, Alice and Bob must
follow these steps to accomplish this goal:5

1. Initial authentication:At siteBio, Bob authenticates with the AFS system (through Kerberos) to obtain
an AFS token that is used to access AFS and create ACLs.

2. Alice creates a list of her students:At siteCS, Alice creates a list of her students, as shown in Figure 1
(a). 6

3. Bob sets up a group for Alice’s students:Bob creates an AFS group, calledAlice@CS:students,
for Alice’s students inBio. He then populates the group with Alice’s students. This is shown in
Figure 1 (b).

4. Bob grants access to Alice’s students:Bob grants access to directorydata to the group that he created
in the previous step, as shown in Figure 1 (c).

The problem with the above approach is that the groupAlice@CS:students, maintained by Bob, is
redundant and must be kept in sync with Alice’s own list. As a result, this approach is not efficient and does
not scale. Consider the following two scenarios:

5In addition, the AFS server fromCS must set up a special group calledsystem:authuser@cs for this to work.
6We are not concerned with how this list is created and maintained. The relevant issue here is that someone fromCS needs to

create and maintain a list of Alice’s students.
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Alice’s students (CS)
studentX
studentY
studentZ

...
(a.) Alice’s list of her students

Alice@CS:students ACL list for data
studentX@cs system:administrators rlidwka
studentY@cs system:anyuser l
studentZ@cs ⇒ Alice@CS:students rl

... Bob rlidwka
(b.) Bob’s ACL group (c.) Bob grants access

Figure 1: An example of using AFS ACLs for cross-site access control. In (a), Alice maintains a list of her
students at siteCS. In (b), at siteBio, Bob creates the groupAlice@CS:students and adds Alice’s
students to the group. In (c), Bob grants access to directorydata to the groupAlice@CS:students
(third entry); the other three ACL entries are managed by AFS.

• If Alice adds or removes a student from her list, then Bob mustalso update his list accordingly.

• If three more professors from three different sites plan to grant access permissions to Alice’s students,
then each of these professors must also create and maintain acopy of Alice’s student list.

AFS Authorization Using K-SPKI/SDSI. In contrast, the K-SPKI/SDSI approach greatly simplifies
cross-site authorization. Here are the steps:

1. Initial authentication:Alice and Bob authenticate with their KDCs to obtain SGTs fortheir respective
K-SPKI/SDSI servers.

2. Alice issues name certs:At site CS, using the K-SPKI/SDSI server, Alice issues a name cert for each
one of her students:

KCS Alice students −→ KCS studentX

This essentially creates a group calledKCS Alice students at siteCS.

3. Bob grants access to Alice’s students:At site Bio, through the K-SPKI/SDSI server, Bob issuesone
auth cert granting access to Alice’s students, using the group created atCS:

KBio Bob �
data rl
−−−−−→ KBio CS Alice students �

Here, because Alice is the only one who manages the list of students, and Bob refers to the symbolic
nameCS Alice students, Bob no longer needs to create a copy of Alice’s list of students. As a result,
this approach is simpler to use and is also more scalable in cross-site environments:

• When Alice adds or removes a student from her list, Bob does not need to make any changes on his
side.

• If three more professors from three different sites want to grant access permissions to Alice’s students,
all they need to do is to issue auth certs at their sites, and noduplicate lists of students need to be
created.

4.2 Accessing Kerberos Services through Web Services

Web services are traditionally built on top of public-key cryptography, such as SSL. Kerberos services, on
the other hand, rely on secret-key cryptography. As a result, it has been a challenge to integrate these two
systems so that users can access Kerberos services through web services. In this example, we consider a
case where a user, say Alice, wants to access her data througha web service (usually running inside a web
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Figure 2: Accessing a Kerberos service using K-PKI.

Kerberos
ServiceSPKI/SDSI

Alice Web

1

2

3

4

5

Figure 3: Accessing a Kerberos service
using K-SPKI/SDSI.

server). We compare two approaches, one based on the K-PKI project [16], and the other based on our
approach.

A previous approach. The K-PKI [16] project addresses the integration problem byproviding a mech-
anism that translates Kerberos credentials to X.509 certificates, and vice versa. Figure 2 illustrates how a
client, say Alice, accesses a Kerberos service through a webservice. For the remainder of the example, it is
assumed that Alice already has a TGT, and all communicationsare secure.

1. Alice requests for an X.509 certificate:Alice first generates a public/private key pair for herself.She
then obtains an SGT for theKerberos Certification Authority, or KCA, and authenticates with the KCA.
As part of the authentication process, she sends the public key to the KCA to be signed.

2. KCA generates an X.509 certificate:The KCA, after authenticating Alice, signs Alice’s public key and
returns the signed certificate back to Alice.

3. Alice authenticates with web service:Alice uses the newly generated certificate to authenticate herself
with the web service.

4. Web service matches a request for a Kerberos ticket:The web service authenticates itself with theKer-
beros Credential Translator, or KCT, and provides KCT with evidence that it has properly authenticated
with Alice.

5. KCT generates a Kerberos ticket:KCT, upon validating the identity and the request of the web service,
generates a Kerberos ticketusing Alice’s identityfor the web service and returns the ticket to the web
service.

6. Accessing the Kerberos service:The web service, using the Kerberos ticket returned by KCT, can now
access the Kerberos service on behalf of Alice.

The drawback of this approach is that it has to translate Kerberos credentials to PKI certificates, and vice
versa. We achieve the same objective, but in a simpler way, using our K-SPKI/SDSI approach.

K-SPKI/SDSI approach. Using K-SPKI/SDSI, Alice can grant access permission to theweb service
directly, thereby avoiding the credential conversions that are required in the K-PKI approach. Figure 3
shows the setup of our system. In our system, Alice uses the following steps to access a Kerberos service
through the web:

1. Alice grants access to the web service:Alice first obtains an SGT for the K-SPKI/SDSI server. Using
the SGT, she issues an auth cert through the K-SPKI/SDSI server, granting rights to the web service,
along with validity information.

KCS Alice �
TV−−→ KCSWeb �
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2. Alice authenticates with the web service.

3. Web service requests for access token:After authenticating Alice, the web service queries the K-
SPKI/SDSI server for a token for accessing data on behalf of Alice.

4. K-SPKI/SDSI server checks for permission:The K-SPKI/SDSI server performs a distributed certificate-
chain discovery to check the requested access permission; if the check is successful, the K-SPKI/SDSI
server returns an access token to the web service.

5. Accessing the Kerberos service:The web service, using the token returned by the K-SPKI/SDSIserver,
can now access the Kerberos service.

This approach is also flexible to use. Because Alice is issuing auth certs directly, she may limit the
access privileges granted to the web service according to her security objectives. For example, she may
use a short validity period to limit the time window during which the web service can access the data she
specifies; she may also restrict the web service’s access rights by granting specific access privileges.

5 Implementation and Evaluation

We have built a prototype system to evaluate our approach. The implementation uses MIT’sKerberosdis-
tribution (version 1.3.1 [20]) and theDistributed SPKI/SDSIlibrary that is based on a model checker for
pushdown systems [22]. We evaluated our approach using two criteria: ease of deploymentand perfor-
mance. Because our implementation is still a prototype, and we have not deployed the system in a real-
world environment, we evaluated the prototype in a simulated environment, using synthetic data. However,
as the experimental results demonstrate, we believe that our approach does achieve the goal of reducing
SPKI/SDSI’s dependence on public-key infrastructure, andthat it is easy to implement and deploy such a
system. We summarize the results based on these two criteria:

• Ease of deployment:Three steps are required to deploy our system, assuming thatKerberos is already
installed.

1. Install a public/private key pair:In our approach, only one public/private key pair is needed for
each Kerberos site. In comparison, PKI’s systems require every user to have a key pair. In addition,
sites need to exchange their public keys. However, we believe that this is a reasonable requirement
because the exchange is done only once.

2. Install the K-SPKI/SDSI server:Each Kerberos site must have its own logical K-SPKI/SDSI server.
Because K-SPKI/SDSI server is implemented as a Kerberos service, this does not require any
changes to Kerberos besides setting up the secret key between the KDC and the K-SPKI/SDSI
server.

3. Update Kerberos clients:Kerberos clients must be updated to take advantage of the K-SPKI/SDSI
server. However, all clients need to do is to use a new librarycall to access the K-SPKI/SDSI
server.

• Performance: The experimental results demonstrate that the performanceof distributed authorization
is highly dependent on how E-SPKI/SDSI certificates are distributed among the sites: the more dis-
tributed the certs are, the more sites are needed to resolve authorization queries, and the longer it takes
to process an authorization query. In our study, distributed authorization performed well: in a test en-
vironment with about 1,500 certificates and eight Kerberos sites, it took about 1 second to process a
complex authorization request, and took half as long to process a simple one. Because this is only a
prototype implementation, there is still plenty room for optimizations that would improve the perfor-
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mance.

5.1 Ease of deployment

The objective of this work is to make SPKI/SDSI, and potentially other trust-management systems, less
reliant on PKI and hence easier to deploy in the real world. Weachieve this goal by two means. First, we
reduce SPKI/SDSI’s reliance on PKI by relying on authentication provided by existing infrastructures, such
as Kerberos, that are proven and in use. The approach tries tomake SPKI/SDSI fit into existing systems
seamlessly, instead of introducing drastic changes that would be hard to have accepted. Deploying our
system in environments where Kerberos is installed only requires a few small changes.

Second, in terms of implementation, we tried to make sure that our approach does not introduce too
many changes to Kerberos, because changes usually result inmore complications for deployment. We
achieved this goal by implementing the K-SPKI/SDSI server as an independent unit, instead of changing the
KDC. Clients can simply interact with the K-SPKI/SDSI server through the standard request/reply model.
As a result, our implementation requires no changes to the KDC, and only one minor modification to the
Kerberos library.7

However, this approach also has some drawbacks. First, by using a separate server, clients must be
modified to use the provided features—even though the changeis very simple. The alternative is to provide
these functionalities inside the KDC. When a Kerberos client requests an SGT for a service, the KDC
automatically performs the necessary authorization queryon behalf of the client and stores the authorization
token as part of the SGT. This approach makes the authorization process transparent to the clients, but it
does require changes to the KDC. This technique is also used by others for adding authorization support
inside Kerberos [9, 7, 16, 3]. We are currently evaluating both approaches.

In addition to the changes above, when deploying our system,each site must install a public/private key
pair. Furthermore, each site needs to send its public key to other sites with which it plans to collaborate.
However, we believe that this is a reasonable requirement because setting up collaboration is an admin-
istrative task that only needs to be done once for each collaborator. For example, in Kerberos, cross-site
authentication requires participating sites to exchange their secret keys in advance.

5.2 Performance

We also evaluated the performance of our system in a simulated distributed environment. We only consid-
ered the performance for distributed authorization because issuing certificates is an infrequent administrative
task. The simulated test environment consists of eight Kerberos sites, as shown in Figure 4. Each node in
the graph represents a Kerberos site; nodes with a symbolR represent a resource/service that Kerberos users
can access. To illustrate what goes on, some of the certificates used in the experiments are shown next to
each site. Because in a distributed environment every Kerberos site stores its own certificates, distributed au-
thorization must involve two or more sites, depending on howthe E-SPKI/SDSI certificates are distributed.
For instance, in Figure 4 whenManager from the siteGOV attempts to access the resourceR from NSF,
only these two sites are involved in distributed authorization, as denoted by the solid arrow. In contrast,
whenAlice, from CS, wants to access the same resourceR, multiple sites (along the dashed arrows) must
participate in the distributed authorization. Therefore,we expect the number of sites involved in distributed
authorization to be an important factor in performance. Forthis reason, we tested distributed authorization
using three different scenarios, shown by the three types ofarrows in Figure 4.

7We changed the functionkuserok, which, upon called, evaluates whether a Kerberos principal is allowed to login to a host.
Our change provides an option for callers of this function touse the K-SPKI/SDSI server to check for authorization.
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Figure 4: Test setup:R grantst1: (fundA apply) to all NSF’s EDU programs, and delegatest2: (fundB
apply) to all NSF’sGOV programs. Each type of arrows represent one test scenario.

Table 1: Distributed Authorization Performance Results
Scenario # of sites Request Time (ms)

Manager@GOV 2 (fundB apply) 581
Chancellor@UW 4 (fundA apply) 930
Alice@CS 6 (fundA apply) 1128

We populated the test environment with 1500 name certs and 30auth certs, distributed over different
sites. Each site runs on a separate machine on a local area network. All test machines have identical
configurations: 800 MHz Pentium III with 256 MB RAM, running TAO Linux version 1.0.

Table 1 shows the results of the experiments. As expected, the number of sites involved in distributed
authorization has direct impact on the performance of the system. In the most complex case (Alice@CS),
where six Kerberos sites are involved, distributed authorization took almost twice as long as what it takes
in the simplest case (Manager@GOV), where two sites are involved. However, as this is only a prototype,
we expect to be able to improve the performance in the future by optimizing the code. Furthermore, our test
setup is an extreme case where every Kerberos site has its ownphysical KDC. In practice, logical Kerberos
sites can share one physical KDC, which would improve the real-world performance. For example, because
CS, BIO, LS andUW are logical sites insideUW, it might be feasible and reasonable to have one physical
KDC for all of them, and this would reduce the network overhead considerably.

6 Related Work

Leveraging the advantages of both Kerberos and Public-Key Infrastructure (PKI) has been explored before.
PKINIT [24] is an IETF proposal that extends Kerberos by using public-key cryptography during the initial
authentication between clients and the KDC. After a successful authentication, the KDC returns a standard
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Kerberos TGT to the client, who can then use the TGT to access other Kerberos services. While PKINIT ad-
dresses how to use PKI within a Kerberos realm,PKCROSS[11] extends the idea of using PKI in Kerberos
cross-realm authentication. KDCs in different realms exchange their public keys and use public-key cryp-
tography for authentication and ticket exchange.PKDA [23] changes Kerberos by eliminating the KDC and
the initial TGT exchange. With PKDA, a Kerberos client directly authenticates with the application server
using public-key cryptography and receives a Service Granting Ticket (SGT) generated by the application
server. Consequently, no TGT is needed in PKDA. However, Medvinsky et al. pointed out that PKDA can
be implemented using PKINIT [18], albeit some changes are required. The aforementioned work differs
from ours because their objective is to extend Kerberos to use public-key infrastructures for authentication
purposes. Our work has a different goal, namely,to use Kerberos to reduce the dependence of SPKI/SDSI
on PKI. Furthermore, their approaches require modifications to Kerberos infrastructure itself, while our
approach does not.

K-PKI [5, 16] addresses the problem of accessing Kerberos services from PKI-based systems, such as
web applications. K-PKI provides a special Kerberos server, KCA, which can generate short-term X.509
certificates for authenticated Kerberos clients. Later on,when a client tries to access Kerberos services
through some web applications, she first authenticates withthe web services using the generated certificate.
The web services, in turn, can obtain necessary Kerberos credentials and access the Kerberos services on
behalf of the client. While K-PKI provides a glue between Kerberos and PKI world, the complexity of the
PKI systems is not reduced: all clients still need certificates. Our work, on the other hand, tries to reduce
the reliance of trust-management systems on PKI. As a result, with our approach, clients no longer need to
have public/private key pairs.

Another aspect of our work is to bring trust management, suchas SPKI/SDSI, to Kerberos-based infras-
tructures. Although there has been some previous work on extending Kerberos’s authentication framework
with authorization services, that work generally assumes acentralized authority and does not address cross-
realm authorization. Of these, Neuman’s work onrestricted proxy[19] is the closest to ours. Restricted
proxy is a model for building various authorization services such as authorization servers, capabilities, and
access control. However, SPKI/SDSI is a superset of restricted proxy, and it offers other features, such as
distributed trust management. DCE’sPrivilege Service (PS)[9], ECMA’s SESAME[7], and Microsoft’s
Kerberos extension [3] provide authorization capability through the use of an optional field (calledau-
thorization data) provided by Kerberos. For each authenticated Kerberos client, DCE’s Privilege Service
generates a ticket, called aPrivilege Attribute Certificate, or PAC, which contains membership information
for the corresponding principal. The client then presents her Kerberos ticket, together with the PAC, to
Kerberos services that the client wants to access. The SESAME system from ECMA also defines and uses
PAC to assert a principal’s access rights. Microsoft’s KDC extension stores authorization information, such
as security identifiers and group membership information, inside the TGTs issued by the KDC. This autho-
rization data is used by application servers to check users’access privileges. These works have the common
drawback that, unlike SPKI/SDSI, they rely on a centralizedauthority for granting access privileges, and the
authorization authority must know about every user. In contrast, our approach uses SPKI/SDSI, which does
not require a central authority, and authorization decisions are made in a decentralized manner.

SPKI/SDSI [8], based on public-key-infrastructure, was designed to address thecentralized authority
issue of conventional PKI-based systems. SPKI/SDSI provides a novel framework for managing trust (in the
form of certificates) using an entirely decentralized approach. In SPKI/SDSI, no central authority is needed
because each principal can issue her own certificates. Much of the previous work on SPKI/SDSI focuses on
theoretic aspects of SPKI/SDSI. Clarke et al. [6] proposed the original certificate-chain-discovery algorithm
for answering authorization queries in SPKI/SDSI. Jha and Reps made an improvement to Clarke et al.’s
algorithm by applying pushdown-system theory to the certificate-chain-discovery problem [13, 14]. Both
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algorithms require certificates to be centralized. Li et al.[17] presented a system, calledRT0, in which
certificate-chain discovery can be done in a distributed manner. Despite this work, SPKI/SDSI has not been
adopted in the real world, primarily due to the difficulty of key-management issues in PKI-based systems.
Our work addresses this problem by reducing SPKI/SDSI’s reliance on PKI, and making use of Kerberos,
essentially unchanged. By relying on Kerberos, a system that is proven—and, more importantly, widely
used—our approach can make SPKI/SDSI easier to be adopted inthe real world.
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