
Creating Vulnerability Signatures Using Weakest Preconditions

David Brumley Hao Wang Somesh Jha Dawn Song

dbrumley@cs.cmu.edu hbwang@cs.wisc.edu jha@cs.wisc.edu dawnsong@cmu.edu

Abstract

Signature-based tools such as network intrusion detec-

tion systems are widely used to protect critical systems. Au-

tomatic signature generation techniques are needed to en-

able these tools due to the speed at which new vulnera-

bilities are discovered. In particular, we need automatic

techniques which generate sound signatures — signatures

which will not mistakenly block legitimate traffic or raise

false alarms. In addition, we need signatures to have few

false negatives and will catch many different exploit vari-

ants.

We investigate new techniques for automatically gener-

ating sound vulnerability signatures with fewer false nega-

tives than previous research using program binary analysis.

The key problem to reducing false negatives is to consider

as many as possible different program paths an exploit may

take. Previous work considered each possible program path

an exploit may take separately, thus generating signatures

that are exponential in the size of the number of branches

considered. In the exact same scenario, we show how to

reduce the overall signature size and the generation time

from exponential to polynomial. We do this without requir-

ing any additional assumptions, or relaxing any properties.

This efficiency gain allows us to consider many more pro-

gram paths, which results in reducing the false negatives

of generated signatures. We achieve these results by creat-

ing algorithms for generating vulnerability signatures that

are based on computing weakest preconditions (WP). The

weakest precondition for a program path to a vulnerability

is a function which matches all exploits that may exploit the

vulnerability along that path.

We have implemented our techniques and generated sig-

natures for several binary programs. Our results demon-

strate that our WP-based algorithm generates more suc-

cinct signatures than previous approaches which were

based on forward symbolic execution.

1 Introduction

A vulnerability is a software bug that can be used by an

attacker to alter execution of a program to achieve harmful

consequences, such as executing malicious code specified

by the attacker. For a given program with a vulnerability, an

exploit is an input to the program that triggers the vulnera-

bility and results in a successful attack. One common ap-

proach for protecting a vulnerable program from being ex-

ploited by attackers is to generate signatures which will rec-

ognize exploits of the vulnerability. Signatures are widely

used in network and host defense systems to filter out any

input which may exploit programs.

Since manual generation of signatures is a slow, cum-

bersome, and error-prone process, there is great interest in

automatic signature generation techniques. Previous algo-

rithms for automatically generating signatures have focused

on learning signatures from actual exploits [26, 27, 30, 33,

43, 50]. We call these exploit-based signatures. The main

shortcoming of these exploit-based signatures is that they

are based on specific exploit instances and may have both

false positives and negatives [16, 34, 40]. For example, an

exploit-based signature may have a high false-positive rate,

and thus may block a large amount of legitimate traffic.

Worse, it is usually impossible to know before deploying an

exploit-based signature what the error rate is, thus the only

choices for a user are bad: deploy the exploit-based signa-

ture and possibly block important legitimate traffic, or not

deploy the exploit-based signature and possibly get com-

promised.

To remedy the shortcomings of exploit-based signatures,

recently researchers have developed a new type of signa-

ture: vulnerability signatures, which are based on actual

vulnerabilities instead of exploit instances, and will have

a guaranteed zero false positive rate [12, 49]. Specifically,

previous work demonstrated that automatically generating

sound vulnerability signatures is possible via program bi-

nary analysis [12]. This approach uses forward symbolic

execution to generate a separate signature for each program

path an exploit may take through the program. Loops and

other cyclic structures are explored (unrolled) a fixed num-

ber of times. The generated signature is sound, but expo-

nential in size to the number of program paths in the un-

rolled program. As a result, this approach for generating

vulnerability signatures is not scalable when there are many

paths an exploit may take.

In this paper, we address the shortcomings of previous

approaches and present an efficient and practical method

for creating vulnerability signatures based upon binary pro-

gram analysis. In particular, we explore how to generate

vulnerability signatures with the same properties as previ-

ous research, but reduce the overall signature size and gen-

eration time from exponential to quadratic in the size of the

unrolled program (see Section 2 for exact details). We do

this without requiring any additional assumptions, or relax-

ing any properties. Intuitively, a signature which recognizes

all exploits of a vulnerability should not be much larger than

the program since the program itself accepts all exploits,

and just needs to be modified to recognize them appropri-

ately. Our approach is able to achieve these gains by more

efficiently representing the many program paths an exploit

may take. At a high level, our approach summarizes multi-

ple program paths, while previous approaches enumerated

them. Because our approach is more scalable, the signature

can encompass more program paths, thus be more complete

(i.e., have fewer false negatives).

At a high level, our vulnerability signature generation

algorithm takes as input a program and a vulnerability, and

first outputs a signature formula (f), which when evaluated

on an input (f(x)) returns EXPLOIT if the input would ex-

ploit the program, and SAFE otherwise. If desired, the for-

mula can be given to a solver such as a decision procedure

to generate a regular expression signature.

We realize these gains by adopting the formal verifica-

tion technique of weakest preconditions (WP) to signature

generation. The novelty of our approach is that, by applying

the weakest precondition to generating vulnerability signa-

tures, we can efficiently characterize all vulnerable states in

the unrolled program and produce signatures that are more

succinct. In addition, unlike previous work, we can con-

sider the case when we know program loop invariants. This

is important since often loop invariants can be automatically

generated (e.g., [22, 25, 38, 45]).

There are many challenges to adapting the weakest pre-

condition computation to vulnerability signature genera-

tion. First, we generate signatures with only access to the

program binary. Weakest precondition calculations are nor-

mally done on structured programs (i.e., source code), while

a binary is unstructured and has only jumps. Second, the

method used for calculating the weakest precondition mat-

ters: using the standard techniques will generate exponen-

tial size formulas, thus little benefit. We show how to adapt

recent advances in weakest precondition research to binary

analysis, and provide a succinct proof of correctness. This

adaptation is necessary to achieve our results. The over-

all difference using our approach is quite astounding: we

reduce vulnerability-signature size from previously best ex-

ponential to quadratic (Section 2).

In summary, this paper makes the following contribu-

tions:

• We show how to adapt the weakest precondition to

create a vulnerability signature. This connection al-

lows us to realize immense efficiency gains. These ef-

ficiency gains can be translated into better signatures

with fewer false negatives, while still enjoying zero

false positives, compared to signatures produced using

techniques from previous approaches.

• We develop new methods for calculating the weak-

est precondition for binary programs, which are un-

structured. Our method uses novel structural analysis

to convert binaries into structured forms to facilitate

weakest precondition computation. We also present a

new proof that the resulting signature size is O(n2)
where n is the number of instructions (for programs

with loops unrolled).

• We have implemented a prototype system for auto-

matically creating vulnerability signatures from pro-

gram binaries to evaluate our approach. Our evalua-

tion shows that previous methods generated signatures

orders of magnitude larger than our approach.

2 Overview and Intuitions

In this section, we first introduce our terminology for

vulnerabilities and vulnerability signatures, and present a

running example. Then we give the high level intuition be-

hind our approach.

2.1 Vulnerability Definitions

Given a binary program P , a vulnerability is a bug in P
where execution may “go wrong” and violate the intended

semantics of the program. Common ways to “go wrong”

are to dereference NULL pointers, overwrite critical data

such as return addresses, and attempt to double-free mem-

ory. We call the point where execution may “go wrong” the

vulnerability point, denoted by ip. We call the conditions

necessary for the program to “go wrong” at ip the vulner-

ability condition, denoted as c. At a high level, the tuple

< P, ip, c > completely describes exactly one vulnerability.

In this work, we are concerned with a single vulnerability

(multiple vulnerabilities are each handled independently).

An exploit for a vulnerability is one input to the program

(e.g., a network packet) which causes the program to satisfy

the vulnerability condition at the vulnerability point, thus

exploiting the vulnerability.

1 i n t buf [1 5] ;

2 i f (x < 0)

3 x := (−x) % 1 6 ;

4 e l s e

5 x := x % 1 6 ;

6 buf [x] := x ;

Entry 1 2

3T

5

F
6 Return

Figure 1. Our running example. The left side shows our example program. When x = 15 or −15, line 6

will write past the array bounds. The right side shows the corresponding control flow graph, where

each line of the program corresponds to a basic block node.

Figure 1 shows our running example, which contains

a off-by-one vulnerability. We show the vulnerability as

source code for illustrative purposes: our algorithm and

techniques are specifically designed to work on binary pro-

grams. In this example, x is the input and x = 15 or

x = −15 will result in an out-of-bounds write on line 6.

Thus, the vulnerability condition is x 6= 15 at the vulnera-

bility point is line 6.

We generate signatures for known vulnerabilities, and

take as input the description of the vulnerability and the

vulnerable program. Note how the vulnerability is origi-

nally detected is orthogonal to our problem, and addressed

by other research, which we do not duplicate here. An il-

lustrative scenario in which the vulnerability description is

automatically provided is: (1) a new vulnerability is dis-

covered, (2) an attacker releases an exploit, (3) a detec-

tor detects the new exploit, and (4) the detector furnishes

our algorithm with the vulnerability point and the detected

vulnerability condition. For example, dynamic taint anal-

ysis can provide us with the required information about

the most common types of vulnerabilities, including buffer

overflows, heap overflows, format string bugs, and similar

overwrite attacks [17, 35, 44].

2.2 Automatic Vulnerability Signature
Generation from Binaries

Our job, given the vulnerability condition c, vulnerabil-

ity point ip, and the program binary P , is to generate a vul-

nerability signature S<P,c> that will recognize subsequent

exploits of the vulnerability (without needing to run the pro-

gram itself). Abstractly, a signature is a Boolean function

S<P,c> which takes as input any input x from the program

input domain I, and returns either EXPLOIT or SAFE, i.e.,

generate: S<P,c> : I → {EXPLOIT, SAFE}. Common sig-

nature types include regular expressions [8, 14, 21, 36, 39,

46,47], protocol state machines [49], and Boolean functions

which are evaluated on program inputs [12, 15]. In our set-

ting, we focus primarily on generating signatures which are

Boolean functions (also called symbolic signatures), though

in Section 3.3.3 we explain how a Boolean function signa-

ture can be converted to a regular expression signature.

In this paper, we investigate how to generate sound vul-

nerability signature by binary program analysis. Binary

program analysis is very challenging. First, binary pro-

grams are unstructured, while most techniques are designed

to work for structured programs. Second, binary programs

are often much larger than the corresponding source code

since a single source code construct can stand for very com-

plicated operations. Third, because our system deals with

x86 binaries, it is challenging to accurately model the com-

plexity of x86 instruction set.

However, the benefits of generating a signature from the

binary are quite compelling: we can automatically generate

signatures for vulnerable programs even when the source

code is not available, and the generated signature is com-

pletely faithful to the program. Techniques based upon

source code offer neither advantage, especially since the

source code may not reflect the underlying vulnerability in

the binary [5].

2.3 The High-Level Idea

Our approach calculates the weakest precondition on in-

puts to a binary program to exploit the vulnerability <
P, ip, c >. At a high level, we think of a vulnerability in

terms of the vulnerability point ip and the vulnerability con-

dition c. Any possible exploit must reach the vulnerability

point ip and satisfy the vulnerability condition c. An exploit

must also execute some instruction ip−1 just before ip. The

weakest precondition calculates a formula which is true iff

executing ip−1 will lead to execute ip and satisfy c. In this

manner we recursively calculate a signature. This process

is iterated until we reach the initial point of input(s) to the

program. The net result of this process is depicted in Fig-

ure 2. Inductively, the generated formula will be true for

inputs which exploit the given vulnerability.

More formally, let P : I → I be a program from

states ∈ I to states ∈ O (e.g., a program with n variables

is an n-dimensional state-space I). The weakest precon-

dition wp(P, c) for a program P with respect to the vul-

ExploitedExploits

Domain of program inputs Program termination states

wp(P,c)

Execute P

Figure 2. For a program P and a vulnerability c, the weakest precondition wp(P, c) describes the

inputs which, upon execution, result in an exploited state.

nerability condition c is a Boolean formula over the initial

state which is true for all inputs which cause P to termi-

nate in a final state satisfying c. Thus, if P is a sequence

of instructions {i0; i1; ..., ip}, where ip is our vulnerabil-

ity point, inductively we calculate wp(ip, c) = cp−1, then

wp(ip−1, cp−1) = cp−2, and so on. The resulting formula

S<P,c> = wp(P, c) is a predicate such that ∀x ∈ I :
S<P,c>(x) = EXPLOIT if P (x) would exploit the vulner-

ability.

Creating a compact representation for multiple paths an

exploit may take is key for creating a succinct vulnerabil-

ity signature. For instance, in a loop free program with b
branches there are O(2b) program paths. Previous approach

based on forward symbolic execution that calculates a sep-

arate formula for each path results in an exponential size

formula. For example, suppose our signature is calculated

over a loop-free program with n instructions and b condi-

tional jumps. Then using forward symbolic execution will

generate 2b signatures—one for each branch—and the total

signature f = f1 ∧ f2 ∧ ...f2b will be O(2b) in size [12].

However, this is not a lower bound. Intuitively, the pro-

gram itself is almost a signature since it accepts all exploits

to ip—it only fails because it does not output EXPLOIT at

the vulnerability point. Thus, signatures that are not much

larger than the program itself seem possible.

We show that using the weakest precondition, we can

in fact generate a vulnerability signature at most O(n2) in

size under the same set of assumptions, regardless of the

number of (acyclic) branches, while previous work was ex-

ponential (Section 3.3). Further, the time to create this sig-

nature is polynomial in the size of the program, while previ-

ous approaches are exponential. We achieve this efficiency

because the weakest precondition summarizes multiple pro-

gram paths to the vulnerability point. In comparison, pre-

vious work is based on forward symbolic execution which

essentially forks on each conditional jump separately, hence

produces exponential growth in signature size and time by

considering each path independently. By using weakest pre-

condition, we need not consider each path independently:

we can efficiently calculate a signature based on the num-

ber of statements.

However, it is not straightforward to apply the weakest

precondition to the problem of generating vulnerability sig-

natures. Weakest precondition calculations are usually per-

formed over a structured programming language, while we

are working with unstructured binaries. We show how to

overcome this challenge by using Guarded Command Lan-

guage (GCL) (Section 3.2). To the best of our knowledge,

we are the first to perform a weakest precondition calcula-

tion over real binary programs.

The main advantages of our approach are: (a) we can

more efficiently reason about the many paths that lead to

the vulnerability point, and (b) the generated signatures are

more concise. We do not require any additional assump-

tion, such as source code, and we do not lose any accuracy.

Therefore, our work is the first practical approach to creat-

ing sound vulnerability signatures which cover many differ-

ent paths to a vulnerability.

2.4 Automatically Generating Signatures
for Programs with Loops

Because automatic analysis of any non-trivial property

in programs with loops in undecidable [24], we consider

two cases: one for generating signatures on programs with

loops, and one generating signatures on loop-free programs.

Note previous work only considered analyzing loop-free

programs. In the loop-free case, we can always perform

completely automatic analysis. In the presence of loops, we

may need help from the user by providing loop invariants.

When completely automatic analysis is necessary, we

take as input, in addition to the program, the vulnerabil-

ity condition, and the vulnerability point, a upper bound on

the number of times to unroll loops. For example, the upper

bound may be the same as the number of times a loop is ex-

ecuted in a known exploit sample. This is the same scenario

as previously proposed for signature generation [12], and

is common for automatic bound checking [9]. Loops (and

other recursive elements) are analyzed up to the specified

number of times.

To reason about loops, our algorithm requires, in ad-

dition to the vulnerability inputs, a set of loop invariants.

Loop invariants are necessary because otherwise even the

most basic analysis, halting, is undecidable. Note that al-

though we take loop invariants as input, in many cases they

can also automatically be generated (Section 3.4). One ad-

vantage of our weakest precondition approach is the seman-

tics are well-defined even for programs with loops.

3 Calculating a Vulnerability Signature Us-

ing the Weakest Preconditions

In this section we formalize the process of computing a

vulnerability signature via the weakest precondition. We

take as input a binary program P , the vulnerability con-

dition c, the vulnerability point ip, calculate the weakest

precondition S<P,c> = wp(P, c) with respect to the vul-

nerability point, and output S<P,c> as our signature. Our

approach has three steps:

1. Pre-process the program. We convert a binary pro-

gram P to an intermediate representation (IR), and cre-

ate the control flow graph for the program. In this step,

we also create a control flow graph G of P , and then

compute a chop G′ of G which contains only the part

of the program relevant to the vulnerability. If com-

pletely automatic analysis is desired, we also unroll

loops in G′. The output of this step is the (chopped

and possibly unrolled) control flow graph G′.

2. Convert to GCL. This step takes as input the CFG

G′ and the program P and outputs an equivalent pro-

gram Pg in the guarded command language (GCL).

This step is crucial to our approach because the weak-

est precondition is designed for structured programs

(i.e., source code), while our work deals with binaries,

which are unstructured. By converting a binary into

GCL form, we abstract the program into a structured

form on which we can then apply analysis and com-

pute the weakest precondition.

3. Compute the weakest precondition. We compute the

weakest precondition S<P,c> = wp(Pg, c) over the

GCL in a syntax directed manner. S<P,c> is our sig-

nature, which can further be refined. For example, we

can remove any non-input variables (Section 3.2) or

convert it to a regular expression (Section 3.3.3).

The weakest precondition S<P,c> is our signature be-

cause S<P,c>(x) is true iff P (x) would exploit the vulner-

ability. In this section, we detail the above steps.

3.1 Step 1: Pre-processing the Program

Translating x86 to the IR. To compute a vulnerability

signature on an x86 program binary, we must know how

to accurately model any instruction that could be executed.

This is a challenging task: x86 is a CISC instruction set with

hundreds of instructions, many with implicit side-effects

(e.g., overflow in addition sets to eflags register), an

instruction may behave differently with different operands

(e.g., shifting by 0 does not set the eflags register, while

any other value will), and there are even single instruction

loops (e.g., the rep family of instructions).

Therefore, our first step is to translate x86 instructions

into a form amenable to analysis. In our approach, we con-

vert x86 instructions into the RISC-like IR shown in Ta-

ble 1. System calls can be translated as assignments to spe-

cial variables, e.g., the read call creates new variables for

new inputs (see Section 3.3.2 for further discussion). A vul-

nerability signature calculated over the IR language is se-

mantically equivalent to a signature over the original x86

instructions.

Our IR has assignments (r := v), binary and unary op-

erations (r := r12bv and r := 2uv where 2b and 2u are

binary and unary operators), loading a value from memory

into a register (r1 = ∗(r2)), storing a value (∗r1 := r2), di-

rect jumps (jmp ℓ) to a known target label (label ℓ), indirect

jumps to a computed value stored in a register (ijmp r), and

conditional jumps (if r then jmp ℓ1 else jmp ℓ2).

Creating a control flow graph and compute the chop.

We next build a control flow graph (CFG) over the IR form

of the program. In this step, we also compute a chop of

the graph which includes only those program paths which

may reach the vulnerability point ip. When completely au-

tomatic analysis is desired, we also unroll loops as neces-

sary.

A CFG is a directed graph G = (V, E) where vi ∈ V
represents an instruction i, and has edge (vi1 , vi2) ∈ E if

control can pass from instruction i1 to i2. There is a dis-

tinguish node called ventry which the unique entry point for

the program, and vexit which represents the program termi-

nating. Control flow is straight-forward for all statements

except indirect jumps, where the CFG has an edge for any

potential successor blocks. The possible targets of an indi-

rect jump can be found with assembly register value analy-

sis [4, 11].

Because in the remaining steps we will reason about all

program statements in the output graph from this step, we

wish the graph to reflect only those paths which can reach

the vulnerability point. Let vp be the vertex for our vulner-

ability point ip. We compute the chop of the graph from

ventry to vp. The chop is computed by (a) adding an edge

(vp, ventry) to the graph; (b) computing the strongly con-

nected component; (c) creating an output graph G′ which

contains only those nodes in the same component as ip.

Unrolling Loops. As previously mentioned, automatic

reasoning about any non-trivial property in a program with

loops is undecidable [24]. Therefore, in the worst case,

completely automatic analysis requires us to remove any

loops from the graph by unrolling them, i.e., duplicating the

loop body a fixed number of times. In some cases we can

infer the number of times to an unroll a loop by static analy-

sis, e.g., by analyzing loop induction variables [3,31]. If we

cannot automatically infer the maximum number of times

a loop may be executed, we may ask the user to provide

Instructions i ::= ∗(r1) := r2|r1 := ∗(r2)|r := v|r := r12bv

|r := 2uv | label li | nop |halt | fail

| jmp ℓ | ijmp r | if r jmp ℓ1 else jmp ℓ2

Operations 2b ::= +,−, ∗, /,≪,≫, &, |,⊕, ==, ! =, <,≤ (Binary operations)

2u ::= ¬, ! (unary operations)

Operands v ::= n (an integer literal) | r (a register) | ℓ (a label)

Table 1. Our RISC-like IR. We convert all x86 assembly instructions into this IR.

s ::= lval := e | assert e | assume e | s; s | s 2 s | skip

Table 2. The guarded command language

(GCL) fragment we use.

a upper bounds on the number of times each loop can be

executed. Unrolling is generally well accepted technique,

especially by the model checking community [9]. We dis-

cuss scenarios in which loops do not need to be unrolled

further in Section 3.4.
For example, if the user specifies the loop while

(a[i] != NULL){i++;} should be be unrolled 1 time,
we generate:

if(a[i] != NULL){

i++;

if(a[i] != NULL) assert(false); }

The assert(false) is necessary so that we do not mis-

takenly reason about additional iterations in the remaining

steps.

3.2 Step 2: Calculating the GCL

The weakest precondition is calculated over the guarded

command language (GCL), shown in Table 2 (we show only

the fragment relevant to our work). Although this language

looks simple, it powerful enough to reason about general

purpose programming languages [18, 19]. A program writ-

ten in GCL may either terminate normally, or it may “go

wrong”. Statements s in the language are assignments of

expressions to l-values (e.g., registers and memory cells),

“assert e” which checks that expression e is true and fails

if it is false, “assume e” which adds an assumption that e
is true, sequences of statements, and the choice statement

“s12s2” which executes either s1 or s2. A program written

in GCL terminates normally iff none of the assertions fail.

Because GCL is structural, it is straight-forward to trans-

late a structural language into GCL. For example, the pro-

gram if e then A else B is translated into the GCL

as “(assume e; A)2(assume ¬ e; B)”. However, the binary

programs we analyze are not structural because of jumps.

Therefore, previous work on translating a program to GCL

does not apply in our work with binary programs.

In order to work on binaries, we develop an algorithm

which converts an unstructured binary program into the

GCL. Our algorithm is a type of structural analysis where

we create an appropriate GCL based upon the structure of

the CFG. The intuition behind our approach is that although

a program may use jumps, their behavior can still be repli-

cated with the GCL. For example, a diamond-shaped sub-

graph in a CFG, such as with nodes 2,3,5,and 6 in Fig-

ure 1, represent an if-then-else choice between two

branches, and are translated into the GCL as choice state-

ments.

Algorithm 1 Algorithm to calculate a GCL in terms of the

CFG.
1: Γ: V → S //Mapping from vertex to CFG GCL

2: pred: V → V // Map vertex to predecessor set

3: for all v in topological order do

4: if |pred(v)| = 1 then

5: Γ[v] := Γ(pred(v));v

6: else

7: s := pi ∈ pred(v): Γ(pi)
8: for all pi ∈ pred(v) do

9: (prefix, vb, s1, s2) := split prefix(Γ(pi), s)

10: s := prefix; (assume vb; s1) 2 (assume ¬vb;

s2);

11: end for

12: Γ[v] := s;v

13: end if

14: end for

For now, we assume the graph is acyclic. We discuss

cyclic graphs in Section 3.4. Algorithm 1 works by con-

structing a GCL program in terms of the CFG vertices. A

post-processing phase converts the vertex numbers in the

GCL program to actual GCL statements. We maintain two

maps: Γ, which maps a vertex to the GCL statement up to

that point in the program, and pred, which maps a vertex

to its predecessor set. Γ is initialized so that each vertex v
maps to GCL statement corresponding to executing v.

Our structural analysis distinguishes whether a vertex v

has one or many predecessors. If there is only one prede-

cessor vi for a vertex v, then the instructions for these two

vertices must be a sequence, thus we generate the GCL pro-

gram vi; v, as shown on line 5.

If there is more than one predecessor, say vi and vj ,

then because the graph is rooted at ventry, there must be a

least common predecessor vb to both vi and vj . The func-

tion split prefix takes in two GCL programs, and out-

puts the largest common prefix prefix, the least common

predecessor vb, and the remaining statements as s1 and s2

for vi and vj , respectively. The least common predeces-

sor reflects a choice between two branches: one which goes

through vi and one which goes through vj . This intuition is

reflected in lines 7-12. For a vertex v, we first set our cur-

rent GCL statement s to be one path to v on line 7. Then, for

each predecessor, we calculate the greatest common path

prefix prefix, the choice point vb and the two GCL pro-

gram for the two paths after the choice point s1 and s2.

For the CFG of our running example (Figure 1), our al-

gorithm would generate the GCL program:

1; (assume 2; 3;) 2 (assume ¬ 2; 5;); 6;

An extended example of this algorithm is provided in the

Appendix A.2.

The output of Algorithm 1 is a GCL program Pg where

each atomic statement is a CFG vertex ID. The GCL pro-

gram Pg corresponding to the vulnerability point will be

that for all paths from entry to vp. We then post-process

Pg GCL program, replacing statement ID’s with the corre-

sponding instruction, and output the results. The final GCL

program Pg produced for our running example is:

skip; (assume x < 0; x := (−x)%16)2

(assume ¬(x < 0); x := x%16); buf[x] := x;

Analysis. The running time of the algorithm includes a

topological sort, which can be done in O(|V | + |E|). Be-

cause each node is visited at most once, the running time is

linear in the size of the graph.

To see correctness, note the important case to consider is

when we split a common prefix and generate a choice (2)

statement. This happens when two nodes ij and ik have

a common prefix i1, ..., ib, then all paths from the entry of

the CFG to ij and ik most go through ib, i.e., ib dominates

ij and ik. Because ib is the least common predecessor, ib
must be a branch point. Therefore, we create the GCL pro-

gram i1, ..., ib−1; (assume ib; ij2assume ¬ib; ik), indicat-

ing that any path must first go through ib, then there is a

choice on whether the follow the path to ij or ik. Once we

find such a structure, we can collapse it into the mentioned

GCL program, and iterate. Eventually, all nodes (reachable

from the entry) will be collapsed.

wp(x := e, Q) : Q[e/x]
WP-ASSIGN

wp(assume E, Q) : E ⇒ Q
WP-ASSUME

wp(assert E, Q) : E ∧ Q
WP-ASSERT

wp(s2, Q) : Q1 wp(s1, Q1) : Q2

wp(s1; s2, Q) : Q2

WP-SEQ

wp(s1, Q) : Q1 wp(s2, Q) : Q2

wp(s12s2, Q) : Q1 ∧ Q2

WP-CHOICE

Table 3. Algorithm for calculating the weakest

pre-condition.

3.3 Generating Vulnerability Signatures
with the Weakest Precondition

In this section, we first describe how to efficiently calcu-

late the weakest precondition. We then describe its applica-

tion to vulnerability signature generation.

3.3.1 Calculating the Weakest Precondition

The weakest precondition wp(P, c) is a Boolean function

which is true iff for all assignments of values to variables

x in which P (x) halts in a state satisfying c. The weakest

precondition is calculated in a syntax-directed manner from

the guarded command language (GCL). Dijkstra’s proposed

the rules shown in Table 3 for calculating the weakest pre-

condition wp(P, Q). In this section, we use Q to refer to

any Boolean predicate, and c to refer specifically to the vul-

nerability condition predicate. These rules can be read as an

algorithm where the “:” separates the inputs from the out-

puts. For example, given wp(s12s2, Q), we first calculate

wp(s1, Q) to generate Q1, then compute wp(s2, Q) to gen-

erate Q2, and the resulting predicate is Q1 ∧ Q2. We give

a small further example in Appendix A.1. However, calcu-

lation done using Dijkstra’s algorithm may result in a for-

mula exponential in the size of the program. Flanagan and

Saxe noticed that there are two reasons for the exponential

explosion: assignment statements and duplicating the post-

condition on both premises of choice statement [23]. We

explain the source of the explosion, propose solutions, and

prove the correctness of our approach.

Blowup from assignments To see why assignment state-

ments can cause exponential explosion, consider calculation

wp(b = a + a; c = b + b; d = c + c, d < 5). Using Dijk-

stra’s semantics shown in Table 3, we generate the formula

a + a + a + a + a + a < 5, i.e., the wp calculation gener-

ates an exponential number of a’s. Flanagan and Saxe pro-

pose a method termed passification to remedy this problem

where the program is transformed into a semantically equiv-

alent form in which all program variables are assigned only

once. This condition is easily met by (acyclic) programs

by converting the program into SSA form 1. Assignments

are then replaced with assumes, e.g., x := e is replaced

with the logically equivalent “assume x = e”. Note that this

transformation is correct because each variable in the pro-

gram is assigned once, therefore we can simply bind the

variable “x” to the expression “e” throughout the program.

A program that has undergone the above transformation is

called passified. Our previous calculation on the passified

program would be: wp(assume b = a+a; assume c = b+
b; assume d = c + c, d < 5), and the weakest precondition

is: b ⇒ (a + a ⇒ c ⇒ (b + b ⇒ (d ⇒ c + c ⇒ d < 5))).
Passification will increase the size of the program quadrati-

cally, but in most cases, only linearly [23, 29].

Unnecessary duplication of the post-condition The

other source of exponential formula growth is with the WP-

CHOICE rule. This rule duplicates the post-condition on

each branch, thus the formula size potentially doubles at

each branch point. This is very similar to what causes the

problem with forward symbolic execution: when a branch

is encountered the formula is “forked” and two identical

copies continue executing each branch [12]. Leino was the

first to realize that the problem could be averted if we calcu-

late slightly differently using the weakest liberal precondi-

tion (wlp) [23, 29]. The weakest liberal precondition is the

weakest condition which guarantees that the post-condition

is met if the program terminates, i.e., is the same as the

weakest precondition, except the program may not termi-

nate. The inference rules for the weakest liberal precon-

dition are the same as for the weakest precondition except

for:

wlp(assert E, Q) : E ⇒ Q
WLP-ASSERT

The relationship between the weakest precondition and

weakest liberal precondition is:

wp(P, Q) ⇔ wp(P, true) ∧ wlp(P, Q) (1)

Equation 1 (proposed by Dijkstra in [19]) can be read as

is that the weakest precondition for a program to terminate

in a state satisfying Q (wp(P, Q)) is the same as for if the

program terminates it satisfies Q (the wlp(P, Q) term) and

it terminates (the wp(P, true) term).

An essential insight is that passified programs do not

change state, i.e., since assignments are removed everything

1A dynamic static assignment (DSA) form is required for programs

with loops, which is equivalent to SSA for loop-free programs.

is an expression. Therefore, if a passified program starts in

a state satisfying Q and nothing goes wrong (wlp(P, Q ≡
false)), it will end in a state satisfying Q. This is expressed

in the following identity which is true for all assignment

free programs:

wlp(P, Q) ⇔ wlp(P, false) ∨ Q (2)

The reason this identity is important is that the post-

condition Q does not appear in the weakest precondi-

tion calculation, thus is not duplicated along branches

in WP-CHOICE. If during sub-derivation we get a new

post-condition for WP-CHOICE that is not a constant (i.e.,

through WP-SEQ), we just apply the transformation again.

As a result, the signature size is at most twice the size of

the passified program. Because the passified program is at

most quadratic in size, the total signature size with be at

most O(n2).
Putting together equation 1 and equation 2, we get:

wp(P, Q) ⇔ wp(P, true) ∧ (wlp(P, false) ∨ Q) (3)

Correctness Proof. The argument above holds for

assignment-free, acyclic programs, assuming that Equa-

tion 2 holds (since Equation 1 follows from the definition

of wp and wlp [19]). We prove the following generalization

where we can swap the position of any two predicate Qa

and Qb:

Lemma 3.1 For all assignment-free acyclic programs P ,

∀Qa, Qb|wlp(P, Qa) ∨ Qb : Q ⇔ wlp(P, Qb) ∨ Qa : Q.

Equation 2 is a specific case of Lemma 3.1 with Q = Qa

and Qb = false, i.e., wlp(P, Q) ≡ wlp(P, Q) ∨ false ⇔
wlp(P, false) ∨ Q.

Proof: We provide the proof for the forward direction. The

backward direction is similar. Our proof is by induction on

the derivation of D = wlp(P, Qa) ∨ Qb : Q. One slight

problem is our derivation rules for wlp do not provide for

logical connectives, e.g., the ∨Qb. We show the augmented

rules here.

Case: D =
wlp(assume E, Qa) ∨ Qb : (E ⇒ Qa) ∨ Qb

where P = assume E and Q = (E ⇒ Qa) ∨ Qb . We

show that wlp(assume E, Qb) ∨ Qa : Q.

(E ⇒ Qa) ∨ Qb given

wlp(assume E, Qb) ∨ Qa : (E ⇒ Qb) ∨ Qa by rule

(E ⇒ Qa) ∨ Qb ⇔ (E ⇒ Qb) ∨ Qa by truth table.

Case: D =
wlp(assert E, Qa) ∨ Qb : (E ⇒ Qa) ∨ Qb

.

Symmetric to above.

Case: D =
wlp(s1, Qa) ∨ Qb : Q1 wlp(s2, Qa) ∨ Qb : Q2

wlp(s12s2, Qa) ∨ Qb : Q1 ∧ Q2

where P = s12s2 and Q = Q1 ∧ Q2. We show

wlp(s12s2, Qb) ∨ Qa : Q1 ∧ Q2.

wlp(s1, Qb) ∨ Qa : Q1 by inductive hypothesis (IH).

wlp(s2, Qb) ∨ Qa : Q2 by IH.

wlp(s12s2, Qb) ∨ Qa : Q1 ∧ Q2 by rule.

Case: D =
wlp(s1, Qa) ∨ Qb : Q1 wlp(s2, Q1) : Q

wlp(s1; s2, Qa) ∨ Qb : Q
where P = s1; s2. We show wlp(s1; s2, Qa)∨Qb : Q

wlp(s2, Qa) ∨ Qb : Q1 (by IH)

wlp(s1, Q1) : Q given

wlp(s1; s2, Qa) ∨ Qb : Q by rule

2

This proof shows that essentially our desired property

naturally follows directly from the algorithm itself, only ap-

pealing to logical equivalence once for assume and once for

assert.

3.3.2 Generating Vulnerability Signatures

Our calculation for the weakest precondition takes in the

vulnerability condition c, and the GCL version of the pro-

gram Pg from the previous step, and generates S<P,c> =
wp(Pg, c). The output signature S<P,c> is true for input x
iff P (x) would exploit the vulnerability. Our algorithm is

shown in Figure 3.

INPUT: A (chopped) program Pg and a vulnerability con-

dition c. Let V ar(P) and I(P) be the set of variables and

input variables in program Pg , respectively.

1. Compute the weakest precondition S<P,c> =
wp(Pg, c).

2. Eliminate non-input variables (V ar(P) − I(P)) from

S<P,c>. are called non-input variables.

3. If needed, convert the predicate S<P,c> to an appropri-

ate signature representation, such as a regular expres-

sion signature (Section 3.3.3).

Figure 3. Creating vulnerability signa-

tures from weakest preconditions.

We calculate wp(Pg , c) as in equation 3:

S<P,c> = wp(Pg , true) ∧ (wlp(Pg , false) ∨ c)

The total size of the vulnerability signature is at most O(n2)
(from passification) where n is the number of instructions in

Pg .

Let V ar(P) and I(P) be the set of variables and input

variables in program P , respectively. For programs where

all variables can be defined in terms of the input, wp(Pg , Q)
can be used as a signature: any input satisfying the result-

ing predicate will exploit the program. However, the weak-

est precondition is not quite a signature for programs with

non-input variables V ar(P) − I(P). One way to remove

such variables is to assign them values, say values as they

appear in an exploit sample trace. For example, configu-

ration options are often non-input variables, and thus using

the sample trace values may be an appropriate action. If we

cannot provide a value for a variable, and we cannot write

it in terms of an input variable, then we can existentially

quantify them out. Existential quantification may result in

an imprecise signature: when the signature is satisfied, there

there is some assignment of values to non-input variables

that makes the predicate true, but perhaps not the actual

values the real program would compute. In our setting, we

assume all non-input variables can be provided values, e.g.,

the same values as provided by the initial detection of the

vulnerability. As a result of the elimination step we aug-

ment S<P,c> such that free variables are all input variables.

3.3.3 Converting a Vulnerability Signature to a Regu-

lar Expression

The signature computed in the previous step can be con-

verted to a regular expression if desired. The regular ex-

pression is calculated from the signature by enumerating

satisfying inputs which would cause the signature to re-

turn EXPLOIT. Since our algorithm produces one compact

formula for the entire vulnerability, we need not enumer-

ate each path independently in order to generate a regular

expression [12].

A regular expression signature is calculated from

S<P,c> = wp(Pg , c) via the following algorithm:

1. The initial signature is the empty regular expression

Sre = ǫ
2. Ask the decision procedure for a satisfying answer to

S<P,c>, which will be a set of values x ∈ I(P)
3. Set the signature to Sre := Sre|x where | is a regular-

expression “or”

4. Set S<P,c> := S<P,c> ∧ (¬x)
5. Repeat step 1.

Note that the formulas we generate using the optimized

weakest pre-condition calculate are not only more compact,

but also easier for a decision procedure to reason about [23].

The intuition is that forward execution will duplicate the

vulnerability condition c along each path, resulting in for-

mulas of the form (path 1 ∧ c) ∨ (path 2 ∧ c). The decision

procedure will, in many cases, reason about c twice. Our

generation technique exposes the commonality in the for-

mula, e.g., (path 1 ∨ path 2) ∧ c, in which case the decision

procedure only reasons once about c. This is an additional

benefit to our approach.

3.4 Loop Invariants

Previous methods did not reason about loops, even when

loop invariants are known; instead they executed loops a

fixed number of times, which is equivalent to unrolling.

However, our approach using weakest preconditions natu-

rally extends to loops. We can add to the GCL language:

s ::= ... | do e ⇒ s od

in which we execute s repeatedly while e is true.

Our algorithm for constructing the appropriate GCL pro-

gram given a control flow graph with loops is a straight-

forward change to Algorithm 1. We identify each loop us-

ing standard techniques [3, 31], and calculate the GCL pro-

gram P for the loop body using Algorithm 1. Note that

irreducible graphs can be made reducible [3], and extend-

ing the CFG to GCL algorithm to reducible graphs is triv-

ial. We then identify the loop condition e, and create do

e ⇒ s od. Note this algorithm assumes the graph is re-

ducible; irreducible graphs can be made reducible via node-

splitting [31]. Certain types of “improper regions” in the

CFG are not amenable to our analysis [31]. However, stan-

dard algorithms are available to identify such regions. Our

analysis is still applicable to the remaining “proper” re-

gions. Further, since most binary programs are compiled

from a high level language where such odd behavior does

not exist, thus it will likely not exist at the binary level.

In order to calculate the weakest precondition of this

construct we need to identify a loop invariant [19] which,

among other things, is needed because deciding whether a

loop terminates is undecidable. Loop invariants can in some

cases be automatically generated [22, 25, 38, 45]. In some

cases, however, loop invariants may need to be supplied

manually. Once the loop invariant is supplied, we can cal-

culate the weakest precondition using standard algorithms,

which do to space we do not duplicate here.

4 Implementation and Evaluation

We have implemented a prototype system that performs

the steps described in Section 3: we disassemble the binary,

translate assembly into the IR, and calculate the weakest

precondition formula. Our implementation is written pri-

marily in C++ and OCaml, and consists of about 29,000

lines of code. About 20,000 of those lines are the translation

from x86 to the IR. Signatures are generated by converting

the WP formula into a C program that returns true iff an in-

put string satisfies the calculated weakest precondition. We

have also implemented the approach from Section 3.3.3 for

converting a WP generated formula to a regular expression.

We use CVC-Lite [7] as our decision procedure for gen-

erating regular expression signatures. We chose CVC-Lite

because it allows us to easily model bit-vector operations

and memory operations.

Prototype limitations Our implementation is a prototype

geared at understanding the trade-offs for vulnerability sig-

nature creation. As a result, we do not perform unnecessary

though potentially useful analysis. We currently do not sup-

port indirect jumps. The main problem is without additional

analysis, we must assume an indirect jump could transfer

control to any address. Others have researched resolving

possible indirect jump targets, such as the work on Control

Flow Integrity [2], value-set analysis [4], and assembly alias

analysis [11]. We need not resolve jump targets exactly: our

techniques can deal with many possible targets. We manu-

ally verify this limitation does not affect our results. We also

do not perform alias analysis. Our implementation hands

off the problem of discovering aliases to the decision proce-

dure. Providing alias analysis would make it easier to prove

formulas [11]. Finally, computing data dependencies would

result in a much more refined view of which statements are

important, and further reduce the formula size. Therefore,

the numbers provided here are an upper bound: subsequent

analysis may reduce them further.

Currently, we unroll all loops. In the future, we plan to

improve our implementation by incorporating an automated

technique to identify loop invariants, and only using loop

unrolling as the fall-back mechanism when the automated

technique fails to infer the invariants.

4.1 Evaluation

We have evaluated our system using four different vul-

nerable programs: iwconfig [20], atphttpd [41], Bind [48],

and Samba [42]. Note atphttpd and bind were part of the

evaluation suite for of [12]. Each of these programs contain

previously known buffer overflows (our approach works

equally well with other types of vulnerabilities). In our

experiments, we consider all program paths that may lead

from reading an input to the vulnerability point.

Our experiments show:

• The optimized weakest pre-condition formula results

in smaller signatures than previously proposed meth-

ods. The signature using previous methods for the

same number of paths as our wp-based approach

wrapped a 64-bit counter, while our signatures were

slightly larger than the program itself.

• Creating a signature that covers all program paths to

the vulnerability is possible.

• The source of much of the complexity is due to library

functions. Providing summary functions for library

calls significantly reduces the size of the generated sig-

natures.

4.1.1 WP vs. Forward Symbolic Execution Formula

Size

We compare the size of formulas generated via forward

symbolic execution against the ones produced using our

weakest-precondition formulation from Section 3.3. Pre-

vious work uses forward symbolic-execution to create vul-

nerability signatures [12], where multiple program paths are

the logical OR of each individual path. We use the SSA

form of the IR in all experiments for consistency.

We first measured the formula size for all paths from

when input (e.g., the exploit) is read to the vulnerability

point. The formula size is simply a count of the number of

terms. We determine viable program paths via control flow

analysis as described in [12] where any path from the ini-

tial read to the vulnerability point is considered. Note that

we do not count the size of the desired post-condition in the

formula, which only adds a constant term in both cases.

Table 4 shows the size of the generated signatures for

both methods for 4 programs, with and without sum-

mary functions for glibc. Our experiments show that the

size of the weakest precondition formula is only slightly

larger than the number of IR statements, while the for-

ward symbolic-execution signatures were often too big for

a 264-bit counter. The average signature size using weakest

pre-condition is about 16% larger than the program with-

out summaries and 15% larger than the program with sum-

maries (i.e., not counting glibc). The forward symbolic exe-

cution signature with summaries is about 3.13× 1011 times

larger than the program, while unmeasurable without sum-

maries.

Glibc increases the complexity of formulas. We inves-

tigated where the complexity and size of the resulting for-

mula comes from, and found (to our surprise) it was almost

completely due to glibc. This phenomena has not been ob-

served in previous work, most likely because only single

program paths were considered (e.g., in [12]. This exper-

iment indicates that our WP-based approach allowed us to

learn something new about vulnerability signatures.

Table 5 shows sizes of some of the larger glibc func-

tions. The problem is glibc functions have deep callgraphs.

For instance, vsprintf calls dozens of functions, many

of which in turn call malloc, which surprisingly calls

vsprintf recursively. This experiment indicates that pro-

viding summary functions, even for only a few glibc func-

tions, can significantly reduce the total signature size.

4.1.2 Final Generated Signature Size

Our tool automatically converts the final WP formula into C

code, which can then be compiled and evaluated on inputs.

We tested our tool on atphttpd, and the tool generated about

4,000 lines of C code for the corresponding WP formulas.

The compiled signature takes in an input string, and returns

either 1 for exploit, or 0 for safe.

5 Related Work

Brumley et al. [12] were the first to propose techniques

for automatically create vulnerability signatures for soft-

ware. They broke down the problem of signature creation

into two dimensions: the amount of code covered by the

signature, and how the signature is represented. We focus

on the problem of how to efficiently cover many vulnerable

program paths.

Forward Symbolic Execution. Our approach is likely

applicable to other security scenarios which use forward

symbolic execution to reason about programs. The EXE

project finds security errors deep in programs through

mixed forward and symbolic execution [1, 13] of source

code. In their project, they instrument the source code such

that the symbolic formulas are built up as the code executes.

Brumley et al uses mixed execution of binaries to automat-

ically detecting trigger-based behavior such as time-bombs

in software [10]. Kruegel uses symbolic execution to au-

tomate mimicry attacks [28]. His approach iteratively con-

siders each possible path for a mimicry attack. Since each

formula f generated represents an execution down one code

path π, it corresponds to the formula wp(π, true). There-

fore, our technique is applicable and a) may reduce the size

of the formulas generated b) make it easier for decision pro-

cedures to reason about the formula in each of these set-

tings.

Weakest precondition Dijkstra extensively explored

weakest preconditions for formal program verification us-

ing the guarded command language [19]. (The guards that

gave the language its name have been replaced by assume

statements.) Flanagan and Saxe were the first to derive

techniques for reducing the resulting formula from expo-

nential to quadratic size [23]. They use two auxiliary func-

tions “N.S and “W.S”. Leino was the first to spotlight it was

the weakest liberal precondition property that made their

techniques work [29], eliminating the need for “N.S” and

“W.S”. Leino proved equation 3 using a logic-based argu-

ment. However, we believe our inductive proof is of value

Program No Summaries glibc summaries

Stmts WP Forward Exec. # Stmts WP Forward Exec.

atphttpd 4.16 × 1011 4.32 × 1011 5.75 × 1018 15834 16316 96658

bind 2.91 × 106 3.06 × 106 3.27 × 1016 182196 191220 5.27 × 1013

iwconfig 1.97 × 1014 2.13 × 1014 > 264 45634 46735 7.19 × 1013

samba 2.78 × 107 3.00 × 107 > 264 2.40 × 107 2.72 × 107 7.72 × 1018

Table 4. Symbolic signature size for full path converge using weakest preconditions and forward
symbolic execution as in [12]. We consider both with and without summary functions for common

glibc functions.

Function # Stmts WP Forward Exec.

gethostbyname 7.54 × 1013 8.17 × 1013 6.62 × 1018

perror 5.27 × 1012 5.71 × 1012 1.59 × 1018

realloc 1.69 × 1010 1.83 × 1010 4.04 × 1018

strerror 1.32 × 1012 1.43 × 1012 5.37 × 1018

Table 5. Measurements for how much complexity various glibc functions add to the overall signature.

since it closely follows the natural recursive nature of a WP

calculation.

Although our primary interest is to generate sound vul-

nerability signatures, our techniques can be applied to en-

able classical Hoare-style program verification of binary

programs. Others have also explored calculating weakest

preconditions on assembly programs. Previous approaches

for creating weakest preconditions on assembly programs

have tried introducing auxiliary terms [6], explicitly model

the control flow counter [37]. Our approach is much more

straight-forward: we perform structural analysis to trans-

form the “unstructuredness” of the assembly program into

the corresponding form of a structured program. The ad-

vantage of our approach is that we do not need to invent

new machinery in order to reason about binary programs:

the structural analysis reduces reasoning about unstructured

programs to the structured case. Our analysis should not fail

for acyclic programs, however certain cyclic programs may

cause problem. Note to the best of our knowledge previous

work also considered only acyclic programs. To the best

of our knowledge, our work on sound application dialog

replay [32] was the first to compute the WP on binary pro-

grams. However, the algorithm implemented in that work

was exponential; our work here would bring the formula

sizes down in that work to quadratic.

6 Conclusion

We have shown how to formulate the problem of auto-

matically creating a vulnerability signature from a program

binary by using weakest preconditions. Our approach re-

quired us to develop new algorithms to adapt weakest pre-

conditions to binary programs, which may be of indepen-

dent interest. The result of our approach is we can reduce

the size of a vulnerability signatures from exponential to

quadratic in the size of the (acyclic) program, and we elimi-

nate the need to consider each of the exponential paths sep-

arately. We also ran experiments using our analysis on real

binaries. Our measurements indicate the signatures are or-

ders of magnitude smaller than previous approaches. Thus,

our methods are the first practical approach for creating a

sound vulnerability signature over multiple program paths.

7 Acknowledgments

The authors thank Ivan Jager, James Newsome, Vyas

Sekar, and the anonymous reviewers for their many helpful

comments and suggestions while preparing this paper. This

material is based upon work partially supported through the

U.S. Army Research Office under the Cyber-TA Research

Grant No. W911NF-06-1-0316, the International Technol-

ogy Alliance, the Department of Energy under grant W-

7405-ENG-36, and the National Science Foundation under

grant numbers CCF-0524051, 0311808, 0433540, 0448452,

and 067511. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the fund-

ing agencies.

References

[1] Automatically generating malicious disks using symbolic

execution. In IEEE Symposium on Security and Privacy,

2006.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

flow integrity. In Proc. of the ACM Conference on Computer

and Communication Security, 2005.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley Publishing Com-

pany, 1986.

[4] G. Balakrishnan and T. Reps. Analyzing memory accesses

in x86 executables. In Proc. Int. Conf. on Compiler Con-

struction, 2004.

[5] G. Balakrishnan, T. Reps, D. Melski, and T. Teitelbaum.

Wysinwyx: What you see is not what you execute. In Proc.

IFIP Working Conference on Verified Software: Theories,

Tools, Experiments, 2005.

[6] M. Barnett and K. R. M. Leino. Weakest-precondition of

unstructured programs. In PASTE, 2005.

[7] C. Barrett and S. Berezin. CVC Lite: A new implemen-

tation of the cooperating validity checker. In R. Alur and

D. A. Peled, editors, CAV, Lecture Notes in Computer Sci-

ence. Springer, 2004.

[8] S. P. Berry. Shoki intrusion detection system. shoki.sf.

net.

[9] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and

Y. Zhu. Bounded model checking. Advances in Comput-

ers, 2003.

[10] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song,

and H. Yin. Towards automatically identifying trigger-based

behavior in malware using symbolic execution and binary

analysis. Technical Report CMU-CS-07-105, Carnegie Mel-

lon University School of Computer Science, January 2007.

[11] D. Brumley and J. Newsome. Alias analysis for assembly.

Technical Report CMU-CS-06-180, Carnegie Mellon Uni-

versity School of Computer Science, 2006.

[12] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.

Towards automatic generation of vulnerability-based signa-

tures. In Proceedings of the IEEE Symposium on Security

and Privacy, 2006.

[13] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.

EXE: automatically generating inputs of death. In Proc. 13th

ACM Conference on Computer and Communications Secu-

rity (CCS), 2006.

[14] CISCO. Cisco secure intrusion detection system director -

string matching signatures. http://www.cisco.com/

univercd/cc/td/doc/product/iaabu/csids/

csids5/csidscog/sigs.htm#wp1015446.

[15] M. Cost, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,

L. Zhang, and P. Barham. Vigilante: End-to-end contain-

ment of internet worms. In 20th ACM Symposium on Oper-

ating System Principles (SOSP 2005), 2005.

[16] J. Crandall, Z. Su, S. F. Wu, and F. Chong. On deriving un-

known vulnerabilities from zero-day polymorphic and meta-

morphic worm exploits. In Proc. 12th ACM Conference on

Computer and Communications Security (CCS), 2005.

[17] J. R. Crandall and F. Chong. Minos: Architectural support

for software security through control data integrity. In To ap-

pear in International Symposium on Microarchitecture, De-

cember 2004.

[18] D. Detlefs, K. R. M. Leino, G. Nelson, and J. Saxe. Ex-

tended static checking. Technical Report 159, Compaq Sys-

tems Research Center, December 1998.

[19] E. Dijkstra. A Discipline of Programming. Prentice Hall,

Englewood Cliffs, NJ, 1976.

[20] H. Doli. iwconfig vulnerability (wireless tools v.26).

http://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2003-0947, 2003.

[21] Enterasys. Dragon intrusion detection system. http://

www.enterasys.com/products/ids/.

[22] C. Flanagan and S. Qadeer. Predicate abstraction for

software verification. In Proceedings of the 29th ACM

SIGPLAN-SIGACT symposium on Principles of program-

ming languages (POPL). ACM Press, 2002.

[23] C. Flanagan and J. Saxe. Avoiding exponential explosion:

Generating compact verification conditions. In Proceedings

of the 28th ACM Symposium on the Principles of Program-

ming Languages (POPL), 2001.

[24] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to

automata theory, langauges, and computation. Addison-

Wesley, 2001.

[25] A. Ireland and J. Stark. the automatic discovery of loop in-

variants. In Fourth NASA Langley formal methods work-

shop, 1997.

[26] H.-A. Kim and B. Karp. Autograph: toward automated, dis-

tributed worm signature detection. In Proceedings of the

13th USENIX Security Symposium, August 2004.

[27] C. Kreibich and J. Crowcroft. Honeycomb - creating intru-

sion detection signatures using honeypots. In Proceedings of

the Second Workshop on Hot Topics in Networks (HotNets-

II), November 2003.

[28] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.

Automating mimicry attacks using static binary analysis. In

Proceedings of the 14th USENIX Security Symposium, Aug.

2005.

[29] K. R. M. Leino. Efficient weakest preconditions. Informa-

tion Processing Letters, 93(6):281–288, 2005.

[30] Z. Liang and R. Sekar. Fast and automated generation of at-

tack signatures: A basis for building self-protecting servers.

In Proc. of the 12th ACM Conference on Computer and

Communications Security (CCS), 2005.

[31] S. Muchnick. Advanced Compiler Design and Implementa-

tion. Academic Press, 1997.

[32] J. Newsome, D. Brumley, J. Franklin, and D. Song. Re-

player: Automatic protocol replay by binary analysis. In

Proceedings of the 13th ACM Conference on Computer and

and Communications Security (CCS), Oct. 2006.

[33] J. Newsome, B. Karp, and D. Song. Polygraph: Automati-

cally generating signatures for polymorphic worms. In Pro-

ceedings of the IEEE Symposium on Security and Privacy,

May 2005.

[34] J. Newsome, B. Karp, and D. Song. Paragraph: Thwart-

ing signature learning by training maliciously. In Rapid Ad-

vances in Intrusion Detection (RAID), 2006.

[35] J. Newsome and D. Song. Dynamic taint analysis for au-

tomatic detection, analysis, and signature generation of ex-

ploits on commodity software. In Proceedings of the 12th

Annual Network and Distributed System Security Sympo-

sium (NDSS), February 2005.

[36] NFR. Network flight recorder intrusion detection system.

http://www.nfr.com.

[37] T. Norvell. In Machine code programs are predicates too,

1994.

[38] L. I. on Demand. K rustan leino and francesco logozzo.

In The Third Asian Symposium on Programming Languages

and Systems, 2005.

[39] V. Paxson. Bro: A system for detecting network intruders in

real-time. computer networks, 31, December 1999.

[40] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Mis-

leading worm signature generators using deliberate noise in-

jection. In IEEE Symposium on Security and Privacy, 2006.

[41] r-code. ATPhttpd exploit. http://www.cotse.

com/mailing-lists/todays/att-0003/

01-atphttp0x06.c.

[42] J. Rafail. Samba contains buffer overflow in smb/cifs packet

fragment reassembly code. http://www.kb.cert.

org/vuls/id/298233, 2003.

[43] S. Singh, C. Estan, G. Varghese, and S. Savage. Au-

tomated worm fingerprinting. In Proceedings of the 6th

ACM/USENIX Symposium on Operating System Design and

Implementation (OSDI), Dec. 2004.

[44] G. E. Suh, J. Lee, and S. Devadas. Secure program execution

via dynamic information flow tracking. In Proceedings of

ASPLOS, 2004.

[45] N. Suzuki and K. Ishihata. Implementation of an array

bound checker. In Proceedings of the 4th ACM SIGACT-

SIGPLAN symposium on Principles of programming lan-

guages (POPL). ACM Press, 1977.

[46] K. Takeda. Pakemon intrusion detection sys-

tem. http://www.inas.mag.keio.ac.jp/

ids/pakemon/index.html. referenced by

http://www.whitehats.com/ids/.

[47] The Snort Project. Snort, the open-source network intrusion

detection system. http://www.snort.org/.

[48] US-CERT. Vulnerability note vu#196945 - isc bind 8 con-

tains buffer overflow in transaction signature (tsig) han-

dling code. http://www.kb.cert.org/vuls/id/

196945.

[49] H. J. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:

Vulnerability-driven network filters for preventing known

vulnerability exploits. In Proceedings of the 2004 ACM SIG-

COMM Conference, August 2004.

[50] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automatic

diagnosis and response to memory corruption vulnerabili-

ties. In Proc. of the 12th ACM Conference on Computer and

Communication Security (CCS), 2005.

A Additional Figures

We provide a few more illustrative examples in this ap-

pendix.

A.1 Small WP calculation

We give here a sample derivation using the weakest pre-

condition rules from Table 2. Given the program:

assume e; x := y2assume e; x := z (4)

We would passified the program, and calculate the weak-

est precondition with respect wlp(P, true) ∨ Q as shown in

Figure 4.

A.2 Extended Example of CFG to GCL

Figure 5 shows an extended example of how Algorithm 1

calculates the GCL over vertices in a graph. Our struc-

tural analysis algorithm iteratively considers each node in

topological order, essentially collapsing nodes as they are

processed. Note confluence points indicate a choice in the

graph, at which point the GCL program builds an appropri-

ate choice statement.

wlp(assume x =y, true) : (x = y) ⇒ true wlp(assume e, (x = y) ⇒ true) : e ⇒ ((x = y) ⇒ true)

wlp(assume e; assume x = y; , true) : e ⇒ ((x = y) ⇒ true)

...

wlp(assume ¬e; assume x = z; , true) : Q1

wlp(assume e; assume x = y; 2assume ¬e; assume x = z; , true) ∨ Q : (e ⇒ ((x = y) ⇒ true) ∧ Q1) ∨ Q

Figure 4. Calculate wlp(P, true) ∨ Q for passified program P = program 4

1

2

3

4

6

5

7

(a)

1;2

3

4

6

5

7

(b)

1;2;3

6

7

1;2;4

5

(c)

1;2;3

6

7

1;2;4;skip 1;2;4;5

(d)

1;2;(assume 2;3) [] (assume !2; 4; (assume 4; skip) [] (assume !4;5);6

7

(e)

1;2;(assume 2;3) [] (assume !2; 4; (assume 4; skip) [] (assume !4;5));6;7

(f)

Figure 5. An example of our algorithm for creating the GCL from a CFG. Note that at each step
we calculate the current GCL formula at each node in topological order via node collapsing. In the

transition from d to e corresponds to lines 7-12 of the algorithm, where we compute a common prefix

and update the GCL to correspond to the choice (2) between the various branches that could have
been taken to reach node 6.

