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Abstract
A major hurdle in sharing resources between organizations is heterogeneity. Therefore, in order for

two organizations to collaborate their policies have to be resolved. The process of resolving different
policies is known as policy reconciliation, which in general is an intractable problem. This paper ad-
dresses policy reconciliation in the context of security. We present a formal framework and hierarchical
representation for security policies. Our hierarchical representation exposes the structure of the policies
and leads to an efficient reconciliation algorithm. We also demonstrate that agent preferences for security
mechanisms can be readily incorporated into our framework. We have implemented our reconciliation
algorithm in a library called the Policy Reconciliation Engine or PRE. In order to test the implementa-
tion and measure the overhead of our reconciliation algorithm, we have integrated PRE into a distributed
high-throughput system called Condor.
Keywords: Security policy, reconciliation, and high-throughput distributed system.



1 Introduction

Security policy bridges the gap between static implementations and the broad and diverse security require-
ments of user communities. Security policy becomes more complicated in heterogeneous environments.
When two or more entities share a security association, they must reach agreement on a governing pol-
icy (e.g., two end-points in an IPsec session). These entities express their requirements for the association
through a security policy (called a domain policy). Areconciliation algorithmfinds a policy that is consis-
tent with all domain policies. Where a consistent policy can be found, the association is free to proceed.
Where one cannot be found, the participants must alter their requirements or abstain from participating.

In the general case, policy reconciliation is intractable [15, 23]. As a result, past investigations have
largely achieved tractability by limiting the policy representation or by using heuristic algorithms [11, 24,
26, 33]. Such approaches achieve the stated goals, but fail to efficiently capture dependencies between
different aspects of a policy. Moreover, these systems do not considerpreferential policy: it is advantageous
(and often necessary) for policy not only to specify what is legal and illegal, but to state what is desirable.

This work addresses the limitations of past work by developing a policy framework based on graphical
policy representations. We exploit the graph representation to efficiently encode the complex dependencies
inherent to contemporary policy. We formally define the representation and specify an efficient prefer-
ence and dependency-respecting reconciliation algorithm. Before introducing our formalism, we present an
overview of security provisioning policy and the intuition behind our framework in the following section.

1.1 Security Policy

The termsecurity policyhas come to mean different things to different communities. For example, access
control policy defines who has access to what and under what circumstances [4, 30, 31]. Other forms of se-
curity policy specify under what conditions credentials are accepted [6], or how a firewall is configured [3].
In its broadest definition, security policy is the specification of security relevant system behavior. This paper
addresses session-specific configuration of security services. More commonly known assecurity provi-
sioning policy, these configurations define the guarantees afforded the governed environment by explicitly
identifying the algorithms, parameters, and protocols used to implement security.

To illustrate the importance and ubiquity of security provisioning policy, consider an email client (e.g.,
Netscape Communicator, MS Outlook). A user specifies a provisioning policy every time she adds an
account. For example, the connection method (e.g., IMAP over SSL) dictates exactly the set of guarantees
you will receive in obtaining and viewing your mail. Note that the decision to not use any security service is
still a specification of policy. The policies defined for the applications and services used in an environment
prescribe the security afforded its users.

In practice, provisioning policy is more complicated than our email example would suggest. It is often
important that particular organization-wide goals are realized in the many policies implemented by the
environment. Lower level policies must be constructed such that they arecompliantwith organizational
goals [23]. Moreover, where an operation spans organizations, the policies of each organization must be
reconciledto form a coherent and reasonable policy.

We now introduce our graphical provisioning policy representation. A graphical policy is a series of
policy operations represented by cascading circular or square nodes in a singularly rooted directed acyclic
graph (DAG) (formally this structure is an and-or graph). Policy is read from the root node. Each node may
be a decision (circle) or a collection (square). A decision node requires that exactly one of the sub-graphs
emanating from the node be resolved, and a collection node requires all sub-graphs be resolved. All leaf
nodes are added to the policy. Any configuration derived from a policy respects these two simple rules.

Figure 1 shows a graphical provisioning policy for key management used in an IPsec VPN. This policy
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Figure 1: A graphical IPsec key management policy

would be specified by a user or network administrator as part of, for example, VPN setup. One reads the
example policy’s root (decision node) as:

(configure)preshare(ed keys)or IKE
The right hand side of the graph (IKE, from the root) depicts a complex series of configurations used to
specify the behavior of the Internet Key Exchange (IKE) protocol [16]. The IKE sub-policy consists of
three independent configurations. We read the top IKE (collection node) as:

(configure)DH groupand HMACand Encryption
The remainder of the policy is read as a selection of a single DH group, a hashing algorithm, and an encryp-
tion algorithm. Independent of the encryption algorithm, a mode (e.g., CBC) must be selected. Moreover,
this policy mandates the use of CBC mode.

The example policy is used at the point at which an end-point (host) is connected to the VPN. The policy
is evaluatedby identifying a subset of nodes and leaves in graph as defined by the structure of the collection
and decision nodes. The IPsec implementation uses the resulting concrete specification, called anevaluated
policy or instance, to implement the IPsec session. For example, one possible evaluated policy contains:
IKE, DH group, Group 2, HMAC, MD5, IDEA, andCBC.

Two important factors are highlighted by this example. First, this is one of many possible policies for
IPsec key management. Depending on the goals of the specified policy, the specifier may structure the policy
in a number of different ways. For example, inasmuch as it is consistent with the IPsec implementation, the
policy can allow other encryption modes (e.g., ECB) by adding an additional decision node.

The second factor of note is that unlike our email policy, this policy specifies arange of behaviors.
That is, the policy states that there are a set of configurations that are equally acceptable. The structure
of the graph directly mandates which sets of configurations should be considered acceptable. Having non-
prescriptive policies allow the environment to make performance and security trade-offs at run time, and is
essential to reconciling policies from different domains.

Now consider the case where there is not a single source of policy: for example, where the end-points
of the VPN lie in different administrative domains. Each domain wishes to exert control over the session as
specified through adomain policy(e.g., similar to Figure 1). Hence, the two parties must find an evaluated
policy that is consistent with the domain policies supplied by both. This is performed byreconciling the
domain policies. The session can continue only where a single governing policy can be found. If not, the
domain policies are incompatible and the end-points must alter their policies or refrain from participating in
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the session.
The study of provisioning policy is unlike other policy efforts in several ways. First and most obviously,

provisioning policy is a planning process. Traditional authorization policy systems determine whether a
particular access is legal with respect to some larger governing policy. Conversely, provisioning policy
attempts to find some configuration that is consistent with a governing provisioning policy.

Provisioning policy also embodies complex dependencies. That is, decisions about particular aspects
of the policy affect subsequent options. Figure 1 illustrates a very simple dependency: the decision to use
IKE over pre-shared keys has enormous impact on the further development of policy. The selection of IKE
leads to decisions concerning the kinds of Diffie-Hellman groups to use, what encryption algorithms are
necessary, etc. However, if pre-shared keys were selected, other configuration values (e.g., Diffie-Hellman
group) should and would not be considered.

Provisioning is also subject to preferential behavior. That is, there is a often a set of configurations that
is most desired among several choices. Again consider Figure 1. According to the policy, either group 1
or group 2 is acceptable. In practice, we have found the vast majority of IPsec configurations use group 2.
As such, we (rightly or wrongly) may decide that group 2 is best for our environment, and is thus preferred.
However, for compatibility reasons, we do not wish to preclude the use of group 1. Note that preferential
configurations are more than simple default values, but a partial ordering of the available options. The
existence of preferences is largely ignored by previous work in this area.

As we demonstrate in the following sections, reconciliation is made more complex by the introduc-
tion/appreciation of these deeper aspects of policy. While this work aspires to provide intuitive policy rep-
resentations, it must do so within the constraints of these new complex semantics. Hence, our contribution
lies not only in the representation or added semantics, but in the successful marriage of the two.

1.2 Contributions

This paper addresses the aforementioned deficiencies of existing systems by modeling dependencies and
preferences in a graphical policy framework. The main contributions of this paper are:
•Graph-based provisioning policy (exposes dependencies):We present a model that represents policies
as directed acyclic graphs (DAG). This model captures dependencies between policy components within a
schema. Hence, because policies adhere to the schema, it is impossible to define a correctly formed policy
that is not consistent with the dependencies.

•Efficient reconciliation: In general, policy reconciliation isNP -complete [23]. However, a graphical
representation of policies expose their structure and present a basis for an efficient reconciliation algorithm.
We provide an efficient reconciliation algorithm for our graphical model. Our reconciliation algorithm is
linear in the total size of the policies.

•Preferential policy: Participant preferences, such as a server’s preferences for authentication mechanisms,
can be incorporated into our model. An important problem that arises in this context, is that of resolving
multiple partial orders on the same set (intuitively, these partial orders represent preferences of different par-
ticipants). We provide an efficient algorithm to resolve multiple partial orders and extend the reconciliation
algorithm to handle preferences.

•Implementation and deployment: Based on our hierarchical framework, we have implemented a rec-
onciliation module called thePolicy Reconciliation Engineor PRE, which is available for download. We
have integrated PRE with Condor [21], a high-throughput scheduling system used to manage resources in a
complex distributed environment. We show experimentally that the cost of reconciliation is negligible.

3



2 Related Work
Other policy systems. Historically, policy systems have not addressed reconciliation. For example, trust
management systems, such as KeyNote [5], SPKI/SDSI [12, 13], Binder [10], and SD3 [18] are concerned
with compliance checking rather than reconciliation. In trust management systems, policies, called creden-
tials, are simply cryptographic proofs that express authorization delegation. The compliance checker algo-
rithm searches the available credentials for an accepting delegation chain that satisfies a specific request.
Credentials can state a set of provisioning requirements. An action is only allowed where the provisioning
of the environment matches the credential. Such approaches are useful for managing policy in a widely de-
ployed or loosely organized environments [7]. However, because credentials mandate provisioning, there is
no opportunity to perform reconciliation. Other systems simply assume a singular entity manually performs
reconciliation when issuing policy for a domain [3].

Hardness of reconciliation. While reconciliation has only recently begun to be explored, the policy com-
munity has already developed a broad characterization of the problem. Gong and Qian discovered that
reconciliation of authorization policy (in their work, called policy composition) is NP-complete [15]. Sim-
ilarly, the authors of Ismene found that reconciliation of general purpose provisioning policy is also NP-
complete [23]. Such results do not mean that progress cannot be made, but suggests a required shift in the
goals of investigation. Much of the ongoing work in reconciliation has centered on techniques that alter the
environment or restrict policy to obtain efficient reconciliation. However, our paper demonstrates that by
using a representation that exposes structure of the policies, the reconciliation problem becomes tractable
for a large class of policies.

Other reconciliation approaches. One way to address the inherent complexity of reconciliation is by
essentially “flattening” the policy representation, i.e., explicitly enumerating the various choices. For exam-
ple, the IPsec Security Policy System (SPS) [33] guarantees efficient two-party reconciliation by intersecting
fixed and independent sets of policy values. The DCCM system extends this approach to the multi-party
environments by providing aChinese menureconciliation algorithm [1, 2, 11]. Each participant chooses
values from a fixed set of policy dimensions (e.g., one from columnA, two from column,B, etc. . . ). The
policy is reconcilable where an intersection of proposals is found for each dimension. Conflicts (where no
such intersection is found) are resolved by an unspecified algorithm.

A limitation of both SPS and DCCM is that they assume that there are no dependencies between policy
values. For example, in an IPsec policy, an encryption algorithm is needed when the ESP transform is se-
lected. Therefore, to ensure that the resulting policy is enforceable, one must disallow any policy that defines
the ESP transform but no encryption algorithm. In practice, these systems define policy as an enumeration
of legal policy combinations, such as ESP-3DES-HMAC-SHA. Since only legal enumerations are available,
no dependency can be violated. However, the number of enumeration values grows exponentially in the size
of the domains, and therefore the “enumeration approach” is inherently not scalable.

Ismene policies are defined as expressions of provisioning variables [23]. The reconciliation algorithm
tries to find a satisfying truth assignment for the universe of provisioning variables. Reconciliation is cast
as an instance of satisfaction (over the conjunction of policy proposals). Efficiency is guaranteed by using
a pair-wise satisfaction algorithm on restricted policy expressions. The iterative Ismenen-policy reconcil-
iation algorithm is sound but not complete, i.e., some collections of reconcilable policies may be rejected.
Furthermore, like SPS, the Ismene reconciliation algorithm does not consider dependencies. Dependencies
are addressed in Ismene by evaluating the reconciliation result with respect to a set of “correctness rules”
using ananalysis algorithm. This approach is limited in that it occurs after the policy has been identified.1

1The authors further describe an offline analysis algorithm that determines if a policy could ever be reconciled and violate a
correctness rule. Any algorithm of this sort is shown to be intractable.
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Hence, reconciliation must be re-performed after each policy is rejected by analysis.
A central limitation of the approaches defined above is that they are not sensitive to the structure of

policy. Dependencies between different aspects of policy are either inefficiently encoded or externally eval-
uated. This is a prime motivation of the current work. Dependencies are captured through the graphi-
cal structure of the policy schema, and hence any policy resulting from reconciliation is guaranteed to be
consistent with these dependencies. Previous reconciliation algorithms also make no distinction between
reconciliation results. Since no distinction is made, every possible result is equally desirable. However,
environments often desire to specify default behavior and allow others where the defaults are inefficient or
infeasible. This work allows such desires to be expressed through preferences.

Other work on representation and analysis of security policies. Cholvy and Cuppens consider the com-
plexities of detecting and managing inconsistencies introduced by access control policy specifications [8].
Our approach differs not only in problem domain (i.e., provisioning), but in that we avoid consistency evalu-
ation by encoding dependencies within the policy structure. Hence, collections of individual policies cannot
be inconsistent. Cholvy and Cuppens further considered preference in the context of the ordered application
of access control regulations, but focused on access control applications.

While it has not been explored for other forms of policy, graphical representations are well suited to
access control policy [20, 25]. For example, the LaSCO language specifies access control policy using
graphical idioms [17]. The developers of LaSCO assert that the representation allows not only specification
a more intuitive operation, but permits the use of well known graph algorithms for subsequent enforcement.
We embrace a similar approach by using structural representation to enforce dependencies.

3 A Formalization of Policy Reconciliation

In this section we provide a precise semantics of policy reconciliation where the policies are represented
hierarchically. Moreover, we describe how preferences can be incorporated into our framework. Finally, we
present an efficient reconciliation algorithm.
Definition 3.1 A schematais a directed acyclic graph or DAGS = (N,E, root), whereN is a set of nodes,
E ⊆ N ×N is a set of edges, androot ∈ N is a distinguished node. We assume thatroot has no incoming
edge. Each noden has the following attributes associated with it:

• Each node is a∧ or∨ node.

• A tuple of variables (denoted byVarT (n)) 〈V1 : τ1, · · · , Vk : τk〉 (whereτi is the type of variableVi).
Currently, we only allow typesstring, int, real, andenum. For anenum typeτi we assume that a
set of values is given, e.g.,τi = {DES, 3DES, AES}.

The set of successors of a noden in a schemataS is denoted bysuccS(n). However, when the schemataS
is clear from the context we simply writesucc(n) instead ofsuccS(n).

A schemata is shown in Figure 2. The root node is a∧-node and represented as a square. The left
and right child of the root are∨-nodes and represent various authentication and encryption mechanisms
respectively. The leaf nodes, such as the ones labeled withnone and3DES, are∨-nodes with no successors.
The special keywordnone signifies the fact that an authentication or encryption scheme is not required.
Moreover, there are no variables associated with the∨-nodes. However, if desired, associated attributes,
such as key size for encryption schemes, can be associated with the∨-nodes.
Discussion: Our hierarchical model for expressing security policies opens up the possibility of using for-
malisms such as XML for representing policies. In the XML parlance, schemata and policies are like XML
schemas, and instances are XML documents that confirm to these schemas. We wanted to present an abstract
description of policies and not rely on specific formalisms for representing hierarchical structures, such as
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Figure 2: SchemataS

XML. However, in our implementation we use XML to represent policies. Another intriguing direction is
to view schematas and policies as tree automaton, where trees can be viewed as instances [14, 32]. We also
leave exploration of this analogy as a future direction.
Definition 3.2 An instanceI of a schemataS = (N,V, root) is a subgraph(N ′, V ′, root), whereN ′ ⊆ N
andV ′ ⊆ V . Additionally, following conditions need to be satisfied:

• For a∧-noden ∈ N ′, succ(n) ⊆ N ′. In other words, all successors of a∧-node are in the instanceI.

• For a∨-noden ∈ N ′, if succ(n) is non-empty, then|succ(n)∩N ′| = 1. In other words, for a∨-node
with a non-empty set of successors, exactly one successor is in an instance.

• Consider a noden ∈ N ′ such thatVarT (n) = 〈V1 : τ1, · · · , Vk : τk〉. In this case,I assigns valuesvi

of typeτi to each variableVi in VarT (n). The tuple of values assigned byI to the noden is denoted
by Val I(n).

Definition 3.3 A policyP for a schemataS = (N,V, root) is a2-tuple(S, C), whereS : N → 2N andC
maps nodes to a tuple of conditions. For each∨-noden ∈ N , S(n) ⊆ succ(n), andC(n) is ak-tuple of
conditions〈c1, · · · , ck〉 whereVar(n) = 〈V1 : τ1, · · · , Vk : τk〉. Moreover, we assume that the conditionci

applies to values of typeτi. Given a valuevi of typeτi, we usevi |= ci to denote thatvi satisfiesci.

Note: The syntax and semantics of the conditions depends on the types of the corresponding variables.
For example, if a variableVi has typestring, the corresponding conditionci can be a regular expression.
For numeric typesint andreal, conditionci might be range conditionsx ≤ Vi ≤ y, wherex andy are
constants. IfVi is an enumerated type, thenci might simply be a subset of the set of possible values for
τi. Details of semantics and syntax of the conditions are not particularly important; we simply require that
given a valuevi and conditionci, we should be able to efficiently determine whethervi satisfies condition
ci.

Two policiesP1 andP2 are shown in figures 3 and 4 respectively. Consider the left child of the root.
Policy P1 specifies that onlyX509, Kerberos , andPassword are allowed successors for the left node.
Other edges and nodes can be interpreted in a similar manner.

Given an instanceI = (N ′, V ′, root) and a policyP = (S, C), we say thatI satisfiesP (denoted by
I |= P ) iff the following two conditions are satisfied:

• For all ∨-nodesn ∈ N ′, (succ(n) ∩ N ′) ⊆ S(n). In other words, instanceI can only choose
successors of a∨-node from the subsetS(n) provided by the policyP .

• Let Val I(n) = 〈v1, · · · , vk〉 be the values assigned to the noden in I, andC(n) = 〈c1, · · · , ck〉 be
the conditions assigned to noden by the policyP . In this case, for1 ≤ i ≤ k, vi |= ci, or each value
assigned in the instanceI should satisfy the corresponding condition specified by the policyP .
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PolicyP for a schemataS is calledsatisfiableiff there existsI such thatI |= P .
Next, we define conjunction of two policies. The conjunction of two policiesP1 = (S1, C1) andP2 =

(S2, C2) (denoted byP1 ∧ P2) is a policy(S′, C ′), where

• For each∨-noden ∈ N , S′(n) = S1(n) ∩ S2(n) and C ′(n) = 〈c1
1 ∧ c2

1, · · · , c1
k ∧ c2

k〉, where
C1(n) = 〈c1

1, · · · , c1
k〉 andC2(n) = 〈c2

1, · · · , c2
k〉.

Conjunction of the two example policiesP1 andP2 is depicted in Figure 5.
Definition 3.4 A set ofn policiesP1, · · · , Pn is reconcilableiff there exists an instanceI such thatI |=
(
∧n

i=1 Pi) or in other words
∧n

i=1 Pi is satisfiable.
Remark: We have described the semantics of reconcilable policies using the satisfaction relation|=. One
can give an alternative definition in terms of languages. A schemataS defines a language of instancesL(S),
i.e.,L(S) contains all instancesI of the schemataI. A policy P for the schemataS also defines a language
of instancesL(P ) ⊆ L(S), i.e., L(P ) contains all instancesI such thatI |= P . In this context, policies
Pi, · · · , Pn are reconcilable iff

⋂n
i=1 L(Pi) is non-empty.

3.1 Resolving multiple partial orders

Later in this section we discuss policy reconciliation in presence of preferences. In preparation for that, we
need to develop some theory about resolving multiple partial orders. Assume that we are given a finite set
S. Supposen agents give their preferences on the setS, i.e., agenti specifies a partial order�i on the set
S. Intuitively, an agenti is an organization or process with a policy, and�i specifies the preference of the
organization or process. The question is how does one construct asingle partial orderon the setS (denoted
by�1,··· ,n) from then partial orders�1, · · · ,�n?. Precise definition for combining partial orders is given
in appendix A. We also provide a a linear time algorithm to compute the combined partial order.
Example 3.1 Consider two partial orders shown in Figure 6 on the set{ Kerberos, X509, Password }.
Assuming that the agent giving the partial order(a) has higher preference than the agent with the partial
order(b), the combined partial order is(b). Assuming no order between the agents the combined partial
order is(a).

3.2 Reconciliation with preferences

This section describes reconciliation when policies are allowed to specify preferences. First, we define the
concept of policy with preferences.
Definition 3.5 A policyP for a schemataS = (N,V, root) is now a3-tuple(S, C, pref ), whereS : N →
2N , C maps nodes to a tuple of conditions, andpref provides preferences. For each∨-noden ∈ N ,
S(n) ⊆ succ(n), pref (n) is a partial order onS(n), andC(n) is ak-tuple of conditions〈c1, · · · , ck〉 where
Var(n) = 〈V1 : τ1, · · · , Vk : τk〉. Moreover, we assume that the conditionci applies to values of typeτi.
Given a valuevi of typeτi, we assume thatvi |= ci.

A policy P induces a partial order�P on the instances satisfyingP . Given an instanceI, the DAG
rooted at a noden of I is called asub-instance, i.e., a sub-instance consists of the noden and all of its
descendants. The depth of a sub-instance is the length of the longest path from the root to one of its leaves.
The partial order�P is defined on sub-instances. Given two sub-instancesSI1 = (N1, V1, root1) and
SI2 = (N2, V2, root2), we say thatSI1 �P SI2 iff the following conditions are satisfied:

• The roots are the same, i.e.,root1 = root2.

• root1 is a∧-node.
Let the set of successors ofroot1 be{n1, · · · , nk}. Let I1

i andI2
i (for 1 ≤ i ≤ k) be the sub-instances

in SI1 andSI2 that are rooted atni. In this case the condition is that for all1 ≤ i ≤ k, I1
i �P I2

i .

7



none 3DES AES SAFERX.509 Kerberos Password

Figure 3: Example policyP1

X.509 Kerberos Password 3DES AES IDEA

Figure 4: Example policyP2

X.509 Kerberos Password 3DES AES IDEA

Figure 5: Combined policyP1 ∧ P2

• root1 is a∨-node.
Let the successors ofroot1 androot2 in SI1 andSI2 ben1 andn2 respectively, andIn1 andIn2 be
the sub-instances rooted atn1 andn2 respectively. In this case, the condition is the following:

If n1 = n2, thenIn1 �P In2 ; otherwise,n1 � n2 in the partial orderpref (root1) given by
the policyP .

Notice that�P is inductively defined using the depth of the sub-instances. Intuitively, the partial order�P

extends the partial orderpref over nodes given by the policyP to sub-instances.
Next, we extend the definition of conjunction of two policies to incorporate preferences. The conjunc-

tion of two policiesP1 = (S1, C1, pref 1) andP2 = (S2, C2, pref 2) (denoted byP1 ∧ P2) is a policy
(S′, C ′, pref ′), where

For each∨-noden ∈ N , S′(n) = S1(n) ∩ S2(n), pref ′(n) is equal to�1,2,2 andC ′(n) =
〈c1

1 ∧ c2
1, · · · , c1

k ∧ c2
k〉, whereC1(n) = 〈c1

1, · · · , c1
k〉 andC2(n) = 〈c2

1, · · · , c2
k〉.

Givenn reconcilable policiesP1, · · · , Pn, an instanceI is called amost preferred instanceor MPI if
I |= (

∧n
i=1 Pi) andI is a maximal element in the partial order induced by the combined policy

∧n
i=1 Pi.

3.3 The Reconciliation Algorithm

Givenn policiesP1, P2, · · · , Pn, the reconciliation algorithm proceeds as follows:

First, we compute the combined policyP =
∧n

i=1 Pi.
Next, starting from the root the combined policyP is traversed recursively to find the most
preferred instance according to partial order�P induced by the combined policy.

The complexity of reconciliation algorithm isO(n(|N |+ |E|), whereN andE are the nodes and edges
in P . Details of the reconciliation algorithm can be found in appendix B.

2Note that before the resolving the partial orderspref 1(n) andpref 2(n) have to be restricted to the setS1(n) ∩ S2(n).
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Assume that we are given two policiesP1 andP2 shown in Figures 3 and 4. The combined policy
P1∧P2 is shown in Figure 5. Suppose that the partial order on authentication mechanisms corresponding to
policiesP1 andP2 is as shown in Figure 6, and the partial order on the encryption schemes corresponding
to the policiesP1 andP2 is as shown in Figure 7. The partial orders are resolved so that policyP1 has
precedence over policyP2. In this case, the partial orders on the authentication and encryption schemes in
the combined policyP1 ∧ P2 is the one corresponding to policyP2, i.e., the partial order labeled(b) in the
two figures. The MPI computed by our algorithm is shown in Figure 8.

4 Applications of the policy reconciliation framework

This section illustrates the use of graphical policy in real application environments. To this end, we show
how our policy reconciliation framework can augment IPsec’s existing policy negotiation and support the
Condor distributed computing system.

4.1 Graphical Policy in IPsec

The IPsec [19] suite of protocols providessource authentication, data integrityand data confidentiality
at the IP layer. These services are implemented by the Authentication Header (AH) and Encapsulating
Security Payload (ESP) transforms. Although not a security service, PCP implements data compression.
Each IPsec node (host or security gateway) maintains a security and compression policy defined in terms
of these transforms. Communicating peers establish one or more pairs of policy instances (an instance is
represented as asecurity association, or SA) by reconciling configured local policies (called proposals). The
Internet Key Exchange protocol (IKE) [16] is used to, among other things, negotiate this governing policy.

IKE policy can be modeled using our graphical approach. To illustrate, suppose that a host desires the
following policy:

• All outgoing data must be protected byESPandAH protocols, and must be compressed using the
PCPprotocol.

• ESPcan use3DES, 3IDEAor DESencryption algorithms, and eitherHMAC-MD5 or HMAC-SHA
integrity/authentication algorithms.

• AH can use eitherHMAC-MD5or HMAC-SHA.

• PCPcan use eitherLZSor Deflate.

One (of potentially many) schema for IPsec policy is shown in Appendix C. This schemata reflects a top-
down structure, i.e., each specification is recursively fine tuned by identifying the transforms and then the
algorithms.

An IPsec proposal and graphical representation (from the schemata in Appendix C) for the example
policy is depicted in Figure 9. The hierarchical DAG structure is clearly more expressive and efficient, i.e.,
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Figure 9: IPsec Policy Example

one only needs to understand the difference between∧ (square) and∨ (circle) nodes to interpret policy.
Conversely, one needs a great deal of domain knowledge to interpret the proposal/transform structure of
IPsec. Such intuitive representation simplifies specification, and ultimately reduces policy errors.

Consider an extension to the above policy that states that the use of 3IDEA must use either 128-bit
or 256-bit keys. In IPsec, attributes such as key length can be specified only once with each transform.
Hence, a separate transform is required for each key length. More generally, the number of transforms
grows exponentially in the number of independent attributes. Conversely, the graphical representation only
needs to introduce a single subgraph that is shared by the relevant nodes.

4.2 Hierarchically Policy in the Condor system

The second example of the policy reconciliation framework is used in the context of Condor [9], a dis-
tributed high-throughput system designed to efficiently schedule the usage of distributed and heterogeneous
resources such as idling CPUs and unused memory. Condor allows resources owners to place various policy
requirements on the use of their resources. Our hierarchical DAG structure can succinctly encode Condor
security policies. Details of the encoding are very similar to the one discussed in the previous subsection.
Appendix D provides details about Condor security policies and their encoding in our framework. The de-
sign of the policy infrastructure and its integration with Condor are detailed in the following section, where
we discuss how we integrate the policy reconciliation engine into the Condor system.

5 Implementation

5.1 Policy Reconciliation Engine

We have implemented our hierarchical reconciliation algorithm in thePolicy Reconciliation Engine (PRE).
PRE reconciles (only) pairs of XML-encoded policies. The restriction of PRE to two-policy reconciliation
is not a limitation of our approach, but rather an artifact of the initial target systems’ point-to-point com-
munication models (IPSec and Condor). We will extend the implementation to allow multi-party policy
reconciliation (e.g., Ismene [23], DCCM [11]) as future needs dictate.

As shown in Figure 10, PRE implements an asymmetric requester/responder model. In this model, the
requester supplies the relevant policy to the responder. The responder reconciles the received policy with
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Figure 11: Integrating PRE with Condor

local policies as needed, and thereconciled policyis returned to the requester. Both parties subsequently
use the reconciled policy to control the session. We chose a requester/responder model because it most
faithfully represents contemporary use of policy (e.g., IKE policy negotiation [16]). This model is similar
to client/server communication models. Responders, acting as servers, govern access to the communication
resources and requesters, acting as clients, submit requests for those resources. In PRE, the responders
assert authority over the resources by placing a higher preference on their own (local) policy. Note that the
requester may (and often should) validate that the received reconciled policy is consistent with the originally
proposed policy. Policy validation interfaces are provided by PRE.

PRE is both a library and a command line tool. Hence, it can be directly integrated into the source code
of an application, or used as an external policy processor. The three components of PRE implement its main
features: parsing, reconciliation, and validation. TheParsing Engineparses the security policy into an inter-
nal representation and is used as a preprocessor to the other features. TheReconciliation Enginereconciles
pairs of hierarchical policies using the algorithms defined in section 3.3. Finally, theVerification Engine
verifies the correctness of theReconciled Policywith respect to the local security policy (i.e., implements
the consistency test described above).

The current implementation of PRE contains about 1000 lines of C/C++ code. All XML processing
methods use the Apache Project’sXerces-C++ [27] Version 2.2.0 library. Internally, each policy is stored
as aDOMobject, and is processed using the standard Xerces DOM API. Source code and documentation for
PRE are available for download.

5.2 Integrating Policy Reconciliation Engine with Condor

Much of our work in policy has been motivated by the requirements of the Condor system. As described in
Section 4.2, Condor schedules resources based on the client requests and other environmental factors. Every
Condor peer has a local security policy that governs the services providing the authenticity, confidentiality,
and integrity of the session it supports. We have modified the Condor system to use PRE-based reconciliation
to construct the security policy used by each session.

Past versions of Condor defined security policy using flat structures calledClassAds [29]. ClassAds
flexibly communicate resource advertisements and client requests. However, we found the structure of
ClassAds inherently limiting, i.e., we could not represent the appropriate range of acceptable or preferential
policies because of their flat structure. Such statements of policy are, as previously argued, hierarchical in
nature. This need for hierarchical policy drove our efforts, and ultimately lead to the development of PRE.

The architecture of integrated PRE with Condor is shown in Figure 11. PRE sits below Condor’s Secure
Communication Service layer, and is used during session initiation. An in-band PRE protocol is used during
the initial session handshake to determine the policy. In this protocol, the client submits the XML policy
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and awaits the session defining response. After performing reconciliation, the server returns the reconciled
policy to the client. Appendix E gives the XML Document Type Definition (DTD) for the Condor policy.

Currently, Condor does not authenticate the policies or policy exchanges beyond that supported by the
underlying transport layer. In general, how and by whom policies are issued and authenticated is an envi-
ronmental and systems design issue. Environments often require external services for storing and validation
of issued policies (e.g., LDAP collections of signed policies). These issues are defined by the larger pol-
icy architecture, and is beyond the scope of the current work. Interested readers are referred to [22] for a
taxonomy of policy architectures addressing these issues.

5.3 Performance

Because of the relatively small policy size and the restriction to pairwise reconciliation, we did not antici-
pate the introduction of PRE into Condor would significantly impact performance. We sought to measure
these costs through several controlled experiments. These experiments measured the total execution time
of the policy negotiation protocol defined in the preceding section. All experiments were executed in an
environment consisting of a single Central Managerserver(333 Mhz duo-processor/Linux RedHat 7.2) and
eightclients(three Ultra 10 Sparc Sun/Solaris 2.8 and five 750 MHz Pentium III/Linux Redhat 7.2).

The experimental results confirmed our intuition: the average protocol execution (without I/O), for a
policy consisting ofauthentication, integrity andsecrecy, only uses about5.2% of the total execution time.
When including I/O overhead, the cost is still small–at about10% of the overall execution time. Startup cost
(i.e. program initialization) is the most dominant factor of the overall execution time, followed closely by
overhead incurred from Condor’s internal data structures.

5.4 Future work

While the theoretical framework and implementation of our hierarchical policy model have reached maturity,
we see further exploration of its application to a wide range of problem domains as essential. Initially, we
will seek to integrate PRE with widely used policy systems. This will enable us to explore the ways of
exploiting the PRE services in specific and policy reconciliation in general. One such work will realize our
IPsec policy in software. Integration with tools such as FreeSwan [28] will provide important data-points in
the use of extended policy services, and serve to further demonstrate the power of our approach.

We also seek to apply our work to domains which have immediate, but as yet unaddressed, requirements
for policy. For example, reconciliation may play an important role in defining security for peer-to-peer (P2P)
systems. Currently, there are few coherent security models for P2P. The egalitarian nature of P2P systems
mandate autonomy. Each end-point must be able to assert and realize a set of security requirements deemed
important. However, autonomy must be counter-balanced with interoperability. The collection of partici-
pants must be able to negotiate a shared view of security. This is precisely the definition of reconciliation.
Hence, we claim that the fluid and heterogeneous security models of P2P systems would be well served by
our work. Moreover, the clarity and succinctness of the hierarchical model may enable more free and open
use of security policy in these large communities.

This paper has discussed reconciliation only in the context of security policy. However, hierarchical
policy models are applicable to other problem domains. To illustrate, GRID systems share the resources
in heterogeneous environments. Participants in the GRID have diverse policies that govern the resource
usage. Agreement is often achieved statically in current GRID systems by mandating the adoption of a
single universal policy. This mandate is in direct conflict with the needs of dynamic environments whose
resource constraints and requirements change frequently. Hence, policy reconciliation systems such as PRE
can help to bridge such a gap between dynamicity and the needs for agreement. Furthermore, there is often
a direct dependence between resource requirements and security settings and dynamic policy reconciliation
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can act as the agent between the two. For example, a system that handles sensitive data on remote hosts will
require some minimum security policy be enforced.

6 Conclusion

Security policy reconciliation is the process of resolving different security policies. In this paper, we pre-
sented a formal framework for policy reconciliation. We also presented an efficient algorithm for reconciling
different policies. Two distinguishing features of our work are hierarchical representation and preferences.
We also implemented a simplified version of our algorithm in a software module called PRE and incorpo-
rated it in Condor. Experimental results in the context of Condor clearly demonstrate that for each session
the reconciliation overhead is negligible.
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A Combining Partial Orders

We consider three alternatives for combining partial orders. The first two alternatives are a special case of
the last alternative, but we present them separately because these might represent the “common cases”.

• [Case I] Agents totally ordered: In this case, we assume that there is a total order on agents, i.e.,
agenti is ordered before all agentsj, wherej > i. Givens ands′ in the setS, we defines �1,··· ,n s′

iff there exists aj such thats �j s′ ands 6�i s′ ands′ 6�i s for all i < j. In other words, in the
“combined” partial order we say thats′ is “preferred” overs if agentj preferss′ overs and agents
that are ordered before agentj have no preference betweens ands′.

• [Case II] No order between agents:In this case, we assume no order between agents. Givens and
s′ in the setS, we defines �1,··· ,n s′ iff for all 1 ≤ i ≤ n, s �i s′. In other words, in the “combined”
partial order we say thats′ is “preferred” overs if all agents prefers′ overs.

• [Case III] Partial-order between agents: This case is slightly more complicated. First, we explain
the idea using an example. Suppose there are three agents1, 2, and3. Assume that1 is ordered
before2 and3, but there is no specific order between2 and3. In other words, agent1’s preferences
should supersede those of agents2 and3. In this case,s′ is preferred overs if one the following two
conditions is satisfied:
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– agent1 preferss′ overs, or

– agent1 states no preference betweens ands′, but both agents2 and3 prefers′ overs.

This case is formalized below.

A partial order� on a finite setS will be represented as a directed graphG[�] = (S, E), wheres1 � s2

iff there is a path froms1 to s2 in G[�]. We call the partial order� a strict partial order iff its graphG[�]
is acyclic.

Next we provide a a linear time algorithm to compute the combined partial order. Assume that we
are given a strict partial order� over the finite set{1, 2, · · · , n}. Intuitively, i � j means that agenti’s
preferences are given precedence overj’s preferences. Recall that we are given a finite setS and�i is a
partial order onS given by agenti. We will give an “operational” semantics for the combined partial order
�1,2,··· ,n, i.e., we provide an algorithmA to compute�1,2,··· ,n.

Let G[�] be the directed graph which gives the partial order over the set of agent indices{1, 2, · · · , n}.
Further, we assume thatG[�] is a directed acyclic graph or DAG. Our algorithmA maintains two data
structures: a graphG2 with set of verticesS and a boolean arraymark [·] with n elements. At the end,G2

represents the combined partial order�1,2,··· ,n.
Initially: G2 has empty set of edges, and we setmark [i] = 0 for all 1 ≤ i ≤ n.
Iteration: Our algorithmA repeats the following steps until for all1 ≤ i ≤ n, mark [i] = 1.

• Find all unmarked nodesI of G which do not have incoming edges from an unmarked vertex, i.e.,I
is defined as

{k | mark [k] = 0, and there does not existj
such thatmark [j] = 0 and
there is an edge fromj to k}

Mark all nodes inI, i.e., for alli ∈ I, mark [i] = 1.

• Add an edge froms → s′ to G2 if the following two conditions are satisfied:

– edges → s′ does not already exist inG2, and

– for all i ∈ I, s �i s′, i.e., all agents inI “agree” thats “precedes”s′.

Data structures and computational complexity: We assume that graphs corresponding to the various
partial orders are stored in a data structure such that it takesconstant timeto decide whethers � s′. For
example, given a graphG[�] for the partial order�, we can first compute the transitive closure of the graph
and store reachability information in a hash table. Let� be the partial order over the finite set{1, 2, · · · , n}
andG[�] be the associated graph. We allocate an arraymark with n elements and initialize all its elements
to 0. We maintain a listsourceList of all elements in{1, 2, · · · , n} that do not have an incoming edge in
G[�] from an unmarked vertex. Moreover, we maintain an auxiliary arrayinDegree[·] of n elements, where
inDegree[i] is the number of incoming edges toi from unmarked vertices. The listsourceList and array
inDegree[i] can be initialized by inspecting the graphG[�]. The iteration step of algorithmA specific to
the data structures are as follows:

• Add an edge froms → s′ to G2 if the following two conditions are satisfied:

– edges → s′ does not exist inG2, and

– for all i ∈ sourceList , s �i s′, i.e., all agents insourceList “agree” thats “precedes”s′.
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• Mark all elements that appear in the listsourceList . If an elementi is marked, then for all edges
i → j decrementinDegree[j]. If inDegree[j] becomes0, addj to a temporary listtmpList .

• CopytmpList to sourceList .

Let the size|G| of a graphG be the sum of the number of vertices and edges inG. It is easy to see that
the complexity of our algorithm is linear in the sum of the sizes of the graph or is

O(|G?[�]|+
n∑

i=1

|G[�i]|) .

Note: In the complexity analysis given above, we are ignoring the cost of computing transitive closure of
the graphs associated with the partial orders. GraphG?[�] is the transitive closure ofG[�].

B Details of the Reconciliation Algorithm

This section presents the details of the algorithm for reconcilingn policies briefly described in Section 3.3.
Operations for intersecting two sets, computing the conjunction of two conditions, and resolving two partial
orders are considered primitive operations, i.e.,O(1) operations. This makes the presentation simpler and
abstracts away from specific representation issues, e.g., any polynomial time algorithm for these operations
will suffice for our discussion.

First, we focus on computing the conjunction of2 policiesP1 andP2 for a schemataS = (N,E, root).
The time complexity for this operation isO(|N | + |E|), i.e., for each noden the number of primitive
operations is bounded by a constant and there are at mostN nodes. Now considern policiesP1, · · · , Pn,
wheren = 2m. In this case, we first computeP1 ∧ P2 , P3 ∧ P4, · · · , Pn−1 ∧ Pn. After that, we are
left with n

2 policies. We again form groups of two and perform the conjunction, which leaves us withn
4

policies. Continuing this way, we can compute
∧n

i=1 Pi in log2(n) steps. The number of conjunctions we
perform aren

2 + n
4 + .... + 1. So we performO(n) conjunctions and each conjunction has time complexity

O(|N | + |E|). Therefore, the time complexity to compute
∧n

i=1 Pi is O(n(|N | + |E|)). The general case,
wheren is not a power of2, can be solved in an analogous manner with same asymptotic time complexity.

Assume that we have computed the combined policyP =
∧n

i=1 Pi. Next we describe an algorithm
findMPI (S, P ) to compute an MPI for policyP on a schemataS = (N,E, root).
Primitives and data structures: The algorithm maintains a “cache”Results of old results, i.e., iffindMPI (S′, P ′)
is called, then the result of the algorithm along with the arguments are stored in the cacheResults. We as-
sume that given ak-tuple of conditionsC = 〈c1, · · · , ck〉, there is a functionpick(C) that return ak-tuple
of values〈v1, · · · , vk〉 suchvi |= ci (for 1 ≤ i ≤ k).
Algorithm description: For clarity, we describe a recursive algorithm; however, a non-recursive version
of the algorithm can be easily implemented using work-lists. If the schemataS is empty, then we simply
return an empty instance. There are two cases based on whetherroot is a ∨ or ∧ node. The proof of
correctness is by induction on the depth of the tree schemata and is interleaved with the description of
the algorithm. The algorithm maintains the invariant thatfindMPI (S, P ) returns an MPI for policyP on
schemaS. The complexity of the algorithm given below is easily seen to beO(|N | + |E|). Therefore, the
entire reconciliation algorithm has time complexityO(n(|N |+ |E|)).

• If findMPI (S, P ) is in the cacheResults, return immediately with the result; otherwise proceed to
the next two steps.

• root is an∧-node.
Let the set of successorssucc(root) of root be {n1, · · · , nk}, andSi be the tree sub-schemata of
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T that is rooted atni (1 ≤ i ≤ k). Similarly, let Pi be the sub-policy ofP rooted atni. Let
findMPI (Si, Pi) return aMPI Ii. The instanceI for P is constructed by attachingI1, · · · , Ik to the
root . Add the result along with the arguments to the cacheResults.
Correctness: Let I be the instance returned by the functionfindMPI (S, P ). Let I ′ be another
instance of the schemaS. We need to prove thatI 6� I ′. Let Ii (I ′

i) be the sub-instance ofI (I ′)
rooted atni (the i-th successor of the root). Using the induction hypothesis we know thatIi 6� I ′

i.
From the definition of MPI it follows thatI 6� I ′.

• root is a∨-node.
The algorithm picks a successorn ∈ S(root) which is a maximal element in the partial order
pref (n). LetSn andPn be the sub-schemata and sub-policy rooted atn. By the induction hypothesis,
findMPI (Sn, Pn) returns an MPIIn for Pn. In this case,findMPI (T, P ) returns an instanceI, which
is In attached toroot . Add the result along with the arguments to the cacheResults.
Correctness: Let I be the instance returned by the functionfindMPI (S, P ), andI ′ be another in-
stance of the schemaS. We need to prove thatI 6� I ′. Assume the contrary, i.e.,I � I ′. Let the
successor ofroot in I andI ′ ben andn′. From the definition of the partial order�P there are two
cases:
(Case 1:) In the partial orderpref (root) of policy P , n � n′. However,findMPI (., .) picks a suc-
cessor that is maximal in the setS(root). This contradicts the fact thatn � n′.
(Case 2:) n = n′ andIn � In′ , whereIn andI ′

n′ are sub-instances ofI andI ′ rooted atn andn′

respectively. However, this contradicts the induction hypothesis forfindMPI (Sn, Pn).

C IPsec Graphical Policy Schemata

The following is a simplified IPsec policy schemata for the IKE example in section 4.

SHA

SHA

LZS Deflate none
3DES

PCP    AH  ESP

3IDEA DES HMAC

HMAC

MD5

MD5

Figure 12: IPsec Policy Schemata Example

D Details of Policy in the Condor System

Figure 13 shows a two Condor security policies and their encoding in our framework. Policy 1 indicates
thatauthentication is required, and acceptablemethods of authenticationareKerberos andGSS, in
that order. On the other hand,secrecy is onlyoptional , with 3DESandBLOWFISHas the acceptable
algorithms. Policy 2 is similar to policy 1 except thatGSSis the only acceptable authentication method and
secrecy is always required. Existing Condor system uses the ClassAd structure to represent the policies,
as shown by the two examples on the top of the figure. In the tree representation, the square node indicates
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Corresponding Representations
in Policy Reconciliation Framework

Original Condor Security Policies

AUTH SEC

none

AUTH SEC

AUTH=YES
AUTH_METHODS= GSS
SECRECY=YES
SECRECY_METHODS=3DES, BLOWFISH

AUTH=YES
AUTH_METHODS=Kerberos, GSS
SECRECY=OPTIONAL
SECRECY_METHODS=3DES, BLOWFISH

        

<Kerberos, 1>  <GSS, 2> <3DES, 1><BLOWFISH,2>  GSS <BLOWFISH,2><3DES, 1>

Figure 13: Condor Security Policy Example

the cases where both authentication and secrecy need to be considered for any communication. The policy
on the left uses thenoneoption to represent the fact that secrecy, while needs to be considered, is optional.
For the policy on the right, secrecy is always required since it does not includenoneas one of its children.

In addition, thepreferencefeature of the reconciliation framework is also demonstrated through the
example shown in Figure 13. In each one of the Condor policies, an mechanism that appears earlier in
the list has higher preference than the ones that appear later in the list. For example, in the first policy,
the authentication mechanismKerberos has a higher order of preference thanGSS. This is annotated in
the hierarchical policy through an integerID attribute. The smaller the ID is, the higher the preference
becomes. For example, in the corresponding hierarchical policy representation,Kerberos has ID1, while
BLOWFISHhas ID2 3. The special keywordnonealways has the lowest preference and therefore does
not have an ID associated with it. For policies that do not need the preference feature, all mechanisms are
annotated with the same ID to indicate that either one of them can be selected during reconciliation.

As was the case with IPsec, our framework is applicable to other type of policies. As shown through
the examples in Figure 13, the hierarchical representation can express Condor’s security policies in a more
concise and unambiguous manner. The hierarchical relationship among various components of the policies
can be expressed clearly using the DAG structure, while the same cannot be said for the original Condor
policy representation. Although here we only address how to apply the framework to Condor’s security
policies, we can also apply the framework to support other types of policies in Condor. For instance, resource
owners in Condor can use similar policies to described acceptable users for their resources. Likewise,
resource users can use policies to describe their preferred resources. The process of matching among the
resources and users is calledmatch makingand it can be also modeled using our framework.

3The IDs are normalized before reconciliation in order to avoid inconsistency among different representations.
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E DTD for IPSec and Condor Policies

Condor Security Policy DTD Example
<?xml encoding="iso-8859-1"?>
<!-- @version -->
<!ELEMENT Policy (Authentication, Integrity,

Confidentiality, Duration)>
<!ELEMENT Authentication (Algorithm)+>
<!ELEMENT Integrity (Algorithm)+>
<!ELEMENT Confidentiality (Algorithm)+>
<!ELEMENT Duration (#PCDATA)>
<!ATTLIST Duration unit (minute|second) #REQUIRED>
<!ELEMENT Algorithm (#PCDATA)>
<!ATTLIST Algorithm id CDATA #REQUIRED>

IPSec Policy DTD Example
<?xml encoding="iso-8859-1"?>
<!-- @version -->
<!ELEMENT Policy (Proposal)+>
<!ELEMENT Proposal (AH+, ESP+, PCP+)>
<!ATTLIST Proposal id CDATA #REQUIRED>
<!ELEMENT AH (AH_Algorithm)+>
<!ELEMENT ESP (ESP_Algorithm)+>
<!ELEMENT PCP (PCP_Algorithm)+>
<!ELEMENT AH_Algorithm (name)>
<!ATTLIST AH_Algorithm KeyLength CDATA #REQUIRED>
<!ELEMENT ESP_Algorithm (ESP_NAME)>
<!ELEMENT ESP_NAME (name, AH_Algorithm)>
<!ATTLIST ESP_Algorithm KeyLength CDATA #REQUIRED>
<!ELEMENT PCP_Algorithm (name)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT key_length (#PCDATA)>
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