
UWStego: A General Architecture

for Software Watemarking

C. Collberg∗ S. Jha† D. Tomko† H. Wang†

August 31, 2001

Abstract

Software piracy is a cause of substantial losses for software vendors. For example, soft-

ware and technology piracy is suspected to cause approximately $16 billion each year. Given

the magnitude of losses due to software piracy, companies need ways to prosecute software

pirates. An essential step in proving the guilt of a suspected software pirate is to trace the

source of a program, i.e., that a specific program originatesfrom a certain company.Software

watermarkingis a technique that can be used for identifying the source of the program. In this

paper, we survey various software watermarking techniques. We present several metrics to

gauge the efficacy of various software watermarking schemes. Finally, we present the design

and implementation of a general architecture,UWStego, for watermarking JAVA programs.

1 Introduction

Suppose that the Acme Software Company develops and marketsa program and then sells the

distribution media and software licenses to customers. At some point along the distribution chain,

a software pirate obtains a copy of the media. The pirate proceeds to make illegal copies and

distributes them through his or her own channels, possibly through the internet, or by “burning”

the software onto writable compact discs. The illegal copies may clearly be pirated if, for example,

the software is offered for internet download, or the copiesmay be packaged as an attempt to

counterfeit the original, and to thereby deceive the customer as well as law enforcement authorities.

The Acme Software Company, having made a large investment inthe design and development

of the program, is injured by the activity of software pirates. The program’s legitimate sales are

affected, and thus the ability of the company to develop new software is diminished. Not only does
∗Department of Computer Science, University of Arizona, Tucson, AZ 85721.
†Computer Sciences Department, University of Wisconsin, Madison, WI 53706.

1

this directly hurt the company and it’s investors, but the ripple effect through the economy can

be tremendous. For example, Los Angeles County Sheriffs discovered $8.5 million in counterfeit

software in one search alone. Globally, software piracy andother technology piracy is suspected

to be a $16 billion business each year [Gla00].

Given the magnitude of the estimated losses, software producers need methods to discourage

the practice of piracy, and to aid in prosecuting criminals when it takes place. The first step in

bringing a suspected software pirate to justice is to prove the identity of any copies suspected to be

stolen.Watermarkingis a mechanism which can be used for program identification. If a software

producer embeds a watermark in a product before it is distributed, then at some later date this

watermark can be exposed. This demonstrates that the originof the program is the producer. This

evidence can then be used in court as direct proof of the ownership of the software copyright.

Alternatively, it can be used prior to a court case to obtain depositions and subpoenas in order to

gather further evidence.

If a product is watermarked, the pirate will try to find techniques for removing, distorting, or

destroying the watermark to prevent subsequent identification. Of course, the software producer

wants to structure the watermark so that it is either as difficult as possible to remove, or so that

tampering with the watermark destroys the usability of the program.

At the highest level, there are two watermarking paradigms,the most basic of which is the

embedding of a single watermark in the final production copy of the product, which insures that all

copies sold contain the same mark. This only protects against the threat of another party claiming

that the origin of a copy is not the actual producer. In this case, the existence of the producer’s

watermark can be demonstrated, and thus prove ownership of the article of intellectual property.

The second paradigm is slightly stronger, because when exposed the watermark provides more

information than simply the origin of the software. Inserial watermarking, known in prior litera-

ture asfingerprinting, a different watermark is embedded in each copy sold, and theproducer notes

at the time of sale the message text in that particular copy and the customer to which it is sold. If

an illegal copy is suspected and a watermark can be detected in it, then the owner of the software

can be confirmed and as well as the source of the illegal copy. This may allow for more evidence

to be collected, thus strengthening a court case against theuser or distributor of the illegal copy.

The methodology for software watermarking can also be divided into two major types,static

anddynamic. Systems that encode the watermark data directly in the program executable are static

systems. The watermark may be stored in any part of the executable, so long as the semantics of

the program are preserved. For Java programs, the constant pool, the method or field tables, or any

attribute may be used to encode the watermark. To detect the watermark, the program executable

is statically analyzed by adecode function, searching for the watermark data. Instead of encoding

the watermark data directly in the text of the program executable, some systems add code to the

program which constructs the watermark in the runtime stateof the program. Such systems were

2

first proposed by Collberg and Thomborson [CT99a] and are called dynamic systems. To detect

the watermark, instead of analyzing the program directly, some other artifact of the program is

searched such as a profile of the run time state of the program.A schematic diagram for software

watermarking is shown in Figure 1.

In this paper we explore dynamic watermarking systems. Thispaper makes three major contri-

butions to the field of dynamic software watermarking.

• First, we survey and classify existing software watermarking techniques. Weaknesses of

these techniques are clearly discussed. Moreover, threat models for software watermarking

systems are also discussed in great detail.

• Software metrics is a vast area [FP98], but the focus of a significant amount of research on

software metrics is geared towards process. We believe thatmetrics for software watermark-

ing are fundamentally different from metrics for other areas of software engineering because

of the presence of malicious attacker. We present various metrics for gauging the efficacy of

various software watermarking schemes. The subject of metrics has received scant attention

in the software watermarking literature, but is crucial to asystematic development of the

field.

• Finally, we present a general architecture,UWStego, for watermarking JAVA programs. Our

architecture enables a software engineer to easily implement new dynamic software water-

marking techniques for JAVA programs. Modules in theUWStego architecture are designed

using well established principles of information hiding [Par72]. We also discuss how this

general architecture can be used to boost the stealth and resilience of software watermarking

systems.

2 Definitions and Metrics

A steganographic systemis a method which hides a piece of extra information inside another

[Way96]. The goal of such a system is to disguise the existence of extra data, called themessage

text, within thecover text. The message text can be retrieved orexposedat some point in the future

in order to communicate the desired information.

The termwatermarking systemrefers to a steganographic system when it is used to assist inthe

protection of intellectual property by using the message text as a hidden, identifying mark. The in-

tent is not to communicate the message text to another party,but to use the existence of the message

text, when necessary, as a proof of origin. To this end, the message text is usually short, perhaps

something like‘‘Copyright 2001 ABC Corp’’ represented as an ASCII encoded string. Such

3

Dynamic watermarkingWatermarking

hides secret

Acme

software

encode

Static watermarking

-hides secret in
program executable

-hides secret in
run time state of the program

proof
of

ownership

decode
watermarked
software

Figure 1: Schematic diagram of software watermarking.

a short message text helps to keep it’s presence imperceptible, but is still enough to be statistically

unlikely to appear by coincidence.

Recently, most research on steganography has focused on embedding message text into various

forms of digital objects. Since any digital object is simplya string of bits, a steganographic system

for such objects can be treated in a mathematical fashion. Asteganographic systemis defined by a

five-tuple,S = (O,W,OW , E ,D),

1. O is the set of objects which may be used ascover texts.

2. W is the set of valid message texts, orwatermarks.

3. OW is the set ofcover textswith an embedded message.

4. E : O ×W → OW is theencoding functionthat embeds a message text in a cover text.

5. D : O → P(W) 1 is the exposition functionwhich attempts to detect and expose any

message texts contained withinOW . Notice that the exposition function returns a set of

“potential” watermarks.
1P(W) denotes the power set ofW .

4

For our discussion of software watermarking systems, we will considerO to be the set of

programs,P, or some subset ofP, such as the set of Java programs. For any program,p ∈ P, and

a message text,w ∈ W, the watermarked programE(p, w) is denoted bypw.

A watermark,w ∈ W, is exposedbyD, and thereforeD is said to be successful, ifw ∈ D(pw).

Assume that we are given a programp ∈ P and a watermarkw ∈ W. If p is not the result of

watermarking a program withw andw ∈ D(p), then we have afalse alarmevent (denoted by

EfalseAlarm. The expression given below formalizes the false alarm event.

w ∈ D(p) ∧ p 6∈ E(P, w)

In the expression given aboveE(P, w) is the set of all programs obtained by watermarking withw,

or formally

E(P, w) = {pw | p ∈ P}
Now if we have a probability distribution over the set of programsP and watermarksW, then

we can compute thefalse alarm rate(denoted asα) as the probability of the false alarm event

EfalseAlarm. Naturally, a watermarking system must be designed so thatα is acceptably small.

Likewise, without the presence of an attacker, the exposition function acting on a program that

contains a watermark embedded by the corresponding encoding functionE should be successful

with a very high probability. Assume that we are given a program p and watermarkw. The ex-

pression given below characterizes thehit eventEhit, i.e., an embedded watermark is successfully

exposed

w ∈ D(E(p, w))).

Now again if we have a probability distribution over the set of programs and watermarks, we can

compute thehit rate (denoted asβ) as the probability of the hit eventEhit. The aim of a successful

watermarking system is to keep the hit rateβ high and the false alarm rateα low.

An attack on a watermarking system is any function,A : P → P. We will denote the set of

possible attacks asA . A threat model,M, for the purpose of watermarking research is a set of

attacks,M⊂ A . We will discuss various strategies and specific attacks in Section 5.

For this paper, we will useS(p, I, t) to denote the runtime state of a program,p, (which may

or may not be watermarked) on inputI, at program pointt. For current dynamic watermarking

implementations on Java programs, typicallyt is the end of the program, which we will denote as

“end.”

A person whose intent is to remove, distort, or destroy a watermark is said to be anattacker.

An attacker transforms a watermarked program so that the exposition function cannot recover the

5

watermark, i.e., given a watermarked programE(p, w) an attacker chooses an attackA ∈ A such

that

w 6∈ D(A(E(p, w)))

Once the attacker has destroyed the watermark, he/she can insert a new watermarkw′ using the

encoding functionE2., i.e., the attacker uses the following operation:

E(A(E(p, w)), w′)

2.1 Metrics

Before describing current software watermarking systems and attack strategies, we need metrics

for evaluating these systems. Collberg and Thomborson givedefinitions of stealth, resilience, and

data rate applicable to their dynamic graph technique [CT99a]. We generalize these definitions and

also add a definition for the feasibility of a software watermarking system.

The feasibilityof a watermarking system measures the impact of embedding a watermark in

a program. Specifically, the watermarked program must stillfulfill the functional requirements

of the original, but there may be some performance impact. For any program, we need some

function,V : P → ℜ, to measure it’s performance. A lower number indicates better performance,

possibly in terms of execution time or memory requirements.The producer must choose some

acceptable impact,δ, and choose a watermarking system such that for allp andw, V (pw)
V (p)

≤ δ, i.e.,

watermarking system does not slow down a program by more thana factor ofδ.

The data ratemeasures the number of message text bits which are encoded per bit added to

the target program,p. The size of the target program may be increased in two ways: the size of

the executable in a storage medium, and the memory used by theprogram at run time. These

correspond to the static and dynamic data rates, respectively. The static data rate, Rs(·, ·) is

measured by comparing the size of the original and watermarked executables with the size of

the watermark. For a programp ∈ P, and a message textw ∈ W the data rateRs(p, w) is given by

Rs(p, w) =
|pw| − |p|

|w|

As mention before, if we have a distribution overP andW we can define theaverage static data

rateas the expected value ofRs(p, w).

Additionally, the presence of the watermark may impact the size of the runtime state of the

program. This impact is measured by thedynamic data rate, which is the ratio of the number of

bits added to the runtime state to the number of bits in the watermark. Given a programp and
2Notice that we assume that the algorithm for the encoding functionE is public.

6

message textw the dynamic data rateRd(p, w) is defined as:

Rd(p, w) = max
I∈In(p),t∈PP(p)

|S(pw, I, t)| − |S(p, I, t)|

|w|

In the equation given above In(p) and PP denotes the set of inputs and program points correspond-

ing top. Notice that we compute the maximum over all inputs and program points.

Collberg and Thomborson give a simple statistical measure of stealth which looks for instruc-

tions and sequences of instructions that are unlikely to occur in the normal program, and therefore

may be part of a watermark [CT99a]. This is interesting for systems that add to or change the

program’s code, but is not applicable to other types of schemes.

We considerstealthto be the difficulty of gathering information about the watermark. Before

making some modification to the program in an attempt to remove or otherwise destroy a water-

mark, the attacker can be aided by some information about thelocation or nature of the watermark.

Once an attacker has the distribution media for a program, there is no limit on what that he/she can

do to learn about the program and the watermark. Even reverseengineering via a disassembler or

decompiler is applicable in attempts to learn about the watermark. Because of the wide variety of

non-mathematical information gathering attacks on watermarks, we give no equations for calcu-

lating a value for stealth, but it is important for watermarking system designers to understand the

power and flexibility of these information gathering attacks.

We defineresilienceof a watermarking system to be the ability of the system to successfully

expose watermarks after an attack attempt has been made. We will only consider algorithmic

attacks which may be automated when measuring the resilience, because if an attacker can learn

enough about a watermark, then it can be cut out exactly by hand. If the right information can be

gathered, no system can withstand this type of attack. This definition of resilience is generalized

from that given by Collberg [CT99a], who only considered attacks which added extra information

to either the program executable or to the runtime state of the program.

First, we define resilience with respect to one attack. Subsequently, we extend the definition to

multiple attacks. A static watermarking system is resilient to an attackA ∈ A if the probability of

the following event is low3:

w 6∈ D(A(E(p, w))) .

A(E(p, w)) denotes the program obtained after applying the attackA to the watermarked program

E(p, w). The condition given above states that the valid watermarkw cannot be recovered by the

exposition functionD. Therefore, the attackA was successful in removing the watermark.

The corresponding definition for dynamic watermarking systems requires one additional pa-

rameter,t, which is the program point specifying the time at which to observe the program state.
3The precise definition of low probability depends on the context. Usually low probability is a probability below a

certain threshold.

7

Similarly, a dynamic watermarking system is resilient to anattackA ∈ A if the probability of the

following event is low:

w 6∈ D(S(A(E(p, w)), I, t)).

A watermarking system is said to besecurewith respect to a threat model,M, if the system is

resilient to each attack,A ∈ M, and furthermore is resilient to any composition of the attacks in

M. Define theclosureofM or C(M) to be:

C(M) = {g1 ◦ g2 ◦ ... ◦ gn | g1, ..., gn ∈M}

A static system is secure with respect to a threat modelM if and only if it is resilient with

respect to each attackA ∈ C(M). This definition logically extends to dynamic systems in the

same manner as for resilience with respect to a single attack. If we do not allow the attacker to

compose an arbitrary number of threats, then we can bound thelength of the chain of compositions

to be less that a specific numberk, e.g., we define abounded closureC(M)k as

{g1 ◦ g2 ◦ ... ◦ gn | g1, ..., gn ∈ M andn ≤ k} .

A watermarking system is resilient with respect to the bounded closureC(M)k if it is resilient with

respect to each attackA ∈ C(M)k.

3 A Survey of Current Watermarking Systems

3.1 Static Watermarks

A United States patent issued to Holmes [Hol94] in 1994 describes a simple static watermarking

method. In this system, the master copy of the program contains a segment of data which is

not used by the program. The location and size of this unused segment is determined when the

program is linked. When a copy of this program is made for authorized distribution, this segment

is overwritten with the watermark information, such as the date, time, and destination of the copy.

Holmes proposes this method as being suitable for Internet distribution of a program, since a

serial watermark may be easily embedded by a server providing customers with copies as they are

purchased.

A nearly identical system has been proposed by Samson [Sam94], which also utilizes an unused

data section. However, instead of overwriting this sectionwith arbitrary watermark data, Samson’s

watermarks consist of three integers that exhibit an unusual property. A patent was issued for

this system in 1994, which uses one function to generate the watermark to be embedded in the

program. This function is keyed on a public program identification number that the producer

8

assigns to each product, and also a private key that the producer holds in secret. Program numbers

and corresponding customers are recorded by the producer for later use as evidence in case an

unauthorized copy is discovered. An additional method is added to the program which checks the

property of the watermark at runtime as a tamper-proofing measure. Since this property is unusual,

it is statistically unlikely to occur in three randomly chosen numbers. If the property holds, the

program is allowed to execute, otherwise the program terminates.

Mondenet al. [MIM +00] describe a method for watermarking individual Java classes that also

embeds the watermark in unused data, but instead of adding arbitrary static data, they add extra

code to the program. Their idea has been implemented in a toolcalledJMark [Mon00]. Their

system requires that the programmer include an extra methodin each class to be watermarked

and place a call to that method somewhere else in the code. This call should be conditioned on a

predicate which always evaluates to false, but static analysis techniques should not reveal this infor-

mation. Such predicates are calledopaque predicates[CTL98]. Predicating the call on an opaque

predicate is an attempt to prevent dead code analysis from locating and removing the method con-

taining the watermark. The watermark is then embedded in theextra method by changing operands

and opcodes such that the rules of well-formed classfiles arenot violated. Since the extra method

is never be called, the semantics of the class is unchanged. To encode the watermark, JMark treats

the message text as a stream of bits and encodes these bits in the extra method as it find opportu-

nities to do so. If JMark finds a bytecode that has an immediateoperand, it replaces the bits of the

immediate field with an equal number of message bits. For example, theiinc instruction takes

two eight bit parameters, first, the index of an integer localvariable, and second, a signed integer

value. The latter parameter may be replaced without disrupting the validity of the classfile.

Additionally, there are also opcodes that may be replaced. JMark has a table of equivalence

classes of Java bytecodes. The bytecodes in each equivalence class all share the same syntax, re-

quire identical operand stack pre-conditions, and produceidentical operand stack post-conditions.

This property guarantees that the validity of the classfile is preserved if any opcode in the set

is replaced with any other. For example, theiadd, isub, imul, idiv, irem, ishl, ishr,

iushr, iand, ior, andixor instructions all have no arguments, take two integer operands

from the stack, and push an integer result. The sets are trimmed to a size that is a power of two.

For each opcode in an equivalence class, JMark assigns a binary number. An example of such an

assignment is shown in Table 1. From these tables, opcodes may be changed to encode a number

of message bits equal to the binary logarithm of the size of the class.

Moskowitz [MC98] proposes a method of static software watermarking that draws from media

watermarking. In his system, the watermark is embedded in animage, which is then placed in the

static data segment of the program. In the case of this patent, the watermark data is not a simple

string, such as,"Copyright 2001 Acme Corp.", but instead is an essential piece of the code

for the program. At runtime, the code is extracted from the image with the help of a license key

9

Mnemonic Opcode Encoding

iadd 0x60 000

isub 0x64 001

imul 0x68 010

idiv 0x6C 011

irem 0x70 100

ishl 0x78 101

ishr 0x7A 110

iushr 0x7C 111

iand 0x7E

ior 0x80

ixor 0x82

Table 1: JMark bytecode replacements for one equivalence class. Notice that the last three are not

assigned a value. Two of these may be used to form another equivalence class to encode a single

message bit, leaving one unused.

provided by the user when the program is installed. In this way, copies, legal or illegal, must be

accompanied by the appropriate key. This key ties a copy of the software to the original purchaser

for the purpose of providing information as to the source of discovered illegal copies.

Other static watermarking systems encode the data within the program text itself, taking ad-

vantage of the fact that instructions, functions, or other program units exhibit a high degree of

independence. For any set,u, of program units that may be reordered, there are|u|! possible

arrangements. The United States patent issued to Davidson and Myhrvold [DM96] is one such

system that reorders program units, in this case basic blocks. The original ordering of the basic

blocks is recorded by the software producer and then modifiedin each watermarked copy. To ex-

pose the watermark in any copy, the ordering of basic blocks is observed by an analysis tool and

compared to the original to recover the watermark data.

Venkatesan et. al. [VVS01] present what appears to be the strongest known static software

watermarking technique. The idea is to treat the source program as a control flow graphG of basic

blocks, to which a watermark graphW is added forming a new graphH. G andW are merged

by adding code to the watermarked program that introduces new control flow edges between the

two graphs. To detect the watermark the extractor needs to identify most of the nodes ofW by

considering the control flow graph of the watermarked program. The authors suggest to “store more

one or more bits at a node that flags when a node is inW by using some padded data. . . ”. This

appears to be a serious weakness of the algorithm. Even if an adversary does not have access to the

exact method by which basic blocks are flagged as being members of W , he can apply a variety

10

of local code optimization techniques (such as peephole optimization, register re-allocation, and

instruction scheduling) that will completely restructureevery basic block of the program. This will

make watermark recognition virtually impossible.

Another static watermarking method is described by Stern et.al. [SHKQ99]. Like many media

watermarking algorithms this one is based on spread spectrum techniques. The idea is to obtain

a vectorc = (c1, . . . , cn) representing the number of times a group of instructionsi occurs in

the original program. For example,c5 might be the number of times the instruction sequence

mov %eax,%edx; push %eax occurs in an x86 program. To embed the watermark the code

is modified in such a way that in the watermarked program the instruction frequencies become

c = c + (w1, . . . , wn). Typical modifications include swapping the order of data-independent

instructions and replacing instruction sequences with equivalent ones. To detect the watermark we

compute the instruction frequenciesd = (d1, . . . , dn) of the watermarked program, and determine

if c andd are ”similar enough” in which case we conclude that the program was watermarked.

Unfortunately, it is easy for an attacker to perform the samesort of code modifications as the wa-

termarker, effectively obliterating the mark. Furthermore, only one bit of watermark is embedded

which is insufficient for most applications.

3.2 Dynamic Watermarks

Dynamic graph watermarkinginvolves encoding the message text in a subgraph added to the

heap. The watermark is detected by profiling the heap of a running program and searching for the

subgraph. This technique was developed as an attempt to close some of the major attack strategies

for static systems, namely the application of a semantics preserving program transformation, such

as code optimization or obfuscation4.

The process of watermarking a program using this method involves choosing an instance of a

graph to encode the message text, and adding code to the program which, when executed, builds

the graph in the heap. The code generation step is relativelysimple, but the choice of the water-

mark graph is key. Since the watermark will be encoded as a subgraph in the heap, the problem of

exposing the watermark is reduced to the subgraph isomorphism problem, which is known to be

NP-complete [GJ79]. To keep the exposition computationally feasible, Collberg and Thomborson

recommend using a family of enumerable graphs. Afamily is a set of graphs that have some struc-

tural properties in common. This aids in detecting the watermark in a heap profile because there

may be some simple heuristics that identify subgraphs whichexhibit the characteristic properties

of the family.

We say that a family of graphs,G, is enumerableif there exists a function,F : G → N , and

an inverse relation,F−1. Notice that there may be more than one graph which maps to a specific
4Program obfuscation transforms programs to make the task ofreverse engineering difficult [CTL97]

11

number, but for any graph in the family, it represents exactly one number. Many systems will use

a family for whichF is one-to-one, but this is not required for the purposes of watermarking. For

the purpose of watermarking, the producer of the software picks a numbern ∈ N . Then graphg

corresponding ton in the enumerable familyG is picked, i.e.,g ∈ F−1(n). Code is added to the

program to embed graphg in the heap. For more information on counting and enumerating graphs

and other combinatorial structures, see [GJ83] and [HP73].

There are two implementations of dynamic systems, both of which watermark Java programs,

each using a different graph family. The SandMark system [CT99b] uses a radix-k graph to encode

a number. A base,k, is chosen and the number is encoded in a circular linked listwith one extra

pointer per node. Each node in the list represents a power ofk. If the extra pointer is null, then that

node represents a coefficient of zero for the corresponding power. A self pointer encodes a value

of one, and a pointer to any other node encodes a coefficient equal to the number of steps required

to walk the list back to the node in question. A pointer to a single node in the list is kept which

identifies the node representingkn, wheren is the highest power required to represent the data.

Each successive node represents the next smaller power ofk. An example of radix representation

appears in Figure 2.

head

k4 k3 k2 k1 k0

Figure 2: A radix-k graph. Fork = 10, this represents decimal 30132.

SandMark also implements a feature by which the watermark only appears in the heap along a

prescribed path through the program. In this way, the watermark behaves much like an Easter Egg

found in some programs [NF98], although it is much more subtle because the normal user has no

knowledge of the program’s heap structure. Before the watermarking process begins, the developer

instruments the target program with calls to profiling methods. When run with a prescribed input, a

file is written with a trace of the instrumented program points. When the watermark code is inserted

into the program, the calls to the profiling class are replaced with code which will incrementally

build the graph.

12

root

Figure 3: A planted place cubic tree with three leaves representing one.

The JavaWiz program [PKK+00b] uses another family of graphs known asplanted plane cubic

trees, or PPCT’s [GJ83]. A PPCT is a binary tree that has a distinguished root. The root is

connected in a circular linked list with each of the leaves, and each leaf has a self-pointer. An

example of a PPCT is shown in Figure 3. Palsberget al. [PKK+00a] define a function,int, to map

from PPCT’s to integers as follows:

int(T) = int(T .left)× c(LeafNum(T .right) + int(T .right)

+ min int(LeafNum(T .left), LeafNum(T .right))

int(leaf) = 0

min int(L, R) = min int(L− 1, R + 1) + c(L− 1)× c(R + 1)

min int(1, R) = 0

c(n) =
1

n
×

(

2n− 2

n− 1

)

Themin int function returns the minimum number that a binary tree represents withL andR

leaves in the left and right subtrees, respectively. The functionc(n) is the Catalan numbers [GJ83].

LeafNum(T) returns the number of leaves in its parameter tree. Theleft andright members of

variableT are the left and right subtrees.

JavaWiz does not divide the graph building code over multiple program points, but instead

inserts the code in one place, usually themain method of the target program. This makes locating

and removing or modifying the graph building code very simple for an attacker armed with a

13

decompiler. It should be noted that this system was implemented as a proof of concept, and not for

practical use.

Collberg and Thomborson mention another graph encoding scheme that they refer to as an

enumerationencoding [CT99a]. This encoding usesparent pointer treesand has not been imple-

mented in any system. Although this family of graphs is enumerable, and therefore could be used

to encode message texts, these graphs may not be practical. Since each node has only a single

pointer to it’s parent, locally this structure is similar toother very common graphs such as linked

lists. Therefore, it may be very time consuming to locate a watermark of this type in a typical heap.

3.3 Other Anti-Piracy Techniques

Watermarking can only be effective against one threat to intellectual property, the use of illegal

copies. It is not a viable tool in preventing industrial espionage. There is nothing a watermark

can do if a competitor uses reverse engineering techniques to learn about the product and uses that

knowledge to develop a competing product.

Function hiding, as developed by Sander and Tschudin [ST98], is an effectivetechnique against

such a threat, although it requires a very different business model. If a producer develops an

algorithm which will provide a competitive advantage, the critical algorithm may be encrypted,

such that it is not possible to reverse engineer the algorithm. When the encrypted algorithm is run

on an input, the output is also encrypted, and requires that the output be sent to the producer of

the software for the decryption step. Instead of selling thesoftware, the producer of the product is

selling the decryption service. Currently, their technique is only applicable to polynomials. Future

work will be done attempting to generalize the methods so that they may be applied to arbitrary

programs.

This technique eliminates the reverse engineering attack because the program does not contain

the function,F , which is the trade secret. Instead it contains the encrypted function,E(F). With

Sander and Tschudin’s current technique for polynomials, it is still possible use reverse engineering

to obtain the coefficients ofE(F), but this is in effect the ciphertext. The plaintext coefficients are

still difficult to obtain, due to the one way functions employed [MvOV97].

While this technique has practical limitations, it is a muchstronger mechanism for the protec-

tion of intellectual property. Instead of being a steganographic technique, where an attacker has the

ability to learn about the watermark by observing patterns in the cover text, this is a cryptographic

technique. Therefore, the coefficients ofE(F) will appear to be random and the process of learning

about the encrypted information is made much more difficult.

This technique is only really viable when the computing resources required by the algorithm are

significantly greater then the resources needed to decrypt the solution. If this condition is not met,

then it would be more economical for the software service to be sold, and the customer would send

14

the service provider the input along with payment. The producer or other service provider would

run the program with the proprietary algorithm and send the results back. This is the model used by

the developers of the MOSS [Aik94] system at the University of California at Berkeley. Again, this

can be impractical because the software producer must also provide all of the computing resources

required to process the workloads of all customers.

3.4 Media Watermarking

Although the goal of software watermarking is identical to watermarking other digital media, the

methodology is quite different. When watermarking media, the data is hidden within the “noise”

inherent in the medium that is imperceptible to the human eyeor ear.

The simplest method for watermarking an image file is to replace the least significant bit of

every pixel with one bit of the watermark data. This introduces an acceptable level of noise which

the human eye should not be able to detect [KM92]. Unfortunately, this is also a very simple

scheme to break by most any lossy compression algorithm, or by applying a simple filter.

A more sophisticated method for watermarking audio isecho hiding[GBL96]. Zeros and ones

are encoded in the signal by adding a subtle echo to sounds which occur naturally. An echo at time

δ0 behind the original encodes a zero bit. A value of one is encoded with an echo at timeδ0 + δ1.

This system takes advantage of the fact that the human ear perceives an echo that is very close

in time to the original as very mild distortion. The decodingprocess for this system consists of

searching for the echoes and choosing likely values forδ0 andδ1. A second pass is made to find

the sequence of bits which represents the message text. The inventors of this system tested it with

some success against attacks using lossy compression algorithms. This system was successfully

attacked by Petitcolaset al.[PAK98]. For more information on other steganographic techniques for

audio and visual media, refer to the annotated bibliographyby Petitcolas and Anderson [PA99].

4 Attacks on Software Watermarking Schemes

Petitcolas remarks that the difficult problem in watermarking is not in inserting the message texts,

but in recognizing them later [PAK98]. This is certainly true, and the primary reason is the presence

of the attacker. In order to prevent someone from detecting the watermark, the attacker is free to try

anything to distort, destroy, or remove the watermark. The program implementing the exposition

functionD must be prepared for this possibility.

With a watermarked program, the attacker begins with the knowledge that it is a program, and

any transformation applied must yield a program. The attacker will try to apply transformations

that preserve the value, but just as the producer has an acceptable level of devaluation for the

15

watermarking process, the attacker may be willing to acceptfurther devaluation if the watermark

can be removed, e.g., an attacker might be willing to tolerate a limited functionality for a program.

4.1 Information Gathering Attacks

Before beginning to make modifications to the program, the attacker may make an attempt to gather

some information about the watermark. A first step may be to try and determine if the program is

in fact watermarked, and if it is, which watermarking systemwas used.

The first and most obvious information gathering attack is touse the watermarking system

itself. If the algorithms or tools implementing the algorithms are public, then the attacker may try

to use the exposition tools of various systems to probe for watermarks. If any possible watermarks

are found, the attacker now knows the system, and may be able to apply directed effort targeting a

known weakness of that system.

If the producer has embedded a different watermark or serialnumber in each copy sold, there

must be some difference between each pair of programs encountered. In this case, another simple

information gathering attack may be carried out with a file comparison program, such asdiff.

This is an example of acollusiveattack, since two or more watermarked copies are necessary.

The comparison program may inform the attacker about the location of the watermark within the

program by identifying the bytes in the executable which aredifferent between the two copies.

Knowing the location of the watermark allows for a more focused attack. For example, for a static

system which encodes the watermark in an unused data segment, once the location is known, that

data can be overwritten.

In addition to these simple information gathering attacks,almost any tool developed for the

purpose of software engineering or program understanding may be employed. For example, a

debugger may be useful for learning about the runtime behavior of the program. The attacker

may use this to search for anomalous behavior that may indicate the presence of a watermark.

For example, the program may allocate memory for a pointer-based data structure in a segment of

code that does not seem to require such structures. Similarly, a profiling tool may be useful for

searching for unusual program behavior, such as conditionals which always evaluate to the same

value. These may be checks for error conditions, but also maybeopaque predicates5 protecting

some aspect of the watermark.

Potentially the most powerful tools in an attacker’s arsenal are the decompiler or disassembler.

If assembly or even source code can be obtained, then the attacker has a powerful and convenient

platform for making and testing modifications to the programin a more easily understandable form.
5An opaque predicateis an expression which always evaluates to the same value at runtime, but the aforemen-

tioned property of the expression cannot be discovered by standard static analysis techniques. The concept of opaque

predicates was introduced in [CTL98].

16

For many languages, such as C and C++, decompilation may be very difficult, and the attacker

may be forced to analyze binaries. However, there are very effective decompilers available for

Java bytecode, such as [Kou01], and [vV96]. This alone may make secure watermarking of Java

programs very difficult.

4.2 Program Transformation Attacks

There are three basic methods by which an attacker may attempt to foil the watermark exposition

program. The watermark can be cut out completely by removingthe code or data that comprises the

message text. This is asubtractiveattack. Another approach is to add other watermarks or useless

data in an attempt to confuse the exposition program and prevent it from locating the authentic

watermark. This is anadditiveattack. Finally, adistortiveattack may succeed in mangling the

watermark so that it is unrecognizable, or so that it now encodes a different message text.

A specific transformation which embodies one of these strategies may fall into one of the two

categories,conservativeandspeculative. A conservative attack is one that preserves the semantics

of the program. We call it conservative because it is always safe to apply because the resulting

program will be functionally identical. Program optimization and obfuscation are two of the inter-

esting and potentially most powerful conservative attacks. Optimizations, such as code scheduling,

function inlining, and basic block layout modifications maydisrupt the patterns that the exposition

program relies on to locate watermarks. Obfuscation may also change the control flow, but also

may split types, promote variables, and complicate the heapwith extra pointer fields (see [CT99a]

and [CTL97] for examples). An example of obfuscation transformation on heaps is shown in

Figure 4.

A slightly weaker transformation that might still be effective against some systems is the use

of a decompiler or disassembler and immediate recompilation. When regenerating the executable,

the compiler may make different choices of instructions, code layout, or other features on which

an exposition program might rely on [MIM+00].

Another conservative transformation is the addition of newwatermarks into the program. This

attack may succeed on two levels. First, the new watermark may distort the original or it may

in some other way confuse the exposition function. In this way it is acting as an additive attack.

Second, in the case that the original watermark is left intact, the appearance of a second watermark

may cast into doubt the identity of the producer.

A speculative transformation is one that risks damaging thefunctionality of the program, pos-

sibly to the point where it is unusable. Of course, the attacker may attempt multiple such trans-

formations iteratively until a more desirable result (for the attacker) is produced. Most speculative

attacks can be greatly assisted by some prior knowledge. Thepotentially most effective attack is

a complete subtractive attack. If the attacker can learn where the watermark is and how it isen-

17

root

root

Figure 4: Semantics preserving obfuscating transformations targeting the heap. On the left, only

pointers are added. On the right, extra nodes further complicate the task of the exposition function.

coded, then the attacker can completely remove it. In the process, it is possible that some aspect of

the program other than the watermark may be disrupted, but repeated attempts using information

gathered at each stage may be successful.

Another powerful speculative attack may be launched on a dynamic graph watermark if the

graph can be located in memory. If found, then the attacker may insert extra code which changes

some of the pointers. This attack may either destroy the watermark by changing the structure

expected by the exposition program, or preserve the structure and change the encoded value. In

either case, the intended watermark cannot be recovered.

4.3 Attacks on Static Systems

Holmes’ watermarking system [Hol94] which encodes the message text in an unused data segment

may be the simplest system to break. Since the watermark datais in the same location in each copy

of the code, a collusive attack using a file comparison program may be used locate the watermark.

Once the location is known, it is trivial to overwrite that data. Since this system does not make any

tamper-proofing efforts, this attack is efficient and effective.

Recall that Samson [Sam94] embeds three integers that exhibit an unusual property in the

data segment. Moreover, an additional method is added to theprogram to check the property

of the embedded watermark. An attack on Samson’s system may begin with a collusive attack

identical to the attack on Holmes. Once the data is overwritten, however, the program is “broken”

18

because the watermark validity check will likely fail. However, to a sophisticated attacker, the

failure of the program may provide clues to drive further transformations. Using a debugger,

the attacker may learn exactly where the failing validity check is located in the code. Removing

the check may be trivial using an instrumentation library such as Dyninst [BH00]. The Dyninst

API is a set of functions which support attaching to running programs, inserting code into those

programs, as well is replacing or deleting code. This library is used for legitimate purposes to

develop profiling and debugging tools. Milleret al. [MCI+] describe a method using Dyninst for

removing a similar program validity check, a call to a function that contacts a license server from

a commercial program.

Since we could not locate an implementation of Holmes’ and Samson’s methods are patented,

we have not been able to experiment with their techniques andtest these attacks. Monden’s meth-

ods, described in [MIM+00], are implemented in a tool called JMark [Mon00], which isfreely

available for download. Recall that Monden et al. embed the watermark by adding extra meth-

ods. The authors tested their technique on two attack methods with some success. On each of ten

watermarked classfiles, they applied the SourceGuard obfuscater [Inc01]. After obfuscation, the

JMark exposition tool was successful in all cases. Secondly, they decompiled each classfile with

Mocha [vV96] and recompiled withjavac [Mic01]. Five of the classfiles failed to decompile,

and the five remaining had a total of eight watermarks. Five ofthese were successfully exposed

after recompilation. While these results are promising, the authors did not test their system against

an optimization attack. Since many optimizations either reorder code or replace operands, it is

obvious that such an attack could be very successful. To testthis hypothesis, we used the BLOAT

[HN99] Java optimizer on classfiles that were watermarked with JMark.This attack was successful

on every attempt.

Moskowitz’ [MC98] system is patented and we were not able to find an implementation of his

methods, we do not have access to Therefore, we can only hypothesize about potential attacks. Be-

cause the message text is part of the original program, we cannot launch an attack which attempts

to remove or disrupt the watermark without destroying the program. However, with some con-

certed effort, it may be possible to obtain a snapshot of the state of the program after the code has

been extracted and use this information to reconstruct a complete binary. This may be technically

very difficult, but it may be possible for a highly sophisticated attacker.

4.4 Attacks On Dynamic Systems

Realizing that many static systems could be easily defeatedby many semantics preserving trans-

formations, Collberg and Thomborson set out to develop a newsystem which would resist such

automatic attacks. With a dynamic graph technique [CT99a],the watermark is built by code in-

serted by the watermarking tool. If the program is modified but the semantics are preserved, the

19

heap behavior, and thus the watermark, must also be preserved.

Because JavaWiz and SandMark are readily available for download, we were able to experi-

ment with each. To set up the experiments, we had a colleague watermark a moderately large Java

programs and obfuscate the compiled classfiles with WingGuard [Cor00]. We began our attack

attempts with no knowledge of the source code, and armed withonly a decompiler, an editor, the

watermarking tools, and a compiler. All experiments were carried out on a Intel Pentium III 700

MHz computer, with 128MB of physical memory, running Red HatLinux kernel version 2.2.19-

6.2.1 and Sun’s Java Virtual Machine version 1.2.2-L.

4.4.1 Attacking JavaWiz

Since most of the code inserted by JavaWiz is in themain method of the program or somewhere

else along the program’s initialization path, it very easy to locate and remove. We ignore this

attack for JavaWiz because a serious implementation of thissystem would attempt to disguise the

inserted code through program obfuscation or other techniques. The authors tested JavaWiz against

two semantics preserving attacks, obfuscation and optimization [PKK+00a]. In their testing, all

attacks were unsuccessful. We tested JavaWiz against threeadditional attacks, two conservative

and one speculative.

We attempted an additive heap attack, which obfuscates the heap by inserting extra nodes. A

class in the program is selected, which has two members whichare references to other objects of

the same class. We allocated a collection of these nodes and randomly connected them into a large

jumbled graph. We tried adding various numbers of extra nodes, and in all cases, the exposition

function was still successful. Results from additive attacks on JavaWiz are shown in Figure 2.

Nodes Added Exposition Time

50 success 19.120s

100 success 19.230s

1000 success 20.600s

10000 success 42.610s

50000 success 168.810s

Table 2: Results from an additive heap attack on JavaWiz. Success indicates that watermark expo-

sition was successful. Time is measured in seconds.

Next, we added extra pointer fields to various classes and randomly assigned values to them.

This attack complicates the task of the exposition functionbecause the degree of many nodes in

the graph is increased, and there may be more candidate classes which have the requisite two

reference fields to be considered a potential PPCT node class. We tried adding one, two, and three

20

extra pointer fields, but were not able to cause the exposition function to fail. Additionally, the

execution time for each exposition attempt was minimally impacted.

Finally, we tried a speculative attack. First, informationwas gathered about the watermarking

tool by testing it on an‘‘Hello World’’ program. We examined the modified code and deter-

mined what sort of code additions we could expect to find in thetarget program. Specifically, we

searched for what types of fields were added to what classes, and what methods were added or

modified. On our simple example, we quickly discovered that three fields and one method were

added to the class being used as a vertex in the PPCT.

The target program was decompiled using Jad [Kou01] and using the information gathered,

the node class and the PPCT edge fields were located. We inserted code which modified the edge

fields in a few randomly selected nodes, recompiled and ran the exposition program.No watermark

could be located after this transformation.

4.4.2 Attacking SandMark

SandMark [CT99b] was tested against these same attacks. Theattack adding nodes to the heap

was not successful even in slowing down the exposition program. The second attack adding extra

edge fields was equally unsuccessful.

Using a speculative strategy identical to that used for JavaWiz, we randomly modified a single

edge field in one node of the graph by adding one line of code in themain method of the program,

recompiled, and tried to detect the watermark.As was the case with JavaWiz, the watermark was

not located.

5 UWStego: an extensible architecture for

dynamic software watermarking

Since dynamic watermarking systems are resilient to several attacks, we believe that they merit

further investigation. To aid in this future work, we are in the process of developing theUWStego

toolset. We have designed this toolset with the primary considerations ofportability, extensibility,

andresilience.

Portability: Portability is achieved by implementing this system in the Java programming lan-

guage [Mic01] using only standard classes.

Extensibility: Extensibility is achieved with an architecture that allowsany Java programmer

to implement new message text encoding systems, code generators, and watermark exposition

systems. UWStego provides an abstract interface for encoding and expositionof watermarks.

Therefore, if a designer devises a new enumerable family of graphs, they can easily incorporate

21

Profile

Encoder CodeEditor Scanner

user modules user modules user modules

ModuleLoader

target program WM Seek

Profile java JobFile

heap

Figure 5:UWStego toolset architectural overview. Grayed boxes indicates that the user provides

or specifies this component. Thejava andheap packages provide classes for loading and ma-

nipulating Java classes and heap profiles, respectively.

it into UWStego modules. Third-party users may take advantage of our Java classfile editing and

heap profile analysis systems.

Resilience:Suppose a dynamic software watermarking system uses a single family of enumerable

graphs, e.g., PPCT. In this case, an attacker can target their attack to this specific family. On the

other hand, imagine that we have a library of families of enumerable graphs. In this case the

specific family of graphs used for watermarking can be the vendor’s secret. Since an attacker

does not know the specific family of graphs that the vendor uses, the resilience of the software

watermarking system is enhanced. Collberg and Thomborson suggest that a watermarking tool

should have a library of many encoding technique [CT99a]. Itis easy to incorporate new families

of enumerable graphs inUWStego and therefore our toolset facilitates creating a library offamilies

of enumerable graphs.

An implementation of a watermarking system is a specializedprogram which makes modifi-

cations to another. TheUWStego toolset takes advantage of this fact by structuring most of the

code and heap manipulation features in such a way that they can be used to develop many dif-

ferent watermarking systems. TheUWStego toolset is specifically designed for implementations

of dynamic graph watermarking systems, but it can be modifiedfor use with many other types of

systems. Architectural view of theUWStego architecture is shown in Figure 5.

22

5.1 Generic Dynamic Watermarking Algorithms

In this section we describe generic algorithms for dynamic software watermarking. These generic

algorithms provide an abstract description of encoding andexposition functions, and form a basis

for the abstract programmer interface that allows a programmer to “plug in” an enumerable family

of graphs.

To embed a dynamic graph watermark,w ∈ W, in a program,p ∈ P, we must also choose

an enumerable family of graphs and a method of generating thecode to build the desired graph in

the heap at run time. ConsiderS to be the set of enumerable graph families that may be used as

watermarks, andE to be the set of algorithms for generating the code for constructing graphs. The

generic encoding functionE is shown in Figure 6.

The ENCODEMESSAGETEXT function is selected based on the specified graph family,f . It

takes the message text,w, as a parameter and returns the watermarked graph. The GENERATE-

CODE function is selected by thec parameter. It takes the target program,p, and the graph,g, from

the previous step and outputs the watermarked program. For example, in case of JavaWizf is the

family of PPCTs andg is the PPCT corresponding tow. Moreover, the watermarked programpw

contains the code for adding the PPCT to programp.

DYNAMIC GRAPHWATERMARK (p ∈ P, w ∈ W, f ∈ S, c ∈ E)

1 g ← ENCODEMESSAGETEXTf (w)

2 pw ← GENERATECODEc(p, g)

Figure 6: The Abstract Encoding Algorithm

A generic exposition function is shown in Figure 7. To exposea dynamic graph watermark

in a program, the DYNAMIC GRAPHEXPOSE function needs the state of the program,S(p, I, t),

and must also know the graph familyf to be used by the watermarking system. Additionally, this

function must know how exactly the graph is built, because various code generating algorithms

might make use of different programming language constructs in implementing the watermark.

The RECONSTRUCTSTATE function takes the observed program state,S(p, I, t) and constructs

a graph representation that the rest of the function can use.Depending on the language of the

target program, this representation may be annotated with addition information, such as the type

of each object. For the Java programs theUWStego toolset was designed to work with, this type

information is available.

After reconstructing the state of the program, each node in the heap is examined to determine

if it is part of a potential watermark. Depending on the graphfamily and the code generating algo-

rithm, the ISPOTENTIALWATERMARKNODE function uses heuristics to narrow down the possible

watermarks to just a few. For clarification, we will will gaintake the example of JavaWiz. Recall

23

that JavaWiz uses PPCTs as its family of graphs. The root nodeof a PPCT has one incoming edge

and two outgoing edges, and is start of a cycle (see Figure 3).This characteristic of the root node

of a PPCT can be used in the implementation of ISPOTENTIALWATERMARKNODE.

If a node,n, is identified as a potential watermark, the ISVALID WATERMARK function deter-

mines if a graph rooted atn is actually an instance of a graph of the correct family. If the graph

does have the correct structure, it’s value is found by the WATERMARKVALUE function and this

value is added to the set of exposed watermarks. After searching all nodes,n, in the heap, the set

of exposed watermarks is returned.

DYNAMIC GRAPHEXPOSE(S(p, I, t), f ∈ S, c ∈ E)

1 heap ← RECONSTRUCTSTATE(S (p, I , t))

2 found ← ∅

3 for eachn ∈ heapv

4 if ISPOTENTIALWATERMARKNODEfc(n) then

5 if ISVALID WATERMARK fc(n) then

6 found ← found ∪WATERMARKVALUE fc(n)

7 end if

8 end if

9 end for each

10 return (found)

Figure 7: The Abstract Exposition Algorithm

5.2 User Interface

The toolset we have implemented has a simple command line interface which consists of two

programs and one Java class. The system is divided into threesteps:profiling, watermark insertion,

and watermark exposition. The user interfaces corresponding to the three steps are defined in the

edu.wisc.cs.stego package.

5.2.1 Program Profiling

To increase the stealth of the watermark, a good watermark embedding system (for any dynamic

message text encoding) should allow the watermark to appearalong only one execution path

through the program. This feature was included in the SandMark [CT99b] system, and has also

been included in theUWStego toolset in theProfile class.

24

To use this feature in watermarking a target program, the user must select awatermark expo-

sition input. The watermark exposition input consists of an ordered set of input files and/or user

interactions. This input should be chosen in such a way that the path through the program on this

input is completely deterministic, i.e., no point along this path, should the call to a method in the

Profile class, should be dependent on something such as the amount ofmemory or the type

of network connection the host computer has.6 This is necessary so that the watermark can be

demonstrated on any computer that has an appropriate Java runtime environment.

TheProfile class provides two methods which are used to gather information about the target

program. TheProfile.initializeProfile method should be called from some point along

the startup or initialization path through the program. This must be called along all paths from the

start of the program to any call to theProfile.recordPoint method on any input. When the

program is being profiled, theinitializeProfilemethod takes a single argument which is an

instance of thejava.lang.String class which contains the name of a file to be written with the

profile data. When this method returns, the specified file is opened and the location in the program

is recorded in the file.

After the profile is initialized, theProfile.recordPointmethod makes note of the location

of the program in the file. Calls to this method should be placed at various program points which

will be passedon the watermark exposition input. It is along this path through the program that the

watermark will appear. After instrumenting the program with calls to the methods in theProfile

class, the program should be run on the watermark expositioninput to generate a profile which will

be used in the watermark insertion phase.

5.2.2 Watermark Insertion

The WM program performs the watermark insertion phase. It reads the profile generated in the

previous phase and locates the calls to the profiling methodsin the bytecode. The calls to those

methods will be replaced with code that builds the watermarkgraph in the heap.

TheWM program requires a single command line argument which is thename of ajob file. The

job file specifies the parameters required for watermarking aJava program and is an ASCII text

file containing a number of lines, each of which provides a value for a single parameter. Each line

begins with a parameter keyword, with white space separating the keyword from the data. Some

parameters are allowed to contain spaces, and these must be delimited by [: and :]. The order

of the parameters in the job file are unimportant to theWM program, but may be important to any

modules. The arguments to theEncoder andCodeEditor implementations are passed in the
6Allocation of a reasonable number of objects need not be considered non-deterministic, although it is somewhat

dependent on the runtime environment. It must be assumed that the watermark detection environment meets some

basic set of requirements.

25

order encountered in the job file. A description of the various fields that appear in the job file is

given in Table 3, and an example of a job file is given in Figure 4.

Keyword Enclosed Required Description

data yes yes the text to be encoded in the watermark

profile no yes the name of the file containing the profile data

target no yes the path to the directory containing the target program

outdir no yes the path to the directory where the

modified classfiles should be placed

node no yes the name of the class which should

be used as the node class in the graph

encoding no no the fully qualified name of the

class to use for data encoding

e-arg yes no an argument to the encoding class

ceditor no no the fully qualified name of

the class to use for bytecode modifications

ce-arg yes no an argument to the code writer class

Table 3: Descriptions of entries in the job file.

5.2.3 Watermark Exposition

The Seek program carries out the watermark detection phase, with arguments specified on the

command line. Two command line arguments are necessary, thename of theScanner imple-

mentation, and the name of a file containing the heap profile. The profile is generated by running

the target program on the watermark exposition input with the -Xrunhprof option of the Java

Virtual Machine [Mic01]. This file is parsed and the state of the heap when the program finishes

is recreated. TheSeek program then scans the heap for potential watermarks, writing the results

back to the console.

5.3 Programmer’s Interface

In order to aid in future watermarking research, we have designed our toolset to be extensible.

The basic toolset provides the framework for reading and writing classfiles, reading heap profiles,

as well as the basic utility work of parsing arguments and jobfiles. The toolset allows any user

to write new modules, which integrate seamlessly to allow experimentation with different data

encoding schemes.

26

data [:Copyright 2001 ABC Corp.:]

profile test/test.prof

target .

outdir ./testwm

node test.Main

encoding edu.wisc.cs.stego.modules.EncoderLoadTest

e-arg [:argument to EncoderLoadTest:]

ceditor edu.wisc.cs.stego.modules.Unprofile

ce-arg [:argument to Unprofile:]

Table 4: Example job file.

In order to implement a new encoding scheme, a programmer implement write three Java

classes, each of which inherits from a different abstract class provided in theedu.wisc.cs.stego

package. The toolset uses thejava.lang.reflectclasses along with the virtual machine’s class

loader system to instantiate the module classes. After obtaining an instance of a module specified

by the user, the toolset interacts with each module through the methods defined in the parent ab-

stract classes. There are three abstract classes which correspond to generating the graph to be used

for watermarking, encoding the graph in the heap, and exposing the graph in the heap respectively.

To simplify loading and instantiating module classes, eachobject is required to implement a

factory method. This factory method should use thenew operator to create the requested object

and return a reference. The factory methods each take an array of strings. For theEncoder and

CodeEditor classes, the strings are read in from the job file. For theScanner class, they are

specified on the command line of theSeek program.

The edu.wisc.cs.stego.Encoder class defines the prototype for a method for modules

which generates a graph from the watermark data. Any class which inherits from theEncoder

class must implement two methods:

• public static Encoder buildEncoder(String[] argv)

• public edu.wisc.cs.util.WatermarkGraph encodeWMData(String data)

The buildEncoder method is the factory method. The factory methods for the other two

module classes follow the same pattern, all taking an array of parameter strings and returning the

constructed object.

TheencodeWMData method will be called by theWM program to obtain a representation for

the watermark graph. Thedata parameter will contain the character data to be encoded within the

graph.

27

After obtaining the watermark graph, theWM program uses an instance of a class which inherits

from edu.wisc.cs.stego.CodeEditor to add the bytecode necessary to build the graph in the

runtime heap.

• public static CodeEditor buildCodeEditor(String[] argv)

• public void instrumentClasses(WatermarkGraph graph,

ProfilePoint[] profile, HashMap classes, String nodec)

The instrumentClasses method does the work of removing the calls to the profiling

methods and replaces them with code that will build the watermark at runtime. To hide the user

from the details of manipulating the Java bytecode, we have implemented aGenericEditor

class which can instrument a program with code to build any graph that can be represented with

theWatermarkGraph class. This implementation may not be as stealthy as possible, but it frees

the watermarking researcher to concentrate on the more difficult problem of watermark resilience

and exposition. If a scheme is found to warrant further experimentation, it would be advisable

to implement a customCodeEditor specific to the graph family being use. This would allow

the code generated to be the best possible for a given graph family and result in a more stealthy

watermark.

• public static Scanner buildScanner(String[] argv)

• public String[] scanHeap(HeapProfile hp)

ThescanHeap method searches the heap for potential watermarks and returns an array con-

taining any potential message texts found.

6 Future Work

The field of software watermarking is relatively new. Techniques that are currently being investi-

gated have several weaknesses and thus the area of software watermarking provides a great deal of

opportunity for further research.

6.1 Dynamic Watermarking

Since most dynamic techniques are resilient to several semantics preserving transformations, we

believe that they merit further investigation. We see two areas which need substantial improvement,

the types of graphs used, and the code insertion mechanism.

28

What makes radix-k and PPCT watermarks easy to break is that they are simple to locate. Since

they are in some ways unusual, there is a good chance that sucha structure is a watermark, if one

is found. We believe that it is the regular structure of thesegraphs that enables the graph scanning

heuristics to find them so efficiently. It would be interesting if a more general graph was used to

encode the watermark, especially one that does not have sucha regular structure and resembles the

heap structure of the program being watermarked.

To make such a graph useful for watermarking, an algorithm must be developed which would

allow efficient exposition of the graph on demand to someone with a secret key. As in cryptography,

discovery of the watermark graph should be very difficult to anyone without the key.

To solve this problem, we are currently investigating a result from the study of random graphs.

It has been shown that the subgraph isomorphism problem can be solved in polynomial time for

a random subgraph if the degree sequences are known [Lip78].For example, nodes in a directed

graph can be classified by their in-degree and out-degree. Degree sequences are a generalization

of this concept. We are investigating whether degree sequences can provide a stealthier technique

for dynamic watermarking of programs.

If it is now difficult for an attacker to detect the watermark graph, it still may be relatively

simple to detect the code which builds the graph by decompilation and inspection. To resolve this,

we believe much work needs to be done to improve the stealth ofthe watermark code, or thestatic

stealth. The simplest method improving the static stealth is in the choice of watermarking systems.

If a large library of systems can be developed, the programmer may choose the system based on

the traits of the target program and the code inserted by the type of code inserted by the system.

By matching the programming idioms used, it will be more difficult for an attacker to differentiate

the program code from the watermark code. Our packageUWStego facilitates the construction of

libraries of families of enumerable graphs.

All of the current work on dynamic software watermarking is focused on heap embedded wa-

termarks. Another direction we see for the future is searching for other types of dynamic systems.

We believe Collberg and Thomborson’s heap embedded graph idea has merit, but there are many

other opportunities to be explored. For example, an extra parameter can be added to some methods

in the program which are occasionally called in a sequence. Code can be added to each of these

methods that performs some simple operations. The results obtained in each method are passed

along to the next. After a specific sequence of calls to the modified methods, the watermark is

built and temporarily stored in some global variable. At other points in the program, this global

variable is cleared and potentially used for other purposes. In this way, the existence of the water-

mark is stealthy at runtime because of it’s locality to particular methods, and the fact that it will

be destroyed soon after it appears. It can also be made statically stealthy if the computation at

each stage is similar to other computation in the method. Additionally, the watermark computation

can be keyed on values from the normal operation of the program. To expose this watermark, the

29

program must be run on an input which causes the watermark path to be executed. As it is run, the

value of the global variable is watched by a debugger or another similar program.

6.2 TheUWStego Toolset

Currently, the-Xrunhprof option on the Java Virtual Machine is not really a profile of the heap

but a snapshot of the heap just after the program has finished executing. For watermarking, this

means that any dynamic graph structure which is embedded must be referred to by astatic

data members. Any object which is not accessible through a static member will already have

been reclaimed by the garbage collector by the time the profile is recorded. Using this current

technology greatly reduces the stealth and resilience of a watermark, because once the watermark

is created in memory, it must be retained for the duration of the program. This gives the attacker a

larger window of opportunity in which to observe and tamper with the watermark.

A logical next step is to create a watermark exposition environment that writes a heap profile

when some user specified condition is met. Using such a systemwould allow the watermark

structure to be created and destroyed in a short span in the program. When attempting to expose

a watermark, the producer would specify a predicate. The runtime environment would watch the

value of the predicate in the program and write the heap profile when it evaluates to true.

Additionally, we would like to develop a library of modules that implement different watermark

encoding schemes, along with corresponding exposition modules. Even within the dynamic graph

watermarking paradigm, we believe there are numerous possibilities for families of graphs that may

be used as watermark encodings which have yet to be explored.This library will give researchers

a more diverse range of techniques with which to experiment,and, in a practical sense, also makes

the job of an attacker more difficult.

6.3 Watermarking with Other Languages

Thus far, all of the interesting watermarking systems implemented have targeted programs written

in Java. From a research perspective, this is useful, because both the language itself and the

bytecode format are simple to work with. For experimental purposes, research ideas are relatively

easy to implement in a real system.

Conversely, it is quite unrealistic to expect a Java watermarking system to be satisfactorily

secure because the bytecode distribution format retains much of the information contained in the

source code. Our experience shows that unless tools are developed implementing much stronger

obfuscating technology, speculative attacks involving decompilation and manual modification have

a high likelihood of succeeding. Perhaps obfuscation techniques such as those discussed by Coll-

berg, Thomborson, and Low [CTL97] will ameliorate this weakness.

30

With improved obfuscation techniques, Java watermarking may be commercially viable, but

currently, much software is still written in languages suchas C and C++. Therefore, it would

be useful to take a serious look at watermarking these languages. It may be considerably more

difficult to edit the code at the binary executable level, butmay be reasonable at the level of the

intermediate form of the compiler. Regardless of the level at which the watermark is inserted, the

difficulty of the analysis and successful modification of a natively compiled binary will greatly

increase the security of the system.

6.4 Limits of Software Watermarking

Developing improvements to current software watermarkingtechnology presents a significant chal-

lenge. We believe that this is due to the fact that the watermarked product is still a program, and

as such, it is information rich. Furthermore, there are numerous software engineering tools which

have been developed for the purpose of aiding engineers in learning about a program, e.g., debug-

gers, profilers, disassemblers, and decompilers. These tools are every bit as useful for an attacker as

they are for a legitimate engineer. Attacks on dynamic systems may use some reverse engineering

techniques to locate the watermark generating code, which then may be removed. Profiling may

be used to locate opaque predicates. Disassemblers and decompilers may be used to transform the

program into a more understandable format, allowing for easy editing.

Since an attacker can be expected to use all of the available technology, it is the task of the

watermark designer to take these tools into account and prepare for them as best as possible.

Knowing this, the most important question to be asked is, in the presence of sophisticated attackers,

what is the best any software watermarking scheme can do?

To answer this question, it first must be determined if it is possible to model speculative at-

tacks. Since these attacks are not algorithmic and very muchprogrammer driven, this may be very

difficult or impossible.

6.5 The Ideal Software Identification System

There is no doubt that anyone in the profession of software design and development considers

it to be as much art as it is engineering. Two teams of programmers, given the same software

specification, are certain to make different design decisions on nearly every level, from program

architecture to the code that implements it. In fact Knight and Leveson [KL86] demonstrate the

two different teams of software engineers can produce significantly different design and code even

when they work from the same specification.

The ideal software identification system would capitalize on this fact. Instead of using a wa-

termark to add a signature, it would extract a fingerprint of the program which is intrinsic to the

31

design in much the same way that a person’s fingerprint is intrinsic to a person. A naive method

for fingerprint extraction would be to observe the order of call stack pushes and pops. The primary

difficulty in developing such a system is to assure that the signature is preserved when program

transformations are applied. For example, our naive systemis easily defeated by applying function

inlining and outlining.

If a software fingerprinting system can be developed which isresilient to semantics preserv-

ing transformations, it may be the ideal identification system. If no modification is made to the

program, an attacker has no way to determine whether or not the program is being protected with

any sort of identification system. If no decision can be made,the attacker intent on making illegal

copies has three options. First, the illegal copies can be made without any modification. In this

case those copies can be trivially identified by a fingerprintextraction system. Second, the attacker

may apply semantics preserving transformations in hopes that this will remove or distort any wa-

termark or fingerprint. This is the situation that the fingerprinting system designer must be most

concerned with. Lastly, the attacker may attempt some speculative program transformation which

is not semantics preserving. If this action is taken, the program is “broken” and the value of the

copies distributed is diminished because it is not functionally equivalent to the original.

7 Conclusion

The field of software watermarking is in its infancy. The systems proposed are interesting and

exhibit the range of diversity possible in the field, but manyhave vulnerabilities which are easy to

exploit. Therefore, the field of software watermarking is not yet commercially viable as a strong

deterrent to intellectual property theft and software piracy.

In this paper we presented metrics for evaluating software watermarking systems. We also

presented an extensible architectureUWStego for watermarking JAVA programs.UWStego is

a dynamic watermarking scheme and allows a software engineer to design new graph encoding

schemes and easily incorporate it into the architecture. Wealso discussed how the resilience of a

software watermarking scheme is enhanced by having a large library of encoding schemes, which

is facilitated byUwStego.

The next step for the watermarking technology is in characterizing speculative attacks and

developing systems that resist them. The most promising strategy may be increasing the stealth

of the watermark. If an attacker has difficulty learning about the watermark’s structure, it is much

harder to break. It may be possible to improve the stealth of dynamic watermarking techniques. If

this can be done, this may be the breakthrough in the softwarewatermarking field, because most

dynamic techniques are already immune to most semantics preserving attacks. To aid the research

in this area we are developing theUWStego toolset which is structured for easy experimentation

with dynamic watermarking techniques.

32

References

[Aik94] Alex Aiken. MOSS: A system for detecting software plagiarism.

http://www.cs.berkeley.edu/∼aiken/moss.html, 1994.

[BH00] Bryan Buck and Jeffrey Hollingsworth. An API for runtime code patching.Journal

of High Performance Computing Applications, 14(4):317–329, 2000.

[Cor00] WingSoft Corporation. Introduction to WingGuard 2.0.

http://www.wingsoft.com/wingguard.html, 2000.

[CT99a] Christian Collberg and Clark Thomborson. Softwarewatermarking: Models and dy-

namic embeddings. InSymposium on Principles of Programming Languages (POPL),

pages 311–324, 1999.

[CT99b] Christian Collberg and Gregg Townsend. SandMark: Software watermarking for java,

1999.

[CTL97] Christian Collberg, Clark Thomborson, and DouglasLow. A taxonomy of obfuscat-

ing transformations. Technical Report 148, University of Auckland, 1997.

[CTL98] Christian Collberg, Clark Thomborson, and DouglasLow. Manufacturing cheap,

resilient, and stealthy opaque constructs. InIn symposium on Principles of Program-

ming Languages (POPL), San Diego, CA, January 1998.

[DM96] Robert Davidson and Nathan Myhrvold. A method and system for generating and au-

diting a signature for a computer program. US Patent 5,559,884, Assignee: Microsoft

Corporation, September 1996.

[FP98] N. E. Fenton and S. L. Pfleeger.Software Metrics: A Rigorous and Practical Ap-

proach, Revised. PWS Publishing Company, 1998.

[GBL96] Daniel Gruhl, Walter Bender, and Anthony Lu. Echo hiding. In Information Hiding:

First International Workshop, pages 295–315, Berlin, Germany, May 1996. Springer-

Verlag.

[GJ79] Michael Garey and David Johnson.Computers and Intractibility: A Guide to the

Theory of NP-Completeness. W. H. Freeman, New York, New York, 1979.

[GJ83] Ian P. Goulden and David M. Jackson.Combinatorial Enumeration. John Wiley,

New York, 1983.

[Gla00] Jeff Glasser. The Software Sopranos, 2000. US News and World Report.

33

[HN99] Anthony Hosking and Nathan Nystrom. BLOAT: BytecodeLevel Optimizer and

Analysis Tool.http://www.cs.purdue.edu/homes/hosking/bloat/, 1999.

[Hol94] Keith Holmes. Computer software protection. US Patent 5,287,407, Assignee: Inter-

national Buisness Machines, February 1994.

[HP73] Frank Harary and Edgar Palmer.Graphical Enumeration. Academic Press, New

York, New York, 1973.

[Inc01] 4th Pass Inc. SourceGuard.http://www.4thpass.com/sourceguard/index.html,

2001.

[KL86] J.C. Knight and N.G. Leveson. An experimental evaluation of the assumption of inde-

pendence in multiversion programming.IEEE Transactions of Software Engineering,

12(1):96–109, 1986.

[KM92] Charles Kurak and John McHugh. A cautionary note on image downgrading. In

Computer Security Applications Conference, pages 153–159, 1992.

[Kou01] Pavel Kouznetsov. Jad: The fast JAva Decompiler.

http://www.geocities.com/SiliconValley/Bridge/8617/jad.html,

2001.

[Lip78] R. Lipton. The beacon set approach to graph isomorphism, 1978. Yale Dept. Comp.

Sci. preprint No. 135, 1978.

[MC98] Scott Moskowitz and Marc Cooperman. Method for stega-cypher protection of com-

puter code. US Patent 5,745,569, Assignee: The Dice Company, April 1998.

[MCI+] Barton Miller, Mihai Christodorescu, Robert Iverson, Tevfik Kosar, Alexander Mir-

gorodskii, and Florentina Popovici. Playing inside the black box: Using dynamic

instrumentation to create security holes. Submitted for publication, February, 2001.

[Mic01] Sun Microsystems. Java 2 SDK, Standard Edition Documentation.

http://www.javasoft.com/products/jdk/1.3/docs/index.html, 2001.

[MIM +00] Akito Monden, Hajimu Iida, Kenichi Matsumoto, Katsuro Inoue, and Koji Torii. A

practical method for watermarking java programs. Inthe 24th Computer Software

and Applications Conference, 2000.

[Mon00] Akito Monden. Java watermarking tools. http://tori.aist-

nara.ac.jp/jmark/, 2000.

34

[MvOV97] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptog-

raphy. CRC Press, 1997.

[NF98] David Nagy-Farkas. The easter egg archive.http://www.eeggs.com/, 1998.

[PA99] Fabien Petitcolas and Ross Anderson. Information hiding, an annotated bibliography,

1999.

[PAK98] Fabien Petitcolas, Ross Anderson, and Markus Kuhn.Attacks on copyright marking

systems.Second Workshop on Information Hiding, pages 218–238, 1998.

[Par72] D.L. Parnas. On the criteria to be used in decomposing system into modules.Com-

munications of the ACM, 15(12):1053–1058, December 1972.

[PKK+00a] Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao, and

Yi Zhang. Experience with software watermarking. InProceedings of 16th Annual

Computer Security Applications Conference (ACSAC), New Orleans, Lousiana, De-

cember 2000.

[PKK+00b] Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma,

Qiuyun Shao, and Yi Zhang. JavaWiz watermarking system.

http://www.cs.purdue.edu/homes/madi/wm/, 2000.

[Sam94] Peter Samson. Apparatus and method for serializingand validating copies of com-

puter software. US Patent 5,287,408, Assignee: Autodesk, Inc, February 1994.

[SHKQ99] Julien P. Stern, Gael Hachez, Francois Koeune, andJean-Jacques Quisquater. Robust

object watermarking: Application to code. InInformation Hiding, pages 368–378,

1999.

[ST98] Tomas Sander and Christian Tschudin. On sofware protection via function hiding. In

2nd International Workshop on Information Hiding, 1998.

[vV96] Hanpeter van Vleit. Mocha, the Java Decompiler.

http://www.brouhaha.com/∼eric/computers/mocha.html, 1996.

[VVS01] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. A graph theoretic ap-

proach to software watermarking. In4th International Information Hiding Workshop,

Pittsburgh, PA, April 2001.

[Way96] Peter Wayner.Disappearing Cryptography: Being and Nothingness on the Net. Aca-

demic Press, New York, New York, 1996.

35

