UWStego: A General Architecture
for Software Watemarking

C. Collberg S. Jha D. Tomko H. Wang
August 31, 2001

Abstract

Software piracy is a cause of substantial losses for softwandors. For example, soft-
ware and technology piracy is suspected to cause appradyr®it6 billion each year. Given
the magnitude of losses due to software piracy, companied ways to prosecute software
pirates. An essential step in proving the guilt of a suspkstE#tware pirate is to trace the
source of a program, i.e., that a specific program originfates a certain companysoftware
watermarkingis a technique that can be used for identifying the sourckeoptogram. In this
paper, we survey various software watermarking techniqWée present several metrics to
gauge the efficacy of various software watermarking scheifiesilly, we present the design
and implementation of a general architectuést ego, for watermarking JAVA programs.

1 Introduction

Suppose that the Acme Software Company develops and markatsgram and then sells the
distribution media and software licenses to customersoAtespoint along the distribution chain,
a software pirate obtains a copy of the media. The piratega& to make illegal copies and
distributes them through his or her own channels, possiblyugh the internet, or by “burning”
the software onto writable compact discs. The illegal copa@y clearly be pirated if, for example,
the software is offered for internet download, or the copres/ be packaged as an attempt to
counterfeit the original, and to thereby deceive the custams well as law enforcement authorities.
The Acme Software Company, having made a large investmeheidesign and development
of the program, is injured by the activity of software piat&’he program’s legitimate sales are
affected, and thus the ability of the company to develop r&ftwsare is diminished. Not only does

*Department of Computer Science, University of Arizona,sarg AZ 85721.
fComputer Sciences Department, University of Wisconsingistan, WI 53706.

1

this directly hurt the company and it's investors, but thgple effect through the economy can
be tremendous. For example, Los Angeles County Sheriftodésed $8.5 million in counterfeit
software in one search alone. Globally, software piracy@her technology piracy is suspected
to be a $16 billion business each year [Gla00].

Given the magnitude of the estimated losses, software peyduineed methods to discourage
the practice of piracy, and to aid in prosecuting criminalgew it takes place. The first step in
bringing a suspected software pirate to justice is to prbeedentity of any copies suspected to be
stolen.Watermarkings a mechanism which can be used for program identificatioa sbftware
producer embeds a watermark in a product before it is digedt then at some later date this
watermark can be exposed. This demonstrates that the offighe program is the producer. This
evidence can then be used in court as direct proof of the ahipeof the software copyright.
Alternatively, it can be used prior to a court case to obtapasitions and subpoenas in order to
gather further evidence.

If a product is watermarked, the pirate will try to find teatunes for removing, distorting, or
destroying the watermark to prevent subsequent identdicalOf course, the software producer
wants to structure the watermark so that it is either as diffias possible to remove, or so that
tampering with the watermark destroys the usability of tregpam.

At the highest level, there are two watermarking paradigims,most basic of which is the
embedding of a single watermark in the final production cdpgih® product, which insures that all
copies sold contain the same mark. This only protects agéieshreat of another party claiming
that the origin of a copy is not the actual producer. In thise¢cdhe existence of the producer’s
watermark can be demonstrated, and thus prove ownershige afticle of intellectual property.

The second paradigm is slightly stronger, because whersexitbe watermark provides more
information than simply the origin of the software. darial watermarkingknown in prior litera-
ture adingerprinting a different watermark is embedded in each copy sold, angrtigicer notes
at the time of sale the message text in that particular copytlaa customer to which it is sold. If
an illegal copy is suspected and a watermark can be detectedhen the owner of the software
can be confirmed and as well as the source of the illegal copig may allow for more evidence
to be collected, thus strengthening a court case againsstreor distributor of the illegal copy.

The methodology for software watermarking can also be diyitchto two major typesstatic
anddynamic Systems that encode the watermark data directly in thergnogxecutable are static
systems. The watermark may be stored in any part of the exfglelitso long as the semantics of
the program are preserved. For Java programs, the consianthe method or field tables, or any
attribute may be used to encode the watermark. To detectdternvark, the program executable
is statically analyzed by decode functiopsearching for the watermark data. Instead of encoding
the watermark data directly in the text of the program exaulet some systems add code to the
program which constructs the watermark in the runtime sihthe program. Such systems were

first proposed by Collberg and Thomborson [CT99a] and adeatdlynamic systemsTo detect
the watermark, instead of analyzing the program directiyne other artifact of the program is
searched such as a profile of the run time state of the proghkssnhematic diagram for software
watermarking is shown in Figure 1.

In this paper we explore dynamic watermarking systems. péyer makes three major contri-
butions to the field of dynamic software watermarking.

e First, we survey and classify existing software waternragkiechniques. Weaknesses of
these techniques are clearly discussed. Moreover, thred¢lshfor software watermarking
systems are also discussed in great detalil.

e Software metrics is a vast area [FP98], but the focus of afgignt amount of research on
software metrics is geared towards process. We believetétics for software watermark-
ing are fundamentally different from metrics for other are&software engineering because
of the presence of malicious attacker. We present variowsaador gauging the efficacy of
various software watermarking schemes. The subject oficsétas received scant attention
in the software watermarking literature, but is crucial teyatematic development of the
field.

e Finally, we present a general architectweast ego, for watermarking JAVA programs. Our
architecture enables a software engineer to easily impliemav dynamic software water-
marking techniques for JAVA programs. Modules in thast ego architecture are designed
using well established principles of information hidingafP2]. We also discuss how this
general architecture can be used to boost the stealth ahdrres of software watermarking
systems.

2 Definitions and Metrics

A steganographic system a method which hides a piece of extra information insidettaer
[Way96]. The goal of such a system is to disguise the existehextra data, called theessage
text within thecover text The message text can be retrieve@éxposedt some point in the future
in order to communicate the desired information.

The termwatermarking systemefers to a steganographic system when it is used to as$is in
protection of intellectual property by using the messageds a hidden, identifying mark. The in-
tent is not to communicate the message text to another pattig use the existence of the message
text, when necessary, as a proof of origin. To this end, thesage text is usually short, perhaps
something like © Copyri ght 2001 ABC Corp’ ' represented as an ASCIl encoded string. Such

|
| Static watermarking l
|

' -hides secret in :
\ program executable |

_ e e e — =

Watermarking . Dynamic watermarking
; | -hides secretin
hides secret . \\1 run time state of the program

encode

decode

__ wat er mar ked
sof t war e

Figure 1: Schematic diagram of software watermarking.

a short message text helps to keep it's presence impertsefii is still enough to be statistically
unlikely to appear by coincidence.

Recently, most research on steganography has focused @udimf message text into various
forms of digital objects. Since any digital object is simplgtring of bits, a steganographic system
for such objects can be treated in a mathematical fashi@teganographic systeimdefined by a
five-tuple,S = (O, W, Ow, €, D),

1. O isthe set of objects which may be usedcaser texts

2. W is the set of valid message texts veatermarks

3. Oy is the set otover textsvith an embedded message.

4. £: 0 x W — Oy is theencoding functiothat embeds a message text in a cover text.

5.D: 0 — P(W) lis theexposition functiorwhich attempts to detect and expose any
message texts contained withih,. Notice that the exposition function returns a set of
“potential” watermarks.

P(W) denotes the power set .

For our discussion of software watermarking systems, we asihsider© to be the set of
programsP, or some subset d, such as the set of Java programs. For any progpasP, and
a message texty; € WV, the watermarked prografi(p, w) is denoted by, .

A watermarkw € W, is exposedy D, and therefor® is said to be successful,if € D(p,,).
Assume that we are given a programe P and a watermarko € W. If p is not the result of
watermarking a program withh andw € D(p), then we have &alse alarmevent (denoted by
Ftalsealarm The expression given below formalizes the false alarmteven

w € D(p) Ap & E(P,w)

In the expression given abo¥éP, w) is the set of all programs obtained by watermarking with
or formally

E(P,w) = {pw|peP}

Now if we have a probability distribution over the set of pragpsP and watermarksV, then

we can compute th&alse alarm rate(denoted asy) as the probability of the false alarm event
Ftalsealarm Naturally, a watermarking system must be designed socthstacceptably small.
Likewise, without the presence of an attacker, the expositinction acting on a program that
contains a watermark embedded by the corresponding ergéutiction€ should be successful
with a very high probability. Assume that we are given a paogp and watermarko. The ex-
pression given below characterizes Hieevently;t, i.e., an embedded watermark is successfully
exposed

w € D(E(p,w))).

Now again if we have a probability distribution over the skpmgrams and watermarks, we can
compute thénit rate (denoted ag) as the probability of the hit eveitty,;;. The aim of a successful
watermarking system is to keep the hit ragtbigh and the false alarm ratelow.

An attack on a watermarking system is any functidn; P — P. We will denote the set of
possible attacks a&. A threat model M, for the purpose of watermarking research is a set of
attacks,M C A. We will discuss various strategies and specific attackeoti@n 5.

For this paper, we will us&€(p, I,t) to denote the runtime state of a progrgam(which may
or may not be watermarked) on inpltat program point. For current dynamic watermarking
implementations on Java programs, typicallg the end of the program, which we will denote as

end.
A person whose intent is to remove, distort, or destroy a medek is said to be aattacker
An attacker transforms a watermarked program so that theséixgn function cannot recover the

watermark, i.e., given a watermarked progréfp, w) an attacker chooses an atta¢ke A such
that

w & D(A(E(p, w)))

Once the attacker has destroyed the watermark, he/she sem snnew watermark’ using the
encoding functior£?,, i.e., the attacker uses the following operation:

E(A(E(p, w)),w')

2.1 Metrics

Before describing current software watermarking systemasadtack strategies, we need metrics
for evaluating these systems. Collberg and Thomborsondgfiaitions of stealth, resilience, and
data rate applicable to their dynamic graph technique [@].98e generalize these definitions and
also add a definition for the feasibility of a software watarking system.

The feasibility of a watermarking system measures the impact of embeddingtermwark in
a program. Specifically, the watermarked program mustfstiill the functional requirements
of the original, but there may be some performance impact. aRg program, we need some
function,V : P — R, to measure it's performance. A lower number indicatesbgirformance,
possibly in terms of execution time or memory requiremenite producer must choose some
acceptable impach, and choose a watermarking system such that fqr afidw, V‘}f;“)) <4, l.e.,
watermarking system does not slow down a program by moreafiactor ofs.

The data ratemeasures the number of message text bits which are encodéit peded to
the target prograny. The size of the target program may be increased in two wéngssize of
the executable in a storage medium, and the memory used hQydgeam at run time. These
correspond to the static and dynamic data rates, resplgctiVéne static data rate R(-,-) is
measured by comparing the size of the original and wateredagkecutables with the size of
the watermark. For a progrape P, and a message text<)V the data ratd,(p, w) is given by

[Pw| — ||
|w]

Rs(p, w) =

As mention before, if we have a distribution oi@and)V we can define thaverage static data
rate as the expected value & (p, w).

Additionally, the presence of the watermark may impact ize sf the runtime state of the
program. This impact is measured by thgamic data ratewhich is the ratio of the number of
bits added to the runtime state to the number of bits in themsrk. Given a program and

Notice that we assume that the algorithm for the encodingtfan€& is public.

message text the dynamic data ratB,(p, w) is defined as:

Ry(p,w) = e 5@ LOI =[5, 1,2)]
1eln(p),tePRy) |w|

In the equation given above(im and PP denotes the set of inputs and program points corrgspon
ing to p. Notice that we compute the maximum over all inputs and @ogpoints.

Collberg and Thomborson give a simple statistical measuséealth which looks for instruc-
tions and sequences of instructions that are unlikely taioiccthe normal program, and therefore
may be part of a watermark [CT99a]. This is interesting fastegns that add to or change the
program’s code, but is not applicable to other types of s@sgem

We considesstealthto be the difficulty of gathering information about the waterk. Before
making some modification to the program in an attempt to renanotherwise destroy a water-
mark, the attacker can be aided by some information aboubtiagon or nature of the watermark.
Once an attacker has the distribution media for a prograanetis no limit on what that he/she can
do to learn about the program and the watermark. Even reeaggeeering via a disassembler or
decompiler is applicable in attempts to learn about the msdek. Because of the wide variety of
non-mathematical information gathering attacks on waéeksy we give no equations for calcu-
lating a value for stealth, but it is important for watermagksystem designers to understand the
power and flexibility of these information gathering attack

We defineresilienceof a watermarking system to be the ability of the system t@sssfully
expose watermarks after an attack attempt has been made. ilM@ly consider algorithmic
attacks which may be automated when measuring the resliérecause if an attacker can learn
enough about a watermark, then it can be cut out exactly bg.Hathe right information can be
gathered, no system can withstand this type of attack. Téfiaitlon of resilience is generalized
from that given by Collberg [CT99a], who only considerecelkis which added extra information
to either the program executable or to the runtime statesoptbgram.

First, we define resilience with respect to one attack. Syesatly, we extend the definition to
multiple attacks. A static watermarking system is restlieran attack4d € A if the probability of
the following event is low?:

w & D(A(E(p, w))) -

A(E(p,w)) denotes the program obtained after applying the attattkthe watermarked program
E(p,w). The condition given above states that the valid watermadannot be recovered by the
exposition functionD. Therefore, the attack was successful in removing the watermark.

The corresponding definition for dynamic watermarking eygst requires one additional pa-
rametert, which is the program point specifying the time at which te@tve the program state.

3The precise definition of low probability depends on the eahtUsually low probability is a probability below a
certain threshold.

Similarly, a dynamic watermarking system is resilient toastiack A € A if the probability of the
following event is low:
w & D(S(AE(p,w)), 1,1)).

A watermarking system is said to Becurewith respect to a threat model, if the system is
resilient to each attack4 € M, and furthermore is resilient to any composition of thecksan
M. Define theclosureof M or C(M) to be:

CM) = {g1ogo...00.|q,....,9, € M}

A static system is secure with respect to a threat madeif and only if it is resilient with
respect to each attack € C(M). This definition logically extends to dynamic systems in the
same manner as for resilience with respect to a single attheke do not allow the attacker to
compose an arbitrary number of threats, then we can bourdrnbéh of the chain of compositions
to be less that a specific numbere.g., we define bounded closuré(M),. as

{g10g20...09, | g1, ..., 9 € Mandn < k} .

A watermarking system is resilient with respect to the bashclosure® (M), if it is resilient with
respect to each attack € C(M)j,.

3 A Survey of Current Watermarking Systems

3.1 Static Watermarks

A United States patent issued to Holmes [Hol94] in 1994 deesra simple static watermarking
method. In this system, the master copy of the program amsmtaisegment of data which is
not used by the program. The location and size of this unusgohent is determined when the
program is linked. When a copy of this program is made for attled distribution, this segment
is overwritten with the watermark information, such as theegtime, and destination of the copy.
Holmes proposes this method as being suitable for Interis¢tiltltion of a program, since a
serial watermark may be easily embedded by a server pravalistomers with copies as they are
purchased.

A nearly identical system has been proposed by Samson [Jawlt8idh also utilizes an unused
data section. However, instead of overwriting this sectvith arbitrary watermark data, Samson’s
watermarks consist of three integers that exhibit an urlysugerty. A patent was issued for
this system in 1994, which uses one function to generate #termark to be embedded in the
program. This function is keyed on a public program iderdtfimn number that the producer

8

assigns to each product, and also a private key that the peotiolds in secret. Program numbers
and corresponding customers are recorded by the producétén use as evidence in case an
unauthorized copy is discovered. An additional method deddo the program which checks the
property of the watermark at runtime as a tamper-proofingsomea Since this property is unusual,
it is statistically unlikely to occur in three randomly clemsnumbers. If the property holds, the
program is allowed to execute, otherwise the program teates

Mondenet al.[MIM *00] describe a method for watermarking individual Javasgaghat also
embeds the watermark in unused data, but instead of addiitgaay static data, they add extra
code to the program. Their idea has been implemented in acédield IMark [Mon00]. Their
system requires that the programmer include an extra mathedch class to be watermarked
and place a call to that method somewhere else in the cods.c@hishould be conditioned on a
predicate which always evaluates to false, but static arslgchniques should not reveal this infor-
mation. Such predicates are callgohque predicategCTL98]. Predicating the call on an opaque
predicate is an attempt to prevent dead code analysis froatitg and removing the method con-
taining the watermark. The watermark is then embedded iaxtra method by changing operands
and opcodes such that the rules of well-formed classfilea@reiolated. Since the extra method
is never be called, the semantics of the class is unchangeshcbde the watermark, JMark treats
the message text as a stream of bits and encodes these bigsartta method as it find opportu-
nities to do so. If IMark finds a bytecode that has an immedig¢eand, it replaces the bits of the
immediate field with an equal number of message bits. For piagrthei i nc instruction takes
two eight bit parameters, first, the index of an integer la@alable, and second, a signed integer
value. The latter parameter may be replaced without disrgphe validity of the classfile.

Additionally, there are also opcodes that may be replackthrid has a table of equivalence
classes of Java bytecodes. The bytecodes in each equisaass all share the same syntax, re-
quire identical operand stack pre-conditions, and prodieetical operand stack post-conditions.
This property guarantees that the validity of the class§il@reserved if any opcode in the set
is replaced with any other. For example, thedd, i sub, imul ,idiv,iremishl,ishr,

i ushr, iand,ior, andi xor instructions all have no arguments, take two integer opkran
from the stack, and push an integer result. The sets are &thtma size that is a power of two.
For each opcode in an equivalence class, JMark assigns iy bimaober. An example of such an
assignment is shown in Table 1. From these tables, opcodgdeneghanged to encode a number
of message bits equal to the binary logarithm of the sizeettass.

Moskowitz [MC98] proposes a method of static software wataking that draws from media
watermarking. In his system, the watermark is embedded image, which is then placed in the
static data segment of the program. In the case of this patentvatermark data is not a simple
string, such as;Copyri ght 2001 Acne Corp.", butinstead is an essential piece of the code
for the program. At runtime, the code is extracted from thagmwith the help of a license key

Mnemonic| Opcode| Encoding
i add 0x60 000
i sub 0x64 001
i mul 0x68 010
idiv 0x6C 011
irem 0x70 100
i shl 0x78 101
i shr Ox7A 110
i ushr 0x7C 111

i and OX7E
i or 0x80
i Xxor 0x82

Table 1: JMark bytecode replacements for one equivalemss cNotice that the last three are not
assigned a value. Two of these may be used to form anotheradgpice class to encode a single
message bit, leaving one unused.

provided by the user when the program is installed. In thig, wapies, legal or illegal, must be
accompanied by the appropriate key. This key ties a copyeodttware to the original purchaser
for the purpose of providing information as to the sourceis€avered illegal copies.

Other static watermarking systems encode the data witlpthgram text itself, taking ad-
vantage of the fact that instructions, functions, or oth@gpam units exhibit a high degree of
independence. For any set, of program units that may be reordered, there |afkpossible
arrangements. The United States patent issued to DaviadgbiMghrvold [DM96] is one such
system that reorders program units, in this case basic ®lotke original ordering of the basic
blocks is recorded by the software producer and then modifiedch watermarked copy. To ex-
pose the watermark in any copy, the ordering of basic bloekdserved by an analysis tool and
compared to the original to recover the watermark data.

Venkatesan et. al. [VVS01] present what appears to be tbagest known static software
watermarking technique. The idea is to treat the sourcerpno@s a control flow grapfd of basic
blocks, to which a watermark graph’ is added forming a new grapi. G andWW are merged
by adding code to the watermarked program that introducescoatrol flow edges between the
two graphs. To detect the watermark the extractor needsetutifyl most of the nodes dfi” by
considering the control flow graph of the watermarked progréhe authors suggest to “store more
one or more bits at a node that flags when a node 1§ iby using some padded data...”. This
appears to be a serious weakness of the algorithm. Even thaansary does not have access to the
exact method by which basic blocks are flagged as being menob&l’, he can apply a variety

10

of local code optimization techniques (such as peepholendgation, register re-allocation, and
instruction scheduling) that will completely restructeseery basic block of the program. This will
make watermark recognition virtually impossible.

Another static watermarking method is described by Steat. 6HKQ99]. Like many media
watermarking algorithms this one is based on spread sprdtohniques. The idea is to obtain
a vectorc = (cy,...,c,) representing the number of times a group of instructionscurs in
the original program. For example; might be the number of times the instruction sequence
nmov %eax, Yedx; push %eax occursin an x86 program. To embed the watermark the code
is modified in such a way that in the watermarked program tk&untion frequencies become
¢ = ¢+ (wy,...,w,). Typical modifications include swapping the order of datdeipendent
instructions and replacing instruction sequences witlivedgnt ones. To detect the watermark we
compute the instruction frequenciés= (ds, . .., d,) of the watermarked program, and determine
if ¢ andd are "similar enough” in which case we conclude that the paogwas watermarked.
Unfortunately, it is easy for an attacker to perform the saorne of code modifications as the wa-
termarker, effectively obliterating the mark. Furthermaonly one bit of watermark is embedded
which is insufficient for most applications.

3.2 Dynamic Watermarks

Dynamic graph watermarkingvolves encoding the message text in a subgraph added to the
heap. The watermark is detected by profiling the heap of aimgrprogram and searching for the
subgraph. This technique was developed as an attempt @ sose of the major attack strategies
for static systems, namely the application of a semantiesgiving program transformation, such
as code optimization or obfuscatfon

The process of watermarking a program using this methodvasahoosing an instance of a
graph to encode the message text, and adding code to thepregnich, when executed, builds
the graph in the heap. The code generation step is relasuglgle, but the choice of the water-
mark graph is key. Since the watermark will be encoded as graph in the heap, the problem of
exposing the watermark is reduced to the subgraph isonsnpproblem, which is known to be
NP-complete [GJ79]. To keep the exposition computatigrfathsible, Collberg and Thomborson
recommend using a family of enumerable graph$arily is a set of graphs that have some struc-
tural properties in common. This aids in detecting the wategk in a heap profile because there
may be some simple heuristics that identify subgraphs wkttibit the characteristic properties
of the family.

We say that a family of graphs;j, is enumerablef there exists a functionf’ : G — N, and
an inverse relationf"~!. Notice that there may be more than one graph which maps tecifisp

4Program obfuscation transforms programs to make the taskefse engineering difficult [CTL97]

11

number, but for any graph in the family, it represents eyamtle number. Many systems will use
a family for which F' is one-to-one, but this is not required for the purposes aémaarking. For
the purpose of watermarking, the producer of the softwarkspa number. € N. Then graphy
corresponding ta in the enumerable familg is picked, i.e.g € F~'(n). Code is added to the
program to embed graphin the heap. For more information on counting and enumegaiaphs
and other combinatorial structures, see [GJ83] and [HP73].

There are two implementations of dynamic systems, both a¢hwvatermark Java programs,
each using a different graph family. The SandMark systen®fbJ uses a radix-graph to encode
a number. A base, is chosen and the number is encoded in a circular linkeaviist one extra
pointer per node. Each node in the list represents a powerlbthe extra pointer is null, then that
node represents a coefficient of zero for the correspondimgep A self pointer encodes a value
of one, and a pointer to any other node encodes a coefficielal emithe number of steps required
to walk the list back to the node in question. A pointer to gg@mode in the list is kept which
identifies the node representig, wheren is the highest power required to represent the data.
Each successive node represents the next smaller powerAaf example of radix representation
appears in Figure 2.

head

Figure 2: A radixk graph. Fork = 10, this represents decimal 30132.

SandMark also implements a feature by which the watermaskappears in the heap along a
prescribed path through the program. In this way, the waddtrnehaves much like an Easter Egg
found in some programs [NF98], although it is much more sub#cause the normal user has no
knowledge of the program’s heap structure. Before the wadgting process begins, the developer
instruments the target program with calls to profiling mehdNhen run with a prescribed input, a
file is written with a trace of the instrumented program peiWhen the watermark code is inserted
into the program, the calls to the profiling class are remagih code which will incrementally
build the graph.

12

Figure 3: A planted place cubic tree with three leaves reasg one.

The JavaWiz program [PKKDOb] uses another family of graphs knowrpdanted plane cubic
trees or PPCTs [GJ83]. A PPCT is a binary tree that has a distinguished. rokhe root is
connected in a circular linked list with each of the leaves] aach leaf has a self-pointer. An
example of a PPCT is shown in Figure 3. Palshargl. [PKK*00a] define a functiorint, to map
from PPCT's to integers as follows:

int(7) = int(7.left) x c(LeafNum(T.right) + int(T.right)
+ min_int(LeafNum(7.left), LeafNum(T.right))
int(leaf) = 0
R) = minint(L—1, R+1)+c¢(L—1)xc(R+1)
min_int(1,R) = 0
)

1 (2n—2)
= — X
n n—1

Themin_int function returns the minimum number that a binary tree regmés withZ, and R
leaves in the left and right subtrees, respectively. Thetfanc(n) is the Catalan numbers [GJ83].
LeafNum(T') returns the number of leaves in its parameter tree. [Efteand right members of
variableT are the left and right subtrees.

JavaWiz does not divide the graph building code over mdtyglogram points, but instead
inserts the code in one place, usually tiee n method of the target program. This makes locating
and removing or modifying the graph building code very sienfdr an attacker armed with a

min_int(L,

c(n

13

decompiler. It should be noted that this system was impléeakss a proof of concept, and not for
practical use.

Collberg and Thomborson mention another graph encodingnsehthat they refer to as an
enumeratiorencoding [CT99a]. This encoding usgarent pointer treesind has not been imple-
mented in any system. Although this family of graphs is emmafle, and therefore could be used
to encode message texts, these graphs may not be practinaké €éach node has only a single
pointer to it's parent, locally this structure is similardther very common graphs such as linked
lists. Therefore, it may be very time consuming to locate tewaark of this type in a typical heap.

3.3 Other Anti-Piracy Techniques

Watermarking can only be effective against one threat telladtual property, the use of illegal
copies. It is not a viable tool in preventing industrial @spEge. There is nothing a watermark
can do if a competitor uses reverse engineering techniguearnn about the product and uses that
knowledge to develop a competing product.

Function hiding as developed by Sander and Tschudin [ST98], is an effdetmique against
such a threat, although it requires a very different busimaedel. If a producer develops an
algorithm which will provide a competitive advantage, thical algorithm may be encrypted,
such that it is not possible to reverse engineer the algoritWhen the encrypted algorithm is run
on an input, the output is also encrypted, and requires tigabtitput be sent to the producer of
the software for the decryption step. Instead of sellingstbiéwvare, the producer of the product is
selling the decryption service. Currently, their techmagaonly applicable to polynomials. Future
work will be done attempting to generalize the methods sottiey may be applied to arbitrary
programs.

This technique eliminates the reverse engineering attaciuse the program does not contain
the function,F, which is the trade secret. Instead it contains the enadyjotection,£(F'). With
Sander and Tschudin’s current technique for polynomitisstill possible use reverse engineering
to obtain the coefficients & (), but this is in effect the ciphertext. The plaintext coeéfitis are
still difficult to obtain, due to the one way functions emptoy{MvOV97].

While this technique has practical limitations, it is a msttonger mechanism for the protec-
tion of intellectual property. Instead of being a stegaapdyic technique, where an attacker has the
ability to learn about the watermark by observing pattenrthé cover text, this is a cryptographic
technique. Therefore, the coefficientsidfF') will appear to be random and the process of learning
about the encrypted information is made much more difficult.

This technique is only really viable when the computing teses required by the algorithm are
significantly greater then the resources needed to dedrgdlution. If this condition is not met,
then it would be more economical for the software serviceetedid, and the customer would send

14

the service provider the input along with payment. The peadwr other service provider would
run the program with the proprietary algorithm and sendéiselts back. This is the model used by
the developers of the MOSS [Aik94] system at the Universit@alifornia at Berkeley. Again, this
can be impractical because the software producer must eds@p all of the computing resources
required to process the workloads of all customers.

3.4 Media Watermarking

Although the goal of software watermarking is identical tatermarking other digital media, the
methodology is quite different. When watermarking medig, data is hidden within the “noise”
inherent in the medium that is imperceptible to the humanogyear.

The simplest method for watermarking an image file is to @plhe least significant bit of
every pixel with one bit of the watermark data. This introgsian acceptable level of noise which
the human eye should not be able to detect [KM92]. Unforigathis is also a very simple
scheme to break by most any lossy compression algorithny, applying a simple filter.

A more sophisticated method for watermarking audiedso hidingGBL96]. Zeros and ones
are encoded in the signal by adding a subtle echo to sound&wbcur naturally. An echo at time
0o behind the original encodes a zero bit. A value of one is eedadth an echo at tim&, + ¢;.
This system takes advantage of the fact that the human eegiypes an echo that is very close
in time to the original as very mild distortion. The decodirgcess for this system consists of
searching for the echoes and choosing likely valuesf@ndd;. A second pass is made to find
the sequence of bits which represents the message textnvdrgors of this system tested it with
some success against attacks using lossy compressioitlatggr This system was successfully
attacked by Petitcolaat al.[PAK98]. For more information on other steganographic tegbes for
audio and visual media, refer to the annotated bibliographketitcolas and Anderson [PA99].

4 Attacks on Software Watermarking Schemes

Petitcolas remarks that the difficult problem in watermiagkis not in inserting the message texts,
but in recognizing them later [PAK98]. This is certainlyérand the primary reason is the presence
of the attacker. In order to prevent someone from detediagvatermark, the attacker is free to try
anything to distort, destroy, or remove the watermark. Tiog@m implementing the exposition
functionD must be prepared for this possibility.

With a watermarked program, the attacker begins with thevikedge that it is a program, and
any transformation applied must yield a program. The a#@aekll try to apply transformations
that preserve the value, but just as the producer has antabtepevel of devaluation for the

15

watermarking process, the attacker may be willing to actegiter devaluation if the watermark
can be removed, e.g., an attacker might be willing to toéeadtmited functionality for a program.

4.1 Information Gathering Attacks

Before beginning to make modifications to the program, tteecker may make an attempt to gather
some information about the watermark. A first step may beytamid determine if the program is
in fact watermarked, and if it is, which watermarking systeas used.

The first and most obvious information gathering attack isige the watermarking system
itself. If the algorithms or tools implementing the algbriis are public, then the attacker may try
to use the exposition tools of various systems to probe foemvearks. If any possible watermarks
are found, the attacker now knows the system, and may beabfgpty directed effort targeting a
known weakness of that system.

If the producer has embedded a different watermark or seuiadber in each copy sold, there
must be some difference between each pair of programs eteredn In this case, another simple
information gathering attack may be carried out with a filenparison program, such as$f f .
This is an example of aollusiveattack, since two or more watermarked copies are necessary.
The comparison program may inform the attacker about thetilme of the watermark within the
program by identifying the bytes in the executable which difierent between the two copies.
Knowing the location of the watermark allows for a more faisttack. For example, for a static
system which encodes the watermark in an unused data segmeatthe location is known, that
data can be overwritten.

In addition to these simple information gathering atta@sost any tool developed for the
purpose of software engineering or program understandiag Ibe employed. For example, a
debugger may be useful for learning about the runtime behafithe program. The attacker
may use this to search for anomalous behavior that may itedtb@ presence of a watermark.
For example, the program may allocate memory for a poirésedt data structure in a segment of
code that does not seem to require such structures. Siynigagrofiling tool may be useful for
searching for unusual program behavior, such as condisonaich always evaluate to the same
value. These may be checks for error conditions, but alsolmea@paque predicates protecting
some aspect of the watermark.

Potentially the most powerful tools in an attacker’s arsanathe decompiler or disassembler.
If assembly or even source code can be obtained, then tlokertiaas a powerful and convenient
platform for making and testing modifications to the programmore easily understandable form.

5An opaque predicatés an expression which always evaluates to the same valumtine, but the aforemen-
tioned property of the expression cannot be discoveredandstrd static analysis techniques. The concept of opaque
predicates was introduced in [CTL98].

16

For many languages, such as C and C++, decompilation mayrigedifécult, and the attacker
may be forced to analyze binaries. However, there are véegtefe decompilers available for
Java bytecode, such as [Kou01], and [vV96]. This alone mayensacure watermarking of Java
programs very difficult.

4.2 Program Transformation Attacks

There are three basic methods by which an attacker may dtterfgal the watermark exposition
program. The watermark can be cut out completely by remawiegode or data that comprises the
message text. This issubtractiveattack. Another approach is to add other watermarks or sssele
data in an attempt to confuse the exposition program anceptat/from locating the authentic
watermark. This is amadditiveattack. Finally, adistortiveattack may succeed in mangling the
watermark so that it is unrecognizable, or so that it now desa@ different message text.

A specific transformation which embodies one of these grasemay fall into one of the two
categoriesgonservativandspeculative A conservative attack is one that preserves the semantics
of the program. We call it conservative because it is alwafs 0 apply because the resulting
program will be functionally identical. Program optimizat and obfuscation are two of the inter-
esting and potentially most powerful conservative attaCkstimizations, such as code scheduling,
function inlining, and basic block layout modifications ndigrupt the patterns that the exposition
program relies on to locate watermarks. Obfuscation may etange the control flow, but also
may split types, promote variables, and complicate the alpextra pointer fields (see [CT99a]
and [CTL97] for examples). An example of obfuscation transfation on heaps is shown in
Figure 4.

A slightly weaker transformation that might still be effieet against some systems is the use
of a decompiler or disassembler and immediate recompilatithen regenerating the executable,
the compiler may make different choices of instructionglectayout, or other features on which
an exposition program might rely on [MIMO].

Another conservative transformation is the addition of meatermarks into the program. This
attack may succeed on two levels. First, the new watermark digtort the original or it may
in some other way confuse the exposition function. In thig Was acting as an additive attack.
Second, in the case that the original watermark is left inthe appearance of a second watermark
may cast into doubt the identity of the producer.

A speculative transformation is one that risks damagindguhetionality of the program, pos-
sibly to the point where it is unusable. Of course, the agackay attempt multiple such trans-
formations iteratively until a more desirable result (foe tattacker) is produced. Most speculative
attacks can be greatly assisted by some prior knowledge pdteatially most effective attack is
acomplete subtractive attachf the attacker can learn where the watermark is and howahis

17

Figure 4: Semantics preserving obfuscating transformattargeting the heap. On the left, only
pointers are added. On the right, extra nodes further caatelthe task of the exposition function.

coded, then the attacker can completely remove it. In thega® it is possible that some aspect of
the program other than the watermark may be disrupted, petted attempts using information
gathered at each stage may be successful.

Another powerful speculative attack may be launched on aiyn graph watermark if the
graph can be located in memory. If found, then the attackerimsert extra code which changes
some of the pointers. This attack may either destroy therwetek by changing the structure
expected by the exposition program, or preserve the steietiod change the encoded value. In
either case, the intended watermark cannot be recovered.

4.3 Attacks on Static Systems

Holmes’ watermarking system [Hol94] which encodes the mgssext in an unused data segment
may be the simplest system to break. Since the watermarkdatthe same location in each copy
of the code, a collusive attack using a file comparison progray be used locate the watermark.
Once the location is known, it is trivial to overwrite thataaSince this system does not make any
tamper-proofing efforts, this attack is efficient and effext

Recall that Samson [Sam94] embeds three integers thatieghitunusual property in the
data segment. Moreover, an additional method is added trbgram to check the property
of the embedded watermark. An attack on Samson’s system egin kvith a collusive attack
identical to the attack on Holmes. Once the data is ovemwjthowever, the program is “broken”

18

because the watermark validity check will likely fail. Hoves, to a sophisticated attacker, the
failure of the program may provide clues to drive furthemgf@rmations. Using a debugger,
the attacker may learn exactly where the failing validitgckis located in the code. Removing
the check may be trivial using an instrumentation librarghsas Dyninst [BHO0]. The Dyninst
APl is a set of functions which support attaching to runninggpams, inserting code into those
programs, as well is replacing or deleting code. This lyiarused for legitimate purposes to
develop profiling and debugging tools. Millet al. [MCI] describe a method using Dyninst for
removing a similar program validity check, a call to a funatthat contacts a license server from
a commercial program.

Since we could not locate an implementation of Holmes’ ands®a’s methods are patented,
we have not been able to experiment with their techniquedestidhese attacks. Monden’s meth-
ods, described in [MIMOQ], are implemented in a tool called JMark [Mon00], whicHrisely
available for download. Recall that Monden et al. embed thtemnark by adding extra meth-
ods. The authors tested their technique on two attack methdtd some success. On each of ten
watermarked classfiles, they applied the SourceGuard céifers[IncO1]. After obfuscation, the
JMark exposition tool was successful in all cases. Secotity decompiled each classfile with
Mocha [vV96] and recompiled with) avac [MicO1]. Five of the classfiles failed to decompile,
and the five remaining had a total of eight watermarks. Fivihe$e were successfully exposed
after recompilation. While these results are promising atthors did not test their system against
an optimization attack. Since many optimizations eith@rder code or replace operands, it is
obvious that such an attack could be very successful. Tahissypothesis, we used the BLOAT
[HN99] Java optimizer on classfiles that were watermarket Wark. This attack was successful
on every attempt.

Moskowitz’ [MC98] system is patented and we were not ablertd &n implementation of his
methods, we do not have access to Therefore, we can onlylsginé about potential attacks. Be-
cause the message text is part of the original program, weotdsunch an attack which attempts
to remove or disrupt the watermark without destroying thegpsm. However, with some con-
certed effort, it may be possible to obtain a snapshot of thte ®f the program after the code has
been extracted and use this information to reconstruct gtmbinary. This may be technically
very difficult, but it may be possible for a highly sophistied attacker.

4.4 Attacks On Dynamic Systems

Realizing that many static systems could be easily defdatadany semantics preserving trans-
formations, Collberg and Thomborson set out to develop as$ystem which would resist such
automatic attacks. With a dynamic graph technique [CT9®&] watermark is built by code in-
serted by the watermarking tool. If the program is modifietithe semantics are preserved, the

19

heap behavior, and thus the watermark, must also be prelserve

Because JavaWiz and SandMark are readily available for h@adnhwe were able to experi-
ment with each. To set up the experiments, we had a colleagtexwark a moderately large Java
programs and obfuscate the compiled classfiles with Wing&[@2or00]. We began our attack
attempts with no knowledge of the source code, and armedomitha decompiler, an editor, the
watermarking tools, and a compiler. All experiments wengied out on a Intel Pentium Il 700
MHz computer, with 128MB of physical memory, running Red Hatux kernel version 2.2.19-
6.2.1 and Sun’s Java Virtual Machine version 1.2.2-L.

4.4.1 Attacking JavaWiz

Since most of the code inserted by JavaWiz is inrthé n method of the program or somewhere
else along the program’s initialization path, it very eagydcate and remove. We ignore this
attack for JavaWiz because a serious implementation oéysitem would attempt to disguise the
inserted code through program obfuscation or other teci@siqThe authors tested JavaWiz against
two semantics preserving attacks, obfuscation and opiioiz [PKK"00a]. In their testing, all
attacks were unsuccessful. We tested JavaWiz againstddcbgonal attacks, two conservative
and one speculative.

We attempted an additive heap attack, which obfuscatesdafye by inserting extra nodes. A
class in the program is selected, which has two members velnecheferences to other objects of
the same class. We allocated a collection of these nodesaddmly connected them into a large
jumbled graph. We tried adding various numbers of extra spded in all cases, the exposition
function was still successful. Results from additive dtsaon JavaWiz are shown in Figure 2.

Nodes Added Exposition| Time
50 success | 19.120s
100 success | 19.230s
1000 success | 20.600s
10000 success | 42.610s
50000 success | 168.810s

Table 2: Results from an additive heap attack on JavaWizc&asandicates that watermark expo-
sition was successful. Time is measured in seconds.

Next, we added extra pointer fields to various classes ardbraly assigned values to them.
This attack complicates the task of the exposition funcbenause the degree of many nodes in
the graph is increased, and there may be more candidateslagsch have the requisite two
reference fields to be considered a potential PPCT node &Mestried adding one, two, and three

20

extra pointer fields, but were not able to cause the expaositinction to fail. Additionally, the
execution time for each exposition attempt was minimallpacted.

Finally, we tried a speculative attack. First, informatigas gathered about the watermarking
tool by testingitonan‘ Hel | o Worl d’* program. We examined the modified code and deter-
mined what sort of code additions we could expect to find intéinget program. Specifically, we
searched for what types of fields were added to what clasedsywhat methods were added or
modified. On our simple example, we quickly discovered thete fields and one method were
added to the class being used as a vertex in the PPCT.

The target program was decompiled using Jad [KouO1] andyubi@ information gathered,
the node class and the PPCT edge fields were located. Weeidsede which modified the edge
fields in a few randomly selected nodes, recompiled and maxposition prograniNo watermark
could be located after this transformation.

4.4.2 Attacking SandMark

SandMark [CT99b] was tested against these same attacksatiwok adding nodes to the heap
was not successful even in slowing down the exposition mogiThe second attack adding extra
edge fields was equally unsuccessful.

Using a speculative strategy identical to that used for\l&mave randomly modified a single
edge field in one node of the graph by adding one line of codeeimdi n method of the program,
recompiled, and tried to detect the watermahk. was the case with JavaWiz, the watermark was
not located.

5 UWStego: an extensible architecture for
dynamic software watermarking

Since dynamic watermarking systems are resilient to sea#tiacks, we believe that they merit
further investigation. To aid in this future work, we are lretprocess of developing tlus\st ego
toolset. We have designed this toolset with the primary icianations ofportability, extensibility
andresilience

Portability: Portability is achieved by implementing this system in thgalprogramming lan-
guage [Mic01] using only standard classes.

Extensibility: Extensibility is achieved with an architecture that alloarsy Java programmer
to implement new message text encoding systems, code ¢@serand watermark exposition
systems. U\t ego provides an abstract interface for encoding and exposdfowatermarks.
Therefore, if a designer devises a new enumerable familyaylgs, they can easily incorporate

21

target program WM Seek

Profile java JobFile
heap
Profile
ModuleLoader
Encoder CodeEditor Scanner

user modules user modules user modules

Figure 5: UWBt ego toolset architectural overview. Grayed boxes indicates tifte user provides
or specifies this component. Thava andheap packages provide classes for loading and ma-
nipulating Java classes and heap profiles, respectively.

it into UWSt ego modules. Third-party users may take advantage of our Jagafde editing and
heap profile analysis systems.

Resilience:Suppose a dynamic software watermarking system uses & $amgily of enumerable
graphs, e.g., PPCT. In this case, an attacker can targetattaik to this specific family. On the
other hand, imagine that we have a library of families of earable graphs. In this case the
specific family of graphs used for watermarking can be thedwea secret. Since an attacker
does not know the specific family of graphs that the vendos,uge resilience of the software
watermarking system is enhanced. Collberg and Thombonsggest that a watermarking tool
should have a library of many encoding technique [CT99a§ éasy to incorporate new families
of enumerable graphs IM&t ego and therefore our toolset facilitates creating a librarfaatilies

of enumerable graphs.

An implementation of a watermarking system is a special@edram which makes modifi-
cations to another. Thewst ego toolset takes advantage of this fact by structuring moshef t
code and heap manipulation features in such a way that threpeaised to develop many dif-
ferent watermarking systems. Th&t ego toolset is specifically designed for implementations
of dynamic graph watermarking systems, but it can be modifiedse with many other types of
systems. Architectural view of tHéASt ego architecture is shown in Figure 5.

22

5.1 Generic Dynamic Watermarking Algorithms

In this section we describe generic algorithms for dynaroftwsare watermarking. These generic
algorithms provide an abstract description of encodingexpibsition functions, and form a basis
for the abstract programmer interface that allows a progranto “plug in” an enumerable family
of graphs.

To embed a dynamic graph watermaik,c W, in a programp € PP, we must also choose
an enumerable family of graphs and a method of generatingadtie to build the desired graph in
the heap at run time. Consid8rto be the set of enumerable graph families that may be used as
watermarks, anfl to be the set of algorithms for generating the code for canstrg graphs. The
generic encoding functioé is shown in Figure 6.

The BENCODEMESSAGETEXT function is selected based on the specified graph farfiilyit
takes the message text, as a parameter and returns the watermarked graph. ERNERATE-
CobDE function is selected by theparameter. It takes the target programmand the graphy, from
the previous step and outputs the watermarked program.xaon@e, in case of JavaWitzis the
family of PPCTs and is the PPCT corresponding te. Moreover, the watermarked program
contains the code for adding the PPCT to proggam

DYNAMIC GRAPHWATERMARK (p € P,w € W, f € S,c € E)
1 g < ENCODEMESSAGETEXT f(w)
2 Pw <— GENERATECODE,(p, g)

Figure 6: The Abstract Encoding Algorithm

A generic exposition function is shown in Figure 7. To expasgynamic graph watermark
in a program, the BNAMIC GRAPHEXPOSE function needs the state of the prografiip, 7,),
and must also know the graph famifyto be used by the watermarking system. Additionally, this
function must know how exactly the graph is built, becausgous code generating algorithms
might make use of different programming language constrmdimplementing the watermark.

The RECONSTRUCTSTATE function takes the observed program state, /, ¢) and constructs
a graph representation that the rest of the function can Depending on the language of the
target program, this representation may be annotated wdtian information, such as the type
of each object. For the Java programs th&t ego toolset was designed to work with, this type
information is available.

After reconstructing the state of the program, each nodeearheap is examined to determine
if it is part of a potential watermark. Depending on the grégrhily and the code generating algo-
rithm, the SPOTENTIALWATERMARKNODE function uses heuristics to narrow down the possible
watermarks to just a few. For clarification, we will will gaiake the example of JavaWiz. Recall

23

that JavaWiz uses PPCTs as its family of graphs. The root oba@®PCT has one incoming edge
and two outgoing edges, and is start of a cycle (see Figuréh$.characteristic of the root node
of a PPCT can be used in the implementationSHATENTIALWATERMARKNODE.

If a node,n, is identified as a potential watermark, t/8/ALID WATERMARK function deter-
mines if a graph rooted at is actually an instance of a graph of the correct family. # graph
does have the correct structure, it's value is found by tagBEMARKVALUE function and this
value is added to the set of exposed watermarks. After sisgrell nodesy, in the heap, the set
of exposed watermarks is returned.

DYNAMIC GRAPHEXPOSE(S(p, I,t), f € S,c € E)
heap <+ RECONSTRUCTSTATE (S (p, I, 1))
found «— ()
for eachn € heap,
if ISPOTENTIALWATERMARKNODE.(n) then
if ISVALID WATERMARK f.(n) then
found «— found U WATERMARKVALUE .(n)
end if
end if
end for each
return (found)

© 00N O Ol A WDN P

[EEN
o

Figure 7: The Abstract Exposition Algorithm

5.2 User Interface

The toolset we have implemented has a simple command lieeface which consists of two
programs and one Java class. The system is divided intogtepsprofiling, watermark insertion,
and watermark expositionThe user interfaces corresponding to the three steps &nedén the
edu. wi sc. cs. st ego package.

5.2.1 Program Profiling

To increase the stealth of the watermark, a good watermabedding system (for any dynamic
message text encoding) should allow the watermark to apgleag only one execution path
through the program. This feature was included in the SamdZT99b] system, and has also
been included in theMst ego toolset in thePr of i | e class.

24

To use this feature in watermarking a target program, the msist select avatermark expo-
sition input The watermark exposition input consists of an ordered Setpuit files and/or user
interactions. This input should be chosen in such a way Heapath through the program on this
input is completely deterministic, i.e., no point alongsthiath, should the call to a method in the
Profi |l e class, should be dependent on something such as the amoo@nebry or the type
of network connection the host computer h&sThis is necessary so that the watermark can be
demonstrated on any computer that has an appropriate Jauaewenvironment.

ThePr of i | e class provides two methods which are used to gather infommabout the target
program. TheProfile.initializeProfil e method should be called from some point along
the startup or initialization path through the program.slinust be called along all paths from the
start of the program to any call to tlRe of i | e.r ecor dPoi nt method on any input. When the
program is being profiled, theni ti al i zePr of i | e method takes a single argument which is an
instance of thg¢ ava. | ang. St ri ng class which contains the name of a file to be written with the
profile data. When this method returns, the specified file @ed and the location in the program
is recorded in the file.

After the profile is initialized, th&r of i | e.r ecor dPoi nt method makes note of the location
of the program in the file. Calls to this method should be pleatevarious program points which
will be passedn the watermark exposition input. It is along this path tigiothe program that the
watermark will appear. After instrumenting the programhagalls to the methods intie of i | e
class, the program should be run on the watermark exposipurn to generate a profile which will
be used in the watermark insertion phase.

5.2.2 Watermark Insertion

The WM program performs the watermark insertion phase. It read9tbfile generated in the
previous phase and locates the calls to the profiling methotte bytecode. The calls to those
methods will be replaced with code that builds the waterngagiph in the heap.

TheWwMprogram requires a single command line argument which isdnee of gob file. The
job file specifies the parameters required for watermarkidgva program and is an ASCII text
file containing a number of lines, each of which provides a@dbr a single parameter. Each line
begins with a parameter keyword, with white space sepay#tie keyword from the data. Some
parameters are allowed to contain spaces, and these muslitmatetd by [: and :]. The order
of the parameters in the job file are unimportant to\tgprogram, but may be important to any
modules. The arguments to tBacoder andCodeEdi t or implementations are passed in the

SAllocation of a reasonable number of objects need not beiderei non-deterministic, although it is somewhat
dependent on the runtime environment. It must be assumédhtnavatermark detection environment meets some
basic set of requirements.

25

order encountered in the job file. A description of the vasifields that appear in the job file is
given in Table 3, and an example of a job file is given in Figure 4

Keyword | Enclosed Required| Description
dat a yes yes the text to be encoded in the watermark
profile no yes the name of the file containing the profile data
t ar get no yes the path to the directory containing the target program
outdir no yes the path to the directory where the
modified classfiles should be placed
node no yes the name of the class which should
be used as the node class in the graph
encodi ng no no the fully qualified name of the
class to use for data encoding
e-arg yes no an argument to the encoding class
cedi tor no no the fully qualified name of
the class to use for bytecode modifications
ce-arg yes no an argument to the code writer class

Table 3: Descriptions of entries in the job file.

5.2.3 Watermark Exposition

The Seek program carries out the watermark detection phase, withnaegits specified on the
command line. Two command line arguments are necessaryaiime of theScanner imple-
mentation, and the name of a file containing the heap profte. profile is generated by running
the target program on the watermark exposition input with-thkr unhpr of option of the Java
Virtual Machine [MicO1]. This file is parsed and the statelod heap when the program finishes
is recreated. Th&eek program then scans the heap for potential watermarks ngritie results
back to the console.

5.3 Programmer’s Interface

In order to aid in future watermarking research, we havegiesl our toolset to be extensible.
The basic toolset provides the framework for reading antingriclassfiles, reading heap profiles,
as well as the basic utility work of parsing arguments andfilels. The toolset allows any user
to write new modules, which integrate seamlessly to allopeeixnentation with different data

encoding schemes.

26

data [:Copyright 2001 ABC Corp.:]
profile test/test.prof

target .

outdir ./testwm

node test.Main

encoding edu.wisc.cs.stego.modules.EncoderLoadTest
e-arg [:argument to EncoderLoadTest:]
ceditor edu.wisc.cs.stego.modules.Unprofile
ce-arg [:argument to Unprofile:]

Table 4: Example job file.

In order to implement a new encoding scheme, a programmeemgnt write three Java
classes, each of which inherits from a different abstrasscprovided in thedu. wi sc. cs. st ego
package. The toolsetuses fhera. | ang. r ef | ect classes along with the virtual machine’s class
loader system to instantiate the module classes. Afteiirobtaan instance of a module specified
by the user, the toolset interacts with each module throhighhethods defined in the parent ab-
stract classes. There are three abstract classes whigspond to generating the graph to be used
for watermarking, encoding the graph in the heap, and ergdke graph in the heap respectively.

To simplify loading and instantiating module classes, ealgject is required to implement a
factory method. This factory method should use ik operator to create the requested object
and return a reference. The factory methods each take anafrstrings. For the&encoder and
CodeEdi t or classes, the strings are read in from the job file. For3twnner class, they are
specified on the command line of tBeek program.

The edu. wi sc. cs. st ego.Encoder class defines the prototype for a method for modules
which generates a graph from the watermark data. Any clagshwhherits from theEncoder
class must implement two methods:

e public static Encoder buil dEncoder(String[] argv)

e public edu.w sc.cs.util.WatermarkG aph encodeWvDat a(Stri ng dat a)

The bui | dEncoder method is the factory method. The factory methods for therotivo
module classes follow the same pattern, all taking an arff@ak@ameter strings and returning the
constructed object.

The encodeWvDat a method will be called by th&Mprogram to obtain a representation for
the watermark graph. Thiat a parameter will contain the character data to be encodednvitib
graph.

27

After obtaining the watermark graph, tiwlprogram uses an instance of a class which inherits
fromedu. wi sc. cs. st ego.CodeEdi t or to add the bytecode necessary to build the graph in the
runtime heap.

e public static CodeEditor buil dCodeEditor(String[] argv)

e public void instrunment C asses(Wt er mar kG aph graph,
ProfilePoint[] profile, HashMap cl asses, String nodec)

Thei nst runent Cl asses method does the work of removing the calls to the profiling
methods and replaces them with code that will build the waaek at runtime. To hide the user
from the details of manipulating the Java bytecode, we hanmamented &eneri cEdi t or
class which can instrument a program with code to build aayplgthat can be represented with
theWat er mar kGr aph class. This implementation may not be as stealthy as pessib it frees
the watermarking researcher to concentrate on the moreutifiroblem of watermark resilience
and exposition. If a scheme is found to warrant further erxpentation, it would be advisable
to implement a custortodeEdi t or specific to the graph family being use. This would allow
the code generated to be the best possible for a given gragly fand result in a more stealthy
watermark.

e public static Scanner buil dScanner(String[] argv)

e public String[] scanHeap(HeapProfile hp)

ThescanHeap method searches the heap for potential watermarks anchsednrarray con-
taining any potential message texts found.

6 Future Work

The field of software watermarking is relatively new. Teclu@s that are currently being investi-
gated have several weaknesses and thus the area of softatarenarking provides a great deal of
opportunity for further research.

6.1 Dynamic Watermarking

Since most dynamic techniques are resilient to several sgrsgreserving transformations, we
believe that they merit further investigation. We see tveaamwhich need substantial improvement,
the types of graphs used, and the code insertion mechanism.

28

What makes radix-and PPCT watermarks easy to break is that they are simpledteloSince
they are in some ways unusual, there is a good chance thaasialcture is a watermark, if one
is found. We believe that it is the regular structure of thggsgphs that enables the graph scanning
heuristics to find them so efficiently. It would be interegtiha more general graph was used to
encode the watermark, especially one that does not haveasiegjular structure and resembles the
heap structure of the program being watermarked.

To make such a graph useful for watermarking, an algorithratrne developed which would
allow efficient exposition of the graph on demand to someatieasecret key. Asin cryptography,
discovery of the watermark graph should be very difficultng@ne without the key.

To solve this problem, we are currently investigating a Itefsom the study of random graphs.
It has been shown that the subgraph isomorphism problem eaolized in polynomial time for
a random subgraph if the degree sequences are known [Lip@8lexample, nodes in a directed
graph can be classified by their in-degree and out-degregreBesequences are a generalization
of this concept. We are investigating whether degree segseran provide a stealthier technique
for dynamic watermarking of programs.

If it is now difficult for an attacker to detect the watermanaph, it still may be relatively
simple to detect the code which builds the graph by deconnmiland inspection. To resolve this,
we believe much work needs to be done to improve the steattieofiatermark code, or trstatic
stealth The simplest method improving the static stealth is in th@ae of watermarking systems.
If a large library of systems can be developed, the progranmas choose the system based on
the traits of the target program and the code inserted byytie df code inserted by the system.
By matching the programming idioms used, it will be more difft for an attacker to differentiate
the program code from the watermark code. Our pack&@e ego facilitates the construction of
libraries of families of enumerable graphs.

All of the current work on dynamic software watermarkingastdised on heap embedded wa-
termarks. Another direction we see for the future is seacfor other types of dynamic systems.
We believe Collberg and Thomborson’s heap embedded graahhids merit, but there are many
other opportunities to be explored. For example, an extrarpater can be added to some methods
in the program which are occasionally called in a sequenceleCan be added to each of these
methods that performs some simple operations. The resbiiéén@d in each method are passed
along to the next. After a specific sequence of calls to theifieddmethods, the watermark is
built and temporarily stored in some global variable. Atestpoints in the program, this global
variable is cleared and potentially used for other purpolsethis way, the existence of the water-
mark is stealthy at runtime because of it's locality to gaéar methods, and the fact that it will
be destroyed soon after it appears. It can also be madeadifastealthy if the computation at
each stage is similar to other computation in the method itAwatglly, the watermark computation
can be keyed on values from the normal operation of the pnogif@ expose this watermark, the

29

program must be run on an input which causes the watermank@ae executed. As it is run, the
value of the global variable is watched by a debugger or amnimilar program.

6.2 Theuwst ego Toolset

Currently, the- Xr unhpr of option on the Java Virtual Machine is not really a profile of tieap
but a snapshot of the heap just after the program has finistesigng. For watermarking, this
means that any dynamic graph structure which is embedded meuseferred to by &t ati c
data members. Any object which is not accessible througlatec shember will already have
been reclaimed by the garbage collector by the time the pridfitecorded. Using this current
technology greatly reduces the stealth and resilience aftanwark, because once the watermark
is created in memory, it must be retained for the duratiomefdrogram. This gives the attacker a
larger window of opportunity in which to observe and tampéhwhe watermark.

A logical next step is to create a watermark exposition emrirent that writes a heap profile
when some user specified condition is met. Using such a systemd allow the watermark
structure to be created and destroyed in a short span in tigegmn. When attempting to expose
a watermark, the producer would specify a predicate. Themenenvironment would watch the
value of the predicate in the program and write the heap prefilen it evaluates to true.

Additionally, we would like to develop a library of moduldsat implement different watermark
encoding schemes, along with corresponding expositioruhesd Even within the dynamic graph
watermarking paradigm, we believe there are numerouslubiss for families of graphs that may
be used as watermark encodings which have yet to be expldhesllibrary will give researchers
a more diverse range of techniques with which to expering, in a practical sense, also makes
the job of an attacker more difficult.

6.3 Watermarking with Other Languages

Thus far, all of the interesting watermarking systems imp#ated have targeted programs written
in Java. From a research perspective, this is useful, bedaoit the language itself and the
bytecode format are simple to work with. For experimentappses, research ideas are relatively
easy to implement in a real system.

Conversely, it is quite unrealistic to expect a Java wateking system to be satisfactorily
secure because the bytecode distribution format retairch moiithe information contained in the
source code. Our experience shows that unless tools areopgedamplementing much stronger
obfuscating technology, speculative attacks involvingoaepilation and manual modification have
a high likelihood of succeeding. Perhaps obfuscation tieel@s such as those discussed by Coll-
berg, Thomborson, and Low [CTL97] will ameliorate this weeks.

30

With improved obfuscation techniques, Java watermarkiag tve commercially viable, but
currently, much software is still written in languages sashC and C++. Therefore, it would
be useful to take a serious look at watermarking these |layjegualt may be considerably more
difficult to edit the code at the binary executable level, imaty be reasonable at the level of the
intermediate form of the compiler. Regardless of the leveltach the watermark is inserted, the
difficulty of the analysis and successful modification of dvedy compiled binary will greatly
increase the security of the system.

6.4 Limits of Software Watermarking

Developing improvements to current software watermark@etnology presents a significant chal-
lenge. We believe that this is due to the fact that the watdeedbproduct is still a program, and
as such, it is information rich. Furthermore, there are mome software engineering tools which
have been developed for the purpose of aiding engineeraiinitey about a program, e.g., debug-
gers, profilers, disassemblers, and decompilers. Thelseai@oevery bit as useful for an attacker as
they are for a legitimate engineer. Attacks on dynamic systeay use some reverse engineering
techniques to locate the watermark generating code, whigh thay be removed. Profiling may
be used to locate opaque predicates. Disassemblers anupiters may be used to transform the
program into a more understandable format, allowing foy ealting.

Since an attacker can be expected to use all of the availethaology, it is the task of the
watermark designer to take these tools into account andapreipr them as best as possible.
Knowing this, the most important question to be asked id)@presence of sophisticated attackers,
what is the best any software watermarking scheme can do?

To answer this question, it first must be determined if it isgible to model speculative at-
tacks. Since these attacks are not algorithmic and very mogdrammer driven, this may be very
difficult or impossible.

6.5 The Ideal Software Identification System

There is no doubt that anyone in the profession of softwastgdeand development considers
it to be as much art as it is engineering. Two teams of prograrangiven the same software
specification, are certain to make different design dexnssian nearly every level, from program
architecture to the code that implements it. In fact Knigid &eveson [KL86] demonstrate the
two different teams of software engineers can producefignily different design and code even
when they work from the same specification.
The ideal software identification system would capitalipetlois fact. Instead of using a wa-
termark to add a signature, it would extract a fingerprinthef program which is intrinsic to the

31

design in much the same way that a person’s fingerprint i;8itrto a person. A naive method
for fingerprint extraction would be to observe the order dfstack pushes and pops. The primary
difficulty in developing such a system is to assure that thheature is preserved when program
transformations are applied. For example, our naive systeasily defeated by applying function
inlining and outlining.

If a software fingerprinting system can be developed whiatesslient to semantics preserv-
ing transformations, it may be the ideal identification eyst If no modification is made to the
program, an attacker has no way to determine whether or eqirthgram is being protected with
any sort of identification system. If no decision can be méueattacker intent on making illegal
copies has three options. First, the illegal copies can bdeemathout any modification. In this
case those copies can be trivially identified by a fingergxtitaction system. Second, the attacker
may apply semantics preserving transformations in hopashis will remove or distort any wa-
termark or fingerprint. This is the situation that the finganing system designer must be most
concerned with. Lastly, the attacker may attempt some $g@eeiprogram transformation which
is not semantics preserving. If this action is taken, themm is “broken” and the value of the
copies distributed is diminished because it is not funeilyrequivalent to the original.

7 Conclusion

The field of software watermarking is in its infancy. The gyss proposed are interesting and
exhibit the range of diversity possible in the field, but m&aye vulnerabilities which are easy to
exploit. Therefore, the field of software watermarking i$ yet commercially viable as a strong
deterrent to intellectual property theft and software gjira

In this paper we presented metrics for evaluating softwaatemnarking systems. We also
presented an extensible architectuhd5t ego for watermarking JAVA programsUWGt ego is
a dynamic watermarking scheme and allows a software engionedesign new graph encoding
schemes and easily incorporate it into the architectureaM discussed how the resilience of a
software watermarking scheme is enhanced by having a lémgey of encoding schemes, which
is facilitated byuwst ego.

The next step for the watermarking technology is in charatitg speculative attacks and
developing systems that resist them. The most promisiagesty may be increasing the stealth
of the watermark. If an attacker has difficulty learning attibve watermark’s structure, it is much
harder to break. It may be possible to improve the stealttypédhic watermarking techniques. If
this can be done, this may be the breakthrough in the softwatermarking field, because most
dynamic techniques are already immune to most semantissmiag attacks. To aid the research
in this area we are developing thi\&t ego toolset which is structured for easy experimentation
with dynamic watermarking techniques.

32

References

[Aik94]

[BHOO]

[Cor00]

[CT99a]

[CT99b]

[CTLO7]

[CTLOS]

[DM96]

[FPO8]

[GBLY6]

[GJ79]

[GJ83]

[Gla00]

Alex Aiken. MOSS: A system for detecting software agiarism.
http://ww. cs. ber kel ey. edu/ ~ai ken/ noss. ht il , 1994.

Bryan Buck and Jeffrey Hollingsworth. An API for rumte code patchingJournal
of High Performance Computing Applicatiqrigi(4):317-329, 2000.

WingSoft Corporation. Introduction to WingGuard .02
http://ww. wi ngsoft. conlw ngguard. ht m ,2000.

Christian Collberg and Clark Thomborson. Softwaetermarking: Models and dy-
namic embeddings. I[Bymposium on Principles of Programming Languages (POPL)
pages 311-324, 1999.

Christian Collberg and Gregg Townsend. SandMadftvgare watermarking for java,
1999.

Christian Collberg, Clark Thomborson, and Doudlasv. A taxonomy of obfuscat-
ing transformations. Technical Report 148, University ofckland, 1997.

Christian Collberg, Clark Thomborson, and Douglasv. Manufacturing cheap,
resilient, and stealthy opaque constructslnisymposium on Principles of Program-
ming Languages (POPLyan Diego, CA, January 1998.

Robert Davidson and Nathan Myhrvold. A method andeysfor generating and au-
diting a signature for a computer program. US Patent 5,989 8ssignee: Microsoft
Corporation, September 1996.

N. E. Fenton and S. L. PfleegeBoftware Metrics: A Rigorous and Practical Ap-
proach, RevisedPWS Publishing Company, 1998.

Daniel Gruhl, Walter Bender, and Anthony Lu. Echding. InInformation Hiding:
First International Workshoppages 295-315, Berlin, Germany, May 1996. Springer-
Verlag.

Michael Garey and David JohnsoQomputers and Intractibility: A Guide to the
Theory of NP-Completenesd/. H. Freeman, New York, New York, 1979.

lan P. Goulden and David M. Jackso@ombinatorial Enumeration John Wiley,
New York, 1983.

Jeff Glasser. The Software Sopranos, 2000. US Ned3\orld Report.

33

[HN99] Anthony Hosking and Nathan Nystrom. BLOAT: Bytecobevel Optimizer and
Analysis Tool.ht t p: / / www. cs. pur due. edu/ hones/ hoski ng/ bl oat /,1999.

[Hol94] Keith Holmes. Computer software protection. USdPat5,287,407, Assignee: Inter-
national Buisness Machines, February 1994.

[HP73] Frank Harary and Edgar PalmeGraphical Enumeration Academic Press, New
York, New York, 1973.

[IncO1] 4 Pass Inc. SourceGuattat.t p: / / www. 4t hpass. coml sour ceguar d/ i ndex. htm ,
2001.

[KL86] J.C. Knight and N.G. Leveson. An experimental evalmaof the assumption of inde-
pendence in multiversion programmin&EE Transactions of Software Engineerjng
12(1):96-109, 1986.

[KM92] Charles Kurak and John McHugh. A cautionary note orag®m downgrading. In
Computer Security Applications Conferenpages 153-159, 1992.

[Kou01] Pavel Kouznetsov. Jad: The fast JAva Decompiler.
http://ww. geocities.con’ SiliconValley/Bridge/8617/jad. htm,
2001.

[Lip78] R. Lipton. The beacon set approach to graph isomiemh1978. Yale Dept. Comp.
Sci. preprint No. 135, 1978.

[MC98] Scott Moskowitz and Marc Cooperman. Method for stegpher protection of com-
puter code. US Patent 5,745,569, Assignee: The Dice Company 1998.

[MCI] Barton Miller, Mihai Christodorescu, Robert Iverson, TigewKosar, Alexander Mir-
gorodskii, and Florentina Popovici. Playing inside theckl®ox: Using dynamic
instrumentation to create security holes. Submitted fdipation, February, 2001.

[MicO1] Sun Microsystems. Java 2 SDK, Standard Edition Doentation.
http://ww.javasoft.conl products/jdk/ 1.3/ docs/index. htn,h 2001.

[MIM T00] Akito Monden, Hajimu lida, Kenichi Matsumoto, Katsunaolue, and Koji Torii. A
practical method for watermarking java programs.the 24" Computer Software
and Applications Conferenc2000.

[Mon00] Akito Monden. Java watermarking tools. http://tori.aist-
nara. ac. j p/ j mark/,2000.

34

[MvOV97] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstétasmdbook of Applied Cryptog-

[NF98]

[PA99]

[PAKOS]

[Par72]

[PKK*00a]

[PKK*00b]

[Sam94]

[SHKQ99]

[STO8]

[VV96]

[VVSO01]

[Way96]

raphy. CRC Press, 1997.
David Nagy-Farkas. The easter egg archivet. p: / / ww. eeggs. coni , 1998.

Fabien Petitcolas and Ross Anderson. Informatidinigi, an annotated bibliography,
1999.

Fabien Petitcolas, Ross Anderson, and Markus Kuttacks on copyright marking
systemsSecond Workshop on Information Hidimgages 218-238, 1998.

D.L. Parnas. On the criteria to be used in decomgasystem into modulesCom-
munications of the ACML5(12):1053-1058, December 1972.

Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, &j ®iuyun Shao, and
Yi Zhang. Experience with software watermarking. Rroceedings of 16th Annual
Computer Security Applications Conference (ACSAE&w Orleans, Lousiana, De-
cember 2000.

Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Dia, M
Qiuyun Shao, and Yi Zhang. JavaWiz watermarking system.
http://ww. cs. purdue. edu/ hones/ madi / wni , 2000.

Peter Samson. Apparatus and method for serialaidgvalidating copies of com-
puter software. US Patent 5,287,408, Assignee: AutodaskFebruary 1994.

Julien P. Stern, Gael Hachez, Francois KoeuneJaad-Jacques Quisquater. Robust
object watermarking: Application to code. Information Hiding pages 368-378,
1999.

Tomas Sander and Christian Tschudin. On sofwareption via function hiding. In
2nd International Workshop on Information Hidin998.

Hanpeter van Vleit. Mocha, the Java Decompiler.
htt p:// ww. br ouhaha. conl ~eri ¢/ conput er s/ nocha. ht m , 1996.

Ramarathnam Venkatesan, Vijay Vazirani, and Salu@inha. A graph theoretic ap-
proach to software watermarking. 4th International Information Hiding Workshop
Pittsburgh, PA, April 2001.

Peter WayneiDisappearing Cryptography: Being and Nothingness on thie Nea-
demic Press, New York, New York, 1996.

35

