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Parametric Motion Graphs
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Figure 1: An interactively controllable walking character using parametric motion graphs to smoothly move through an environment. The

a
/

character is turning around to walk in the user-requested travel direction, depicted by the red arrow on the ground.

Abstract

must not only be of sufficient fidelity but must also respond to user
control and dynamically changing environments. Ideally, any mo-

In this paper, we present an example-based motion synthesis techtion synthesis method used in an interactive application should effi-
nique that generates continuous streams of high-fidelity, control- ciently produce continuous streams of high-fidelity motions; be re-
lable motion for interactive applications, such as video games. Our sponsive to changing inputs; generate motions that accurately meet

method uses a new data structure callgdeametric motion graph

supplied constraints, such as the location where a character should

to describe valid ways of generating linear blend transitions be- punch; and allow easy authoring of new movements.

tween motion clips dynamically generated throyginametric syn-

Computer animation researchers and practitioners have provided

thesisin realtime. Our system specifically uses blending-based a number of methods for generating character motions. However,
parametric synthesis to accurately generate any motion clip from existing approaches make limiting tradeoffs between motion qual-

an entirespaceof motions by blending together examples from that

ity, accuracy, responsiveness, and ease of authoring. Methods used

space. The key to our technique is using sampling methods to iden-in practice for creating the motions in video games require exten-
tify and represent good transitions between these spaces of motiorsive work to author the structures used for motion control, and often
parameterized by a continuously valued parameter. This approachthe results are still limited in their movement quality and/or con-

allows parametric motion graphs to be constructed with little user trol accuracy. Alternatively, methods developed by animation re-
effort. Because parametric motion graphs organize all motions of a searchers provide automated authoring of high-fidelity motions, but
particular type, such as reaching to different locations on a shelf, us-these methods fail to simultaneously provide the accurate control,
ing a single, parameterized graph node, they are highly structured,flexibility in movement types, and responsiveness demanded by in-

facilitating fast decision-making for interactive character control.

teractive applications. Our goal is to provide a motion synthesis

We have successfully created interactive characters that perform setechnique that produces accurate, controllable, high-fidelity motion

guences of requested actions, such as cartwheeling or punching.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: motion capture, motion synthesis, motion graphs

1 Introduction

streams and allows automated authoring of interactive characters.
In this paper, we introduce thearametric motion graph
an example-based motion synthesis data structure. Like other
example-based data structures, parametric motion graphs provide
easy authoring of high-quality motions but also supply the respon-
siveness, precise control, and flexibility demanded by interactive
applications. A parametric motion graph describes possible ways
to generate seamless streams of motion by concatenating short mo-
tion clips generated through blending-based parametric synthesis.

In many interactive applications, such as video games and simula-gjending-based parametric synthesis allows accurate generation of
tions, humanoid character; play an essential role. One |mp0rtantany motion from an entire space of motions, by blending together
aspect of these characters is the way they move. These movement@xamlmeS from that space. For example, parametric synthesis can

*e-mail{heckr, gleichef@cs.wisc.edu

generate motions of a person picking up an item from any loca-
tion on a shelf by blending together a small set of example mo-
tions. While neither seamless motion concatenation nor parametric
synthesis is a new idea, by combining both techniques, paramet-
ric motion graphs can provide accurate control through parametric
synthesis and can generate long sequences of high-fidelity motion
without visible seams using linear blend transitions.

In contrast to many other automated methods for representing
transitions between motions, parametric motion graphs are highly
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structured, facilitating efficient interactive character control. The this paper. The resulting graph contains a single node, represent-
nodes of a parametric motion graph represent entire parametric mo-ing the parameterized walking motion space, and a single edge that
tion spaces that produce short motions for given values of their starts and ends at this node. This edge describes how to transition
continuously valued parameters. The directed edges of the graphfrom the end of a generated walking clip to any generated walking
encode valid transitions between source and destination parameterelip in a subspace of the motion space. This simple structure orga-
ized motion spaces. This structure efficiently organizes the large nizes many motions in a way that allows efficient character control
number of example motions that can be blended together to pro-at runtime. By translating a user’s desired travel direction into de-
duce the final motion streams. Because of this structure, we havesired curvature requests, we can synthesize a continuous stream of
been able to easily author interactively controllable characters thatwalking motion that reacts to a user's commands. This stream of
can walk, run, cartwheel, punch, change facing direction, and/or motion will be smooth, run at interactive rates, and will only con-
duck in response to user-issued requests. tain high-fidelity transitions between clips of motion. See Figure 1
While prior work on synthesis by concatenation has focused on to see a screen capture of our interactive walking character. Unlike
representing seamless transitions between individual clips of mo- other techniques that can create interactive walking characters, our
tion, we face the problem of defining valid transitions between pa- technique requires little authoring effort, is capable of accurate mo-
rameterizedspacesof motions, where it is not often possible to tion generation, and works with a wide range of different motions.
transition from any motion in one parameterized motion space to For instance, once we have an interactive walking character, it is
any motion in another. For example, consider a parameterized mo-easy to create a character that locomotes by running or cartwheel-
tion space representing a person taking two steps, parameterized oing simply by building a parameterized motion space of running or
curvature. One can imagine that this parameterized motion spacecartwheeling motions, also parameterized on curvature.
can follow itself; a person can take two steps, and then take two
more, and so on. However, a transition should not be generated be-
tween a motion where the character curves sharply to the right and2 Related Work
another where the character curves sharply to the left; the resulting
transition would not look realistic. Thus, the edges in a paramet- Researchers have studied ways to generate human motion in an au-
ric motion graph must encode thange of parameters of the tar-  tomated way; two of these approaches serve as the foundation of
get space that a motion from the source space can transition to, a®ur work. The first, parametric synthesis, is the set of techniques
well as the correct way to make the transition between valid pairs that map motion parameters to motion, allowing the generation of
of source and destination motions. The key challenge to parametricany motion from an entire space of motions by supplying the rel-
motion graphs is finding a good way to compute and represent theseevant parameters. Previous work on parametric synthesis can be
transitions. By approaching the problem from a sampling perspec- divided into two groupsproceduralandblending-basedProcedu-
tive, we provide an efficient way to compute and encode the edgesral parametric synthesis generates very specific parametric motion
of a parametric motion graph, allowing automated authoring and Spaces using highly-specialized algorithms [Perlin 1995; Perlin and
fast transition generation at runtime. Goldberg 1996; Hodgins et al. 1995]. Blending-based parametric
The rest of this paper is organized as follows. Section 1.1 pro- Synthesis builds parameterized spaces of motion in a general way
vides an overview of our technique. Then, Section 2 discusses otherUsing motion interpolation [Bruderlin and Williams 1995] on a set
work related to interactive motion generation. In Sections 3 and 4, of examples from that space [Wiley and Hahn 1997; Rose et al.
we detail our method for building and extracting information from 1998; Kovar and Gleicher 2004; Mukai and Kuriyama 2005]. For
a parametric motion graph. Then, Section 5 presents the resultséxample, blending-based parametric synthesis can generate mo-
of our work, describing some of the parametric motion graphs we tions of a person punching toward any location within an enclosed
built and the applications we made to show their utility. Finally, area by analyzing and blending example punching motions from
Section 6 concludes with a general discussion of the presented techthat space. A parametric motion graph uses blending-based para-

nique, including a number of the technique’s limitations. metric synthesis to generate clips of motion that accurately meet
user-specified constraints, allowing us to represent an infinite num-

ber of motions in a simple compact structure. What this previous
work on parametric synthesis does not provide is a way to transition
To provide parametric motion graphs as a method for interactive Petween these different parameterized spaces of motions.
character control, we describe how to: The second motion generation approach that our work builds
upon is synthesis-by-concatenation. This approach generates long
motion streams by piecing together many short motion clips. Early
work focused on realistic ways to transition between two motion
clips [Rose et al. 1996; Lamouret and van de Panne 1996]. More
" s : " recent work allows possible transitions in a motion collection to be
tation (_)f transitions aIIows_fast lookup of possible transitions represented using graph structures [Arikan and Forsythe 2002: Ko-
at runtime using interpolation. ; R ot
Use Parametric Motion Graphs for Interactive Control: var et a}I. 2(_)02, Leeetal. 200_2, Arikan et al. 2003; Kim et.al. 2003].
Because parametric motion graphs are highly structured, they Like with \(|deo Textures [Scbdl et al. 2000], these techniques fo-
facilitate the fast decision-making necessary for interactive CUS ON using automated comparison methods to locate frames of
character control. Furthermore, because all motion clips in Motion that look similar enough to be used as a transition point, al-
the graph are generated using parametric synthesis, motiondowing easy aythormg of th'e transition graphs. .lee thIS. previous
accurately meet relevant constraints. v_vork, we are mtergsted in finding and representing p_ossnble transi-
tions between motions. But because parametric motion graphs use
To illustrate the utility of parametric motion graphs, we give a parametric synthesis to generate accurate motion clips, they must
concrete example. We can create a character that can be directedepresent possible transitions betwspacef motion.
through an environment with continuous steering controls. Using  While the motion graphs described above are capable of produc-
an existing blending-based parametric synthesis method, we firsting natural motion, they are not structured, thus requiring a costly
build a parametric motion space of a person walking at different global search in order to locate motion sequences that meet speci-
curvatures for two steps. Next, we quickly build a parametric mo- fied constraints. This dependence on global search makes it diffi-
tion graph from this motion space using the algorithm presented in cult to use these structures for interactive character control. Other

1.1 An Overview of Our Technique

Build Parametric Motion Graphs: Using a method based on
sampling, we can efficiently locate and represent transitions

between parameterized motion spaces.
Extract Data from Parametric Motion Graphs: Our represen-
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graphs have a number of other benefits. Because all motions rep-
resenting the same logical action, such as walking or dodging, are
always grouped together, parametric motion graphs provide even
more structure and a graph author can easily see the logical con-
nections between motion types. Parametric motion graphs also rep-
resent continuously changing transition points and ranges within a
single type of motion. A fat graph must use more than one “hub”
node in order to capture a portion of the complexity of these shift-
ing transition possibilities. Fat graphs are also limited in the quality
of their results by the use of “hub” nodes; motions are constantly
forced to return to a common pose at each transition point, as il-
lustrated in Figure 2. On the other hand, parametric motion graphs
handle natural variations in the transition poses of similar motions.

3 Building a Parametric Motion Graph

Figure 2: At the transition point between two motions of a char- tacil fici . hesi . h of
acter turning towards the right, our character remains leaning into 1° facilitate efficient motion synthesis at runtime, we do much o
the turn (as shown in green) while the character using a fat graph the néeded computation for controlling interactive characters while
must return to the common transition pose with no lean (as shown Puilding @ parametric motion graph offline. A parametric motion

in blue), causing the character to “bob” as it goes around the turn. graph or_lly needs to be built once, resulting_in a sma_ll text file rep-
resentation of the graph that can be loaded in at runtime.

As described in Section 1, each node of a parameterized mo-
ion graph represents a parametric motion space implemented using
blending-based parametric synthesis. For all of our examples, we
perform blending-based parametric synthesis using the techniques
of Kovar and Gleicher [2004]. Kovar and Gleicher describe how

researchers have augmented these graphs by precomputing grap,
properties that aid in control. These techniques includentbe
bility mapsof Srinivasan et al. [2005] and the method of Lee and
Lee [2004]. Unlike parametric motion graphs, these methods are

only able to represent transitions between a discrete number of mo- - : . - .
to automatically find and extract logically similar motions, or mo-

tions and become unwieldy as the number of motions becomestions where the character is performing the same basic action, from
large. Furthermore, these techniques do not directly address the p 9 ’

problem that the underlying graph is unstructured: they instead deal MOtion database; they then provide a method for building and
with the unstructured graph in a more efficient way. representing parameterized spaces from these motions using blend-

L ing techniques. We chose to use this method because it produces
The gaming industry often uses hand-generated, structuredpigh quality results, allows for quick experimentation with many

graphs called move trees to represent possible transitions betweenyigterent types of motion, provides a simple and efficient method
motion clips [Mizuguchi et al. 2001]. Because move trees are con- o nroducing motion clips at runtime, and results in parameterized

structed for easy interactive character control, they have a delib- giion spaces that asmooth A parameterized motion space is
erate, hand-designed structure that aids in choosing motions baseq gnsidered smooth if small changes in the input parameters pro-
on user requests. Because parametric motion graphs use paramey,ce small changes in the generated motion.

terized motion spaces to represent entire motion families, they also  \yhile we can build the nodes of a parametric motion graph using
offer a way to deliberately manage the complexity of the transitions s existing technique, our key challenge is finding a way to iden-
between many motions. This structure facilitates the use of para- i, and represent possible transitions between these parameterized
metric motion graphs for controlling characters in realtime. nodes. The smoothness property of the motion spaces represented

Other researchers have built structured representations for onlineby our graph nodes allows us to tackle this challenge using sam-
locomotion generation. Sun and Metaxas [2001] use a proceduralpling. The rest of this section describes in detail how to identify
parametric walking motion to generate streams of motion that ad- and represent edges between source and target graph Nodes|
just to uneven terrain and user-defined curvature. Using a similar N; respectively. Throughout this description, we define a motion
method, Park et al. [2002] generate locomotion, such as walking as the continuous functioll (t), which provides values for each
and jogging, whose curvature is controllable. Kwon et al. [2005] of the degrees of freedom of a hierarchical skeleton model at time
group motion segments based on footstep patterns and generate. In practice,M(t) is represented as regularly sampled frames,
transitions between these groups using a hierarchical motion graphM(ty),...,M(t,), and values for times not sampled are produced
where the coarsest level describes general transition patterns andising linear interpolation on the degrees of freedom. The parame-
the more detailed levels capture the cyclic nature of locomotion. terized motion space represented by nbglés denoted by (1),

These techniques for generating controllable locomotion show the wherel is a vector of relevant motion parameters, such as the target
utility of using structure to produce controllable motion in realtime. of a punch; a parametric motion space produces a short mddign,
Our technique uses structure to control more general motions with for any given valuel;, of its continuously valued parameters.

a wide variety of different motion properties.

One structured-graph technique that shares many of our goaIS3_1
is Snap-Together Motion [Gleicher et al. 2003]. The key of this
technique is to identify poses that appear many times in the origi- To start, consider the case where the nodesnd N; represent
nal motion examples. These poses become “hub” nodes in a graphsmall motion spaces whose valid parameter ranges only include
and edges between these nodes correspond to motion clips that caa single point. This case reduces to the traditional synthesis-by-
transition between these poses. A recent extension to this work concatenation problem; can we locate a frame of motion near the
groups similar clips that connect the same “hub” nodes into para- end of the motion generated b, M 1, and a frame of motion near
metric edges, forming a new structure called a fat graph [Shin and the beginning of the motion generated By, M, that are similar
Oh 2006]. Fat graphs and parametric motion graphs are very sim-enough to allow a linear blend transition from one to the other over
ilar in that they combine parametric synthesis and synthesis-by- a short window centered at these frames? To compute the simi-
concatenation to provide interactive control. But parametric motion larity between two frames of motiom(M1(tj),M2(tj)), we use a

Identifying Transitions Between Motion Spaces
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Figure 4: Process for determining the valid transition region in tar-
get parameter space for a particular motion. (a) A set of randomly
chosen samples from the target space. (b) Darkened circles pro-
duce good transitions, crossed out circles produce bad transitions,
and empty circles produce neutral transitions. The shaded box en-
closes all good samples but also includes some bad samples. (c) The

Figure 3: A distance grid. Darker regions denote greater similarity 5qjysted shaded box excludes all bad samples. In practice, usually
between frames of a boxing dance motion and frames of a punchingjiie to no adjustment is made to the bounding box.

motion. The light red dot marks the optimal transition point.
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Boxing Punch

. ) o ) ) representing motions of a person punching, parameterized on the
distance metric originally introduced by Kovar et al. [2002]. First, |5cation of the punch. Two motions in this space where the punches
for both frames, we form a point cloud based on the locations of |gnq 1mmapart look similar. In this case we can compute the pos-
each skeletal joint over a small window of time surrounding the gjpje transitions from one of these motions and use the result for
frame. We then compute the optimal sum-of-squared-distances be+,oth, This observation leads us to approach the problem of iden-
tween corresponding points in the two point clouds, given that each tifying and representing transitions between parameterized motion
cloud may be translated along the floor plane and rotated about thegpaces using sampling, extending the method for locating possible
vertical axis. Depending on the length of the window over which |inear blend transitions between individual motions.
the point cloud is built, this distance metric can take into account
relative joint positions, joint velocities, and joint accelerations when
measuring similarity. Refer to [Kovar et al. 2002] for a closed form 3 o Building a Parametric Motion Graph Edge
solution to the optimization.

Given the point cloud similarity metric, we can conclude that a An edge between source and target nodlgsandN; respectively,
good transition exists frortM to M if and only if there exists a ~ Maps any pointl?, in % to the subspace o' that can be tran-
frame, t1, near the end ok and a framet,, near the beginning  Sitioned to fromM? = &75(1%). It also supplies the time at which
of M5 such thatD(M1(t),M2(t2)) < Teoop, WhereTgoop is a that transition should occur. Assuming it is possible to transition
tunable threshold. We first calculate the distance between every pairfrom every point inNs to some subspace N, we can build an
of frames in the possible transition regions, forming a grid. The pair €dge between these nodes using sampling. We start by generat-
of frames corresponding to the grid cell with the minimum distance ing two lists of random parameter samples,= {I3,...,I3} and
value is called the optimal transition point. If the distance value L!= {It,...,l}h} (see Figure 4a). In order to accurately capture the
of the optimal transition point is beloWioop, then it is possible variations in the target spaa&,should be large. The exact number
to transition betweei ; andM at that point,(t%,tg), by aligning depends heavily on the size of the parameter space, but we found
the motions using the optimal translation and rotation computed for 1000samples to be more than enough for all of the cases we tried,
the computatio (M1 (td), M2(t2)). Figure 3 shows an example of  even for parameterized motion spaces that have three parameters. In
this distance grid computation between two motions. contrast,ns should be small, while still covering the source space,

Now consider the general case whakgandN; represent larger as this number affects the amount of storage needed for an edge.
spaces. For any sufficiently large space, it is unlikely that the mo- FOF our examples)s was arounds0.
tions represented by the space look similar enough to be treated like Now consider a sample froi®, I$. This sample corresponds to
a single motion. For example, in the walking example discussed in the motionM$ = 7%(17). We can determine ¥ can transition to
Section 1, the walking character can only transition to other walk- €ach motion represented by the parameter sampléstip comput-
ing motions where the character walks at a similar curvature to its ing the optimal transition point with each motigM},..., My, }.
current one. However, since each parameterized motion space repSamples froni.! that produce good transitions are added to the list
resents an infinite number of motions, it is infeasible to compare of parameter sampldst, . Using the observation that motions
all possible pairs of motions represented by each of the parameter-close in parameter space look similar, we can assume that any pa-
ized nodes. One possible approach is to reduce each parameterizethmeter vector for?' whose nearest parameter samples f
motion space to a discrete number of motions chosen from the full appear inL5 44 can also be transitioned to froM$. Thus, the
space. To find and represent good transitions between all pairs oflist L‘GOOD defines the subspace &#! to whichM3 can transition.
motions from a source set of sireand a target set of sizg we Unfortunately, we cannot represent the subspadg'ahat can
would need to repeat the technique described abmvemes. Un- e transitioned to from$ by listing the points ir_ L4 because,
fortunately, by transforming a continuous motion space into a dis- a5 described in Section 1.1, we plan to determine what transitions
crete set of motions, we lose much of the accuracy that parametric are possible at runtime using a simple and efficient interpolation
synthesis provides us; accuracy can be increased by adding morecheme (as shown in Figure 5); interpolating between potentially
motions to these sets but this results in a combinatorial explosion gifferent numbers of uncorrelated points in a meaningful way is
in the number of required comparisons and the amount of spaceqifficult, if not impossible. So, instead, we represent each subspace
needed to store the possible transitions. as a simple shape that can always be interpolated (i.e. bounding

Yet, we observe that in a smooth parameterized motion space,boxes, spheres, triangles). We have found axis-aligned bounding
motions generated for any local neighborhood of parameter spaceboxes work well for our data; we use axis-aligned bounding boxes
look similar. For example, consider a parameterized motion spaceto represent all of the transition parameter subspaces.
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Using simple, easily interpolated shapes to represent transition
regions introduces a considerable problem. Any simple shape that
contains all points in.§4p could also contain other points from

L that were not deemed good transition candidates (see Figure 4b).

To guarantee that bad transitions are not included in the transi-
tion subspace o, we take a conservative, double threshold ap-
proach. First, while constructing the lis;oop, We also form a
list, L5ap, containing all samples frorm! that generate motions
whose optimal transition point distance is greater thatp, where
Teap > Teoop. Next, we compute the bounding box of all param-
eter samples il oop. Finally, we consider each samplelify ,p;
if the sample falls within the subspace defined by the bounding box,
we make the minimal adjustment to the dimensions of the bound-
ing box such that the sample falls at leasiway, wheree > 0. In
this way, we construct a bounding box that contains many, if not
all, of the samples from 5,5 without including any of the sam-
ples fromL} . Neutral samples frora! whose optimal transition
point distance falls betwee€fsoop and Tgap are considered good
enough if they fall within the transition subspaceNs$fbut will not
be explicitly included in the space (see Figure 4c). In practice, the
system makes very few bounding box adjustments to remove bad
samples and in most cases makes none at all.

We also compute a single transition point frdvt¥ to any of
the motions located in the subspace\bfdefined by the computed
bounding box. Previously, we described the optimal transition point
of two motions as the pair of frames where the two motions are most
similar. For computing a generic transition point for the entire sub-
space, it is useful to normalize these frame numbers to the @&nge
to 1. Again, because nearby motions in a motion space look similar,
the optimal transition points are likely to be at similar normalized
times. So, we average the normalized optimal transition points for
each sample of 5, that falls inside the adjusted bounding box
to calculate the transition point for the subspace.

Putting all the pieces together, an edge can be defined between

NS andN! as a list of transition samples, one for each parameter
vector inLS, Each sample includes:

e The Value of the Parameter Vecigr
e The Computed Transition Bounding Box figr
e The Average, Normalized Transition Point 18r

©)
©)

Figure 5: Mapping a parameter vector, depicted by the X, from the
1-D parameter space on the left, to a valid transition region in the
2-D parameter space on the right. X’s bounding box is the weighted
average of the bounding boxes for &smearest neighbors.

al. [2002], eachi? is associated with a weight;:

w
= b
le(:l"‘/j

Wi
1 1
W= —— -
e(I519) e8I
whereg gives the Euclidean distance between parameter samples.

For any outgoing edge dfls, we can calculate the subspace of
the target node\, that we can transition t@&(Ns, Nt), as follows:

)

k
B(NG.Ne) = 3 w1 ®)

where(I?) gives the value of the bounding box for the samfle
represented by the location of the box’s center and its width in each
dimension, as stored in the edge (see Figure 5). Similarly, we can
compute the normalized transition point as a weighted sum of the
average, normalized transition points for efftétored in the edge.

We could also store the average alignment transform between the

motion M? and each of the motion sampleslify,p but recom-
puting this alignment is very fast; we save storage space by com-
puting the alignment transform for each transition at runtime.

Up until this point, we have assumed that we can transition from
every point inNs to some subspace bf;. We define that a transi-
tion exists between nodéés andN; if and only if for any motion
contained irNg there existsomemotion inN; that it can transition
to. Thus, if we find a sample ibS whose adjusted bounding box is
empty, we cannot create an edge betwidgandN;

4 Parametric Motion Graph Lookup

Synthesizing motion using a parametric motion graph is quick and
efficient. The data that is stored in each node of the graph allows
fast lookup for possible transitions. In particular, given the node,
Ns, and relevant parameter vectbt, for a motion clip, we can de-
termine what subspaces of other parameterized motion spaces ca
be transitioned to as well as when that transition should occur.

For each outgoing edge b, we begin by finding th&-nearest
neighbors td® from the transition sample list in terms of Euclidean
distance, wheré is normally one more than the number of di-
mensions of#?S. Let us call these neighbot§, ... .|, ordered

from closest to farthest froriS. Following the work of Allen et

5 Results

The examples in this paper were computed on a laptop computer
with a 1.75GHz Pentium M Processof,GB of RAM, and an ATI
Mobility Radeon X300 graphics card. All of the generated motions
were sampled a@80Hz. Each of the parametric motion graphs we
generated can synthesize and render streams of motion at more than
180frames per second. In this section, we provide details for some
of the example parametric motion graphs we designed for interac-
tive character control. Following the description of these graphs,
we present the results of a number of experiments for testing the
usefulness of these graph structures in interactive applications.

5.1 Graphs

To build each graph described below, an author starts by choos-
ing the parameterized motion spaces needed for the graph from
Bur available motion space database. These parameterized motion
spaces then appear as disconnected nodes in the graph. Next, the
author simply chooses two nodes to generate an edge between and
specifies values foF goop, Teaps NS, andn'. While it is possible to

set the values of goop and T gap Without user input, the ability to
adjust these values allows an author to determine where to set the
tradeoff between motion quality and flexibility. For our example



To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

punch

1.9ft tall, stepping up onto and stepping off of platforms of heights
between.8ft and 1.8ft tall, and leaping over distances betwe2n
and 3ft. It takes aboutl1 minutes to build this graph. The final
graph organizes a total @56 example motions so that they can be
blended to produce continuous streams of controllable animation.
In order to show that our technique works when controlling a
number of different non-locomotion actions, we built a parametric
motion graph that encodes the motions of a boxer punching, duck-
ing, and “dancing” from one foot to the other. The boxing graph
consists of exactly three nodes. The first node represents all mo-
tions of a boxing character punching to some location6it avide,
2ft tall, and5ft deep space. The parameterized motion space maps
desired punch locations in relation to the starting configuration of
the root to synthesized punching motions. The second node of the
boxing graph represents motions of a boxing character ducking be-
low different heights (betweed4ft and5.6ft from the ground) and
is parameterized on how low the character ducks. The third and
final node encodes motions of a character “dancing” from one foot
to another while maintaining a boxing ready stance. When “danc-

dance duck

Figure 6: A boxing graph.

graphs, the amount of time it took to generate a single edge varied
from 2 — 147 seconds, depending on the complexity of the source
and target parameterized motion spaces. In practice, we found it
took two or three iterations in order to tune the paramelgisop
andTgap for each edge. Empirically, we find that settifigoop

ing”, the character rotates by different amounts (betwegi and

46 degrees). Thus, the “dancing” motion space maps the change in
facing direction from the beginning of the motion to the end of the
motion to synthesized “dancing” motions. In total, the parameter-
ized motion spaces used for these graph nodes blend bevéen

different motion captured examples. A discrete motion transition
eqraph that represents transitions between this number of motions
would be very large and unwieldy. In contrast, our final graph (Fig-
ure 6) contains only nine edges, one connecting every pair of nodes.
It takes approximately minutes andl0 seconds to build the graph.

to .5andTgap to .7 serves as a good starting point. Even for our
largest graph, it was possible to store the graph’s structure and edg
information in a plain text file requiring less th&0KB of space.

5.1.1 Single Node Locomotion Graphs

While other researchers have dealt specifically with generating con-5.2  Applications
trollable streams of locomotion in realtime, we chose to create sev- ] ] o
eral single-node locomotion graphs because it is easy to see errordVe implemented a number of different applications to test the use-
in this commonly performed activity. In our first graph, we en- f_ulnes_s of ou_rtechnlqu_e. In this section, we describe these applica-
coded streams of walking motion that only contains smooth turns. tions in detail and provide our results.
This graph consists of a single node representing a parameterized
motion space of a chara_tcter wall_<ing for two steps at different cur- 5 2.1 Random Graph Walks
vatures. The parameterized motion space maps the angular change
in the character’s travel direction from the beginning to the end Our first application shows that parametric motion graphs can gen-
of the motion (betweer-131degrees and38degrees) to synthe-  erate seamless, high-fidelity motion streams in realtime. For each
sized motions. Similarly, we built a running graph out of a single of our graphs, we can produce a random stream of motion by tak-
node representing a parameterized motion space with a valid angu-ing random walks on the graph. We start by choosing a random
lar travel direction change betweeri20degrees an89 degrees. node and parameter vector from the graph. When the parameterized
Since our technigue requires little authoring effort, it is possible motion space associated with the node is supplied with the chosen
to experiment with non-obvious motions. We also built a parametric parameter vector, we can render a motion that matches this param-
motion graph that encodes locomotion control through cartwheel- eter request in realtime. While playing the motion, when we reach
ing. Like the graphs for walking and running, our cartwheel loco- the possible transition region, we randomly choose an edge from
motion graph contains only a single node. This node represents athose leaving our current node. The node that this edge points to is
parameterized motion space of a character doing a cartwheel, ro-the new target node. Using the method described in Section 4, we
tating towards the right by varying amounts on one foot, and then compute the optimal transition point and the parameter subspace of
doing a cartwheel in another direction. Again, the parameterized the target node that we can transition to from our current parame-
motion space maps the angular change in travel direction of the ter vector. We then randomly choose a new target parameter vector
character from the beginning of the motion to the end (betwekEs enclosed in this subspace. Finally, when we reach the blending win-
degrees anti57degrees) to synthesized motions. Each of these sin- dow centered at the optimal transition point, we compute the point
gle node locomotion graphs take less tiaminutes to build from cloud alignment between our current motion and our newly cho-
beginning to end using our unoptimized system. sen motion, align the motions, and then blend between them. This
process is repeated indefinitely. By randomly generating continu-
5.1.2 General Graphs ous streams of motion, we can confirm_ t_hat our technique produces
T smooth motions and avoids poor transitions. Please see our accom-

In addition to single-node locomotion graphs, we have also built Panying video for the results of this application.

several larger graphs. The simplest is a two-node graph that com-

bines the walking and runn!ng nodes described earlier. This graphg 5 o Target Directed Control

can control the travel direction of a character that can both run and

walk. We have also built a seven-node, fourteen-edge graph con-Our second application tests whether our walking character can ac-
taining motions for walking and running at different curvatures, sit- curately reach a target location using a greedy graph search similar
ting down and standing up from chairs of heights betw#emand to the one used for locomotion control in [Srinivasan et al. 2005]
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Figure 7: Using parametric motion graphs, this character walks to
a specified location, depicted by the red square on the ground.

and crowd control in [Sung et al. 2005]. For this application, we
generate a motion stream in the same way we do for random graph
walks, except that when it is time to choose a new parameter vector
from the target bounding box, we choose the parameter vector that
best adjusts the character’s travel direction towards a target. Fig-
ure 7 shows that our character is able to accurately reach a targe
location without wandering by using this simple control algorithm.

We also allow a user to request that the character reach the target
location oriented in a particular direction. For this case, we choose
the parameter vector that both adjusts the character’s travel direc-
tion towards the target and orients the character towards the desired
facing direction. We place more weight on the orientation compo-
nent of this optimization function as the character gets closer to the
target. In several cases, our character can perform the requested ac-
tion very well. But we find that in others, the character approaches
the target and then turns in circles trying to orient themselves. This
result is anticipated as we know that the character’s minimum turn- &
ing radius is quite large. Inspired by the work of Reitsma and Pol- -
lard [2004], we used a discrete, brute force method to embed our
parametric motion graph in the environment in hopes of better un-
derstanding this problem. This embedding made it clear that our
character could easily meet location constraints within a reasonable
radius but that for most locations, there were only a few orientations
that the character could be in when they arrived.

Figure 8: An interactively controllable character using parametric
motion graphs. The character has just stepped up onto a platform
Yiter sitting down in a chair.

I

Figure 9: An interactively controllable cartwheeling character us-
ing parametric motion graphs to smoothly move through an envi-
ronment. The character has changed cartwheeling direction in order
to travel in the user-requested direction depicted by the red arrow.

over distances. Figures 1, 8, 9, and 10 show some of our results.
5.2.3 Interactive Character Control The accompanying video provides examples of all of these charac-
ters being controlled in realtime.

Our last and most important application allows users to interactively
control a character. To do this, we attach a function to each node
that translates user requests to parameters. For example, for walk® Discussion
ing and cartwheeling, we wanted a user to control the travel direc-
tion of the character by specifying the desired travel direction using As presented, parametric motion graphs are able to produce seam-
a joystick. So, we attached a function to each of these nodes thatless, controllable motion streams in realtime. The authoring process
could compute the angular change between the character’s currenis highly automated, making parametric motion graphs useful for
direction of travel and desired direction of travel. interactive applications that would not normally have the resources

With these translation functions in place, we can again generateto build the structures necessary for accurate character control.
motion streams as we did when generating random graph walks  While we use the method of Kovar and Gleicher [2004] to pro-
except that when it is time to choose a parameter vector from the duce parameterized motion spaces, our methods do not require that
target bounding box, we query the user’s current request. Then wemotions be generated with any particular parametric motion synthe-
use the translation function for the requested node to compute asis method. However, parametric motion graphs do require smooth
parameter vector. If they are not already, these parameter values ar@arameterized motion spaces; our sampling and interpolation meth-
adjusted so that they fall within the target bounding box. ods depend on nearby motions in parameter space looking simi-

This process has the effect of creating interactive characters thatlar (see Section 3). While we have not provided an example, our
perform requested actions as accurately as possible without intro-method should work just as well using a procedural parametric syn-
ducing poor transitions between motion clips. By limiting the tran- thesis method, as long as it produces smooth motion spaces.
sitions to good ones, our characters occasionally miss targets; in  One larger limitation is that we cannot represent transitions be-
these cases, the character still “reacts” to the target by choosing atween two nodes if there is any motion in the source node that can-
good transition that gets closest to meeting the request. Using ournot transition to the target node. For example, consider two nodes
technique, we produced walking, running, and cartwheeling char- that represent a person walking at different curvatures where the
acters whose travel direction can be controlled; a character who canfirst allows a much wider range of curvatures than the other. Be-
either run or walk in a desired travel direction; a boxing character cause the extreme motions of the first node do not look like any of
that is able to change facing direction while “dancing”, punch to- the motions in the second node, we will be unable to create an edge
wards specified 3D locations, and duck below a specified height; between the nodes. One possible solution to is to dynamically add
and a character that can walk or run in a desired direction, step ontoadditional nodes to the graph when large enough continuous pieces
and off of platforms, sit down and stand up from chairs, and leap of a source node can transition to the target node. This new node
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