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character gaze using a biologically and psychologically inspired model, and a method for using a

new data structure called a parametric motion graph to synthesize accurate, quality motion streams

in realtime.
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Chapter 1

Introduction

Many computer applications prominently feature virtual human characters. For example, in the

entertainment industry, virtual humans appear in movies as digital body doubles to perform super-

human feats, and video games often depict a virtual human figure interacting with an environment.

Virtual human characters also appear frequently in training simulations to supplement on-the-job

training or in-class learning in a wide range of industries: the military uses training simulations to

help train soldiers in combat, athletes use simulations to improve their game, construction workers

can practice using fork lifts and bulldozers in a simulation, and there is talk now of using training

simulations to better teach medical students bed-side manner.

It is often important that the virtual human figures in these applications appear lifelike to help

create a sense of immersion. While there are a number of different characteristics that contribute to

a character’s believability, one important aspect is the way a character moves. Unfortunately, hu-

man motion is a complicated process driven by a person’s subconscious goals. Bones, muscles, and

other tissues work together to make a human’s body perform a specific task. Creating animations

for a computer character that mimic these complicated processes is a challenge. This challenge is

further complicated by the fact that people are good at recognizing when a motion looks fake, even

if they cannot pinpoint the exact reason why. This dissertation is concerned with the automated
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Figure 1.1 Motion capture is the process by which observed human motion is translated into a
digital character motion.

synthesis of quality human motion forinteractive applications, or applications like training simu-

lations and video games where a virtual human character is directed through an environment by a

user.1

Traditionally, talented and patient artists tackled the challenge of authoring believable anima-

tions for human characters for movies and video games. More recently, these artists have been

aided by the introduction ofmotion capture. Motion capture is a set of techniques that use sensors

to observe and record the detailed motion of an object or set of objects (see Figure 1.1). While

the quality of the recorded motion and the process of capturing that motion vary from one motion

capture technology to another, motion capture is capable of producing accurate representations of

the way a person moves [Men00].

Motion capture is a potentially useful technique for creating believable human motion as it

produces animations with all of the subtle nuances of real motion. The problem with motion

capture data is that it is only directly useful for reproducing a specific motion. For example, the

motion of a person reaching toward the front of a shelf is different in small but perceivable ways

from the motion of that same person reaching toward the back of that same shelf; modifying a

motion by hand in order to capture all of these subtle changes can be difficult.

1For the purposes of this dissertation, I am concerned with synthesizing motion for the character that is under
the direct control of the user. However, the techniques discussed in this document can also be applied to non-player
characters (NPCs) found in an interactive application.
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Recent research has focused on ways to improve the utility of motion capture data. The goal of

much of this research is to use a database of motion-captured examples to generate new motions

that appear as if they were created in the same way as the originals. These techniques are called

example-based motion synthesis methods(see Figure 1.2). Research in example-based motion

synthesis has greatly increased the usefulness of motion capture data by providing new ways to

create believable human motion.

While current research has provided new techniques for reusing motion capture data, creating

believable human motion is still a problem in many domains. In particular, interactive applications

place additional constraints on the way human motion is generated. At runtime, interactive appli-

cations must be able to quickly generate motions that not only look realistic but also accurately

meet user requests. At the same time, in order to encourage experimentation and allow quality

motion generation for interactive applications with a small budget, the process of authoring human

character motion should not be overly time consuming.

Unfortunately, current approaches to authoring and synthesizing human motion fall short of

meeting all of these constraints at once. Video game companies spend hundreds of man hours

carefully hand-tailoring motions that allow efficient motion generation with low latency but sacri-

fice visual realism. Alternatively, example-based motion generation techniques provide automated

authoring of visually realistic motions, but these methods require too much synthesis time and

respond too slowly for use in interactive applications. Automated authoring methods that could

provide all of the characteristics described above at the same time would not only improve the

quality of human motion in high-budget video games and simulations but would also allow low-

budget interactive applications to benefit from the ability to generate realistic human motion.My

goal is to increase the utility of example-based motion generation methods for interactive appli-

cations by supplying insight into techniques that provide efficiency, low latency, high accuracy,

quality, and automated authoring.For a more detailed explanation of each of these characteristics,

see Section 1.1.

There are two distinct but related motion synthesis subproblems. The first is the problem of

generating individual motions, ormotion clips, that meet specified constraints. For instance, an
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application might need to synthesize a motion clip where a character walks at a specified curvature

and looks in a specified direction. The second problem is how to produce long, continuousmotion

streams. For example, an application might need to synthesize a motion where a character walks at

a specified curvature,thenpicks up an item from a shelf,thenskips away, and so on. Some motion

synthesis techniques aim to solve both problems while others focus on only one. This dissertation

addresses both.It is my thesis that example-based techniques that decouple motion parameters

to synthesize motion clips and that use highly-structured control mechanisms for transitioning

between these individual clips can provide automated authoring of high-quality, controllable

human motion streams for interactive applications.

This thesis is based on two observations, each of which corresponds to one of the two motion

synthesis subproblems. First, any sufficiently complex interactive application needs to generate

segments of motion with many different constraints orparameters. For example, one application

may need to generate motions of a human walking and running at different speeds and curvatures

while performing some action with their upper body and gazing at different locations in an environ-

ment. It is important that we be able to decouple these parameters during motion synthesis, allow-

ing motions that meet a subset of the parameters to be generated independently and then combined

into one composite motion. Unfortunately, most example-based motion synthesis techniques gen-

erate an entire frame, or all the degrees of freedom (DOFs), of motion at once. Without decoupling,

we face a combinatorial explosion in the number of motions that need to be captured. We would

need an example of a character performing every possible combination of controllable parameters.

Decoupling allows motions for specific parameters to be captured independently. Similarly, by

decoupling, it is possible to produce motions with an unexpected combination of parameters. For

example, I may not expect that I will need to be able to control both the location that a character

reaches to as well as the direction a character looks simultaneously. Decoupling would allow me

to produce motions that control both characteristics without needing to return to a motion capture

studio to capture additional data that exhibits variations in both facing direction and reach location

at the same time. And, finally, decoupling lends itself well to parallel processing.Methods that
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allow the decoupling of motion parameters during synthesis can improve the accuracy, synthesis

time, and storage requirements of generated motions.

The second observation is that human characters in interactive applications often need to be

able to perform many different actions. For example, a character might be able to run, walk, jump,

punch, climb ladders, duck, swim, sit down, etc. A number of example motions would be needed

for each of these actions in order to synthesize accurate human motion using an example-based

approach. It is important that an interactive application be able to find specific motions within this

large number of examples in order to accurately synthesize new human motion quickly at runtime

and to produce good transitions between the generated motion clips. Structured character control

mechanisms facilitate fast decision-making by simplifying the problem through organization. And

because structure can be used to organize large numbers of motion clips, it allows the control of

many different types of motion (e.g., running, walking, punching, and jumping), as well as a lot

of variation within a single motion type (e.g., a character might be able to punch to many more

locations in space).Highly-structured motion representation models allow for fast and accurate

motion control without extensively sacrificing quality.

In order to support my thesis, I present algorithms that decouple some of the most common and

important motion parameters and introduce a highly-structured motion transition representation

that allows easy interactive control because of its structure. In particular, I make the following

specific technical contributions:

1. Runtime Method for Splicing Upper-Body Actions with Locomotion (Chapter 4). Inter-

active applications often divide the problem of character planning into two pieces: what ac-

tion the character is performing and how/where the character is moving. I provide a method

that allows motion synthesis to alsodecouplecharacter action from locomotion, allowingau-

tomated authoringof qualitymotions that can besynthesized quicklyandwith a significantly

decreased number of required example motions for accurate character control.

2. Runtime Method for Adjusting the Gaze Direction of a Character (Chapter 5). While

many have recognized the importance of head facing direction, orgaze, for understanding a
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person’s motivations and for exhibiting realism in virtual characters, few have studied ways

to edit gaze in a realistic way. I provide a method foraltering gaze at runtime independent

of other motion parametersby using examples from a motion capture database to build a

low-dimensional representation of gaze that is based on scientific findings related to the way

humans move. The method allowsquality motions to beauthored in an automated way

without extensive storage requirements.

3. Method for Automated Authoring of Parametric Motion Graphs (Chapter 6). I provide

a simple,automatedmethod for building parametric motion graphs, orhighly-structured,

graph-based control mechanisms that combine parametric synthesis to gainaccuracy and

flexibility and synthesis by concatenation to producequality transitionsbetween motions.

4. Runtime Method for Using Parametric Motion Graphs (Chapter 6). I show how to use

parametric motion graphs at runtime to produceaccurate, high-quality, responsivemotion

streams atinteractive speeds. Because parametric motion graphs arehighly-structured, little

authoring effortis needed to use a graph for interactive character control.

With these contributions I show the utility of decoupling parameters during motion clip genera-

tion by providing distinct decoupling solutions to two different but important motion generation

problems. I also illustrate the usefulness of highly structured control mechanisms for synthesizing

controllable motion streams from motion clips by showing how parametric motion graphs provide

all of the required properties of interactive applications because of their structure.

The remainder of this chapter provides a more detailed description of the difficulties involved

with synthesizing human motion for interactive applications, as well as an overview of the tech-

niques presented in the rest of the document.

1.1 Problem Overview

Because of the complexities of the human body and our sensitivity to human motion quality,

synthesizing quality human motion under any set of circumstances is difficult. But the problem
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becomes even more difficult when placed within the confines of an interactive application. In

particular, interactive applications need methods that have each of the following characteristics:

1. Efficient SynthesisAny method for generating human motion at runtime in an interactive

application must be able to synthesize each frame of motion at consistent, interactive speeds.

A user should never see a dip in frame rate because it took longer than normal to generate a

frame of motion.

2. Efficient Data StorageBecause interactive applications must meet data storage limitations,

it is important that representations used for human motion generation use little storage space.

3. Low Latency or Response TimeAt runtime, interactive applications must provide quick

feedback to the user; the time between when a user requests an action and when the system

actually renders the motion associated with that action should be predictable. A user should

always know whether a character has “heard” his or her request.

4. Accurate Motion Generation Since a user issues commands in interactive applications, it

is important that the motions synthesized at runtime in response to those commands closely

meet the requests. For instance, if a user commands a character to punch at a target, the

motion displayed by the system should show the character punching at the target as closely

as possible.

5. Visual Quality Ideally, any motion generated for an interactive application should appear as

if it were generated in the same way as the original example motions. While the quality of

a motion is partly a subjective characteristic, some aspects of quality can be evaluated. For

instance, it is important that generated motions be continuous. Motions cannot look as if

they are segmented in time or across body parts. Distracting artifacts, such as knee-popping

and jitters, should be avoided to add to the appearance of realism.

6. Automated Authoring To help promote easy experimentation and save important man-

hours, any method for authoring human motion for an interactive application should not
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Example-Based Research In Practice

Efficient Synthesis No Yes

Efficient Storage No Yes

Low Latency No Yes

Motion Accuracy Yes No

Visual Quality Yes No

Automated Authoring Yes No

Table 1.1 Table comparing existing motion synthesis methods against the required characteristics
of interactive applications.

require extensive setup or hand-tweaking. Ideally, the computer should help alleviate any

tedious tasks through automation.

Existing methods for synthesizing human motion fall short of meeting all of the requirements

of interactive applications. These existing methods can generally be divided into two categories:

methods used in practice in video games or training simulations and example-based motion synthe-

sis methods developed primarily at academic institutions. In general, the methods used in practice

are efficient but fail to meet quality requirements, while the existing example-based synthesis tech-

niques produce high-quality results but are often too inefficient to be used at runtime. Table 1.1

summarizes these generalizations. Chapter 2 goes into more detail on how existing example-based

methods and methods used in practice fail to meet the needs of interactive applications.

The goal of my work is to provide insight into how to develop example-based synthesis meth-

ods that are efficient enough to be used in interactive applications but can still synthesize the

high-quality, accurate motions characteristic of these techniques.

1.2 Technical Solutions Overview

This section describes in detail the individual technical problems I have addressed with my

work and how I have solved these problems.
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Figure 1.3 A motion generated by splicing the upper body of a person carrying a heavy box with
the lower body of a person walking in a curve.

1.2.1 Motion Splicing

Often the problem of character control is divided into locomotion and action. For example, a

character can carry a box, punch, carry a suitcase, or wave, independent of whether it is walking

straight, walking in a curve, walking up some stairs, jogging, or just moving from one foot to the

other. Interactive applications that allow many different actions and kinds of locomotion must be

able to generate motions for every possiblecombinationof locomotion and action. Synthesizing

these motions using current example-based methods requires capturing examples of the character

performing all possible combinations. Ifn locomotion examples are needed and there arem ac-

tions that the character can perform,nm examples would need to be collected all together. It would

be attractive if a character’s upper-body action and lower-body locomotion could be captured inde-

pendently, requiring onlyn+m examples. However, this independent treatment requires a method

for splicing the separate pieces together. For example, to create a motion of someone stepping up

onto a platform while carrying a cup, an application could splice the lower body of a character

stepping up onto a platform with the upper body of someone carrying a cup.

I have developed a simple and efficient technique for synthesizing high-fidelity motions by at-

taching, orsplicing, the upper-body action of one motion example to the lower-body locomotion

of another. Existing splicing algorithms do little more than copy degrees of freedom (DOFs) from

one motion onto another. This naı̈ve DOF replacement can produce unrealistic results because it
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ignores both physical and stylistic correlations between various joints in the body. My approach

uses spatial and temporal relationships found within the example motions to retain the overall pos-

ture of the upper-body action while adding secondary motion details appropriate to the timing and

configuration of the lower body. By decoupling upper-body action from lower-body locomotion,

my motion synthesis technique allows example motions to be captured independently and later

combined to create new, natural-looking motions.

To illustrate my splicing technique, I give a concrete example. Imagine that we have motions

of a character walking in a curved path and of a character walking in a straight line while carrying

a heavy box. Using motion splicing, one can generate a motion of the character carrying a heavy

box down a curved path. This motion will display many essential characteristics of the original

box-carrying motion. For instance, the arms will stay the same distance apart throughout the

motion, and the upper body will lean back slightly because of the weight of the box. The motion

will also exhibit characteristics that are a direct result of the correlations between the upper body

and lower body. For example, the shoulders will rotate and bob slightly with the stride of the

lower body, and the entire motion will lean in towards the turn. In particular, note that splicing

produces motions with correct physical effects without explicitly modeling physics; these physical

effects are transferred because the original example motions encode them. In contrast, naı̈ve DOF

replacement produces a motion where the upper body leans forward and wobbles unpredictably in

relation to the lower body.

1.2.2 Gaze Control

Humans often convey their intentions through subtle cues before performing actions. In par-

ticular, the head of a person often moves to fixate on a point before acting. I call these head cues

gaze, and they are a natural way to convey goals. Unfortunately, virtual human characters often

lack gaze cues. Sometimes video game developers do adjust a character’s head facing in order to

convey characteristics like “aiming” direction, but the motions employed often look unrealistic as

they are based on simple inverse kinematics methods, such as just twisting the character’s neck.
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Figure 1.4 A motion generated by applying my gaze control model to adjust this character’s gaze
towards the left.
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Furthermore, the way an individual adjusts their gaze depends heavily on their personal movement

style. It is not sufficient to find a single way to adjust gaze for every character.

I approach this problem from an example-based perspective. If one could determine how to

adjust the gaze of a character using motion-captured examples, it would be possible to generate

accurate, quality motion that includes gaze cues. I represent the gaze style of a character using

a low-dimensional representation of gaze change motions that is informed by existing biological

research on how humans adjust their gaze. The model uses raw motion capture data of a person

changing their gaze to build a parametric gaze map that can be used at runtime to quickly control

the gaze of a character.

Interactive gaze control can be used to create a character that reacts faster to its environment.

For example, a character could look at interesting objects as they get near them and look along

the direction of travel when moving, all without appearing unnatural. One nice characteristic

of interactive characters with controllable gaze cues is that the motion of the head can lead the

motion of the character. For instance, when a character is standing still and a user requests that

the character turn to the right, a realistic motion takes time to begin moving the character in the

requested direction, which can cause a user to be unsure of whether the character has received

the request. On the other hand, if the character begins turning his/her head towards the right, the

user knows that the character is reacting. The head motion lends a sense of responsiveness to the

character because it mimics how humans react in similar situations. See Figure 1.4 for an example

of my gaze model being used to make a digital character look towards the left. Unlike the results

garnered using a simple head twisting technique, my results exhibit natural motion characteristics

such as overshoot and asymmetry.

1.2.3 Parametric Motion Graphs

For interactive applications, it is not only important to quickly generate a motion that meets

specified constraints but also to transition between different motions rapidly and smoothly. One

downside to using an example-based motion synthesis method is that for any complex application it

would require a large number of example motions in order to synthesize all possible user-requested
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(a) (b)

Figure 1.5 (a) A parametric motion graph for walking through an environment with smooth turns.
(b) An interactively controlled character using the walking graph. The character is in the process
of turning around in order to walk in the user requested travel direction depicted by the arrow on

the ground.
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streams of motion. But an interactive application must be able to find and transition between

motion clips quickly in order to minimize latency. So, the problem faced by example-based motion

synthesis researchers is one of organization. How can we represent all possible transitions between

example motions in a highly-structured way in order to facilitate fast decision-making while not

sacrificing the quality, accuracy, or ease of authoring gained by using an example-based synthesis

approach?

To tackle this problem, I have developed a highly structured, example-based motion synthesis

data structure called aparametric motion graph. A parametric motion graph describes possi-

ble ways to generate seamless streams of motion by concatenating short motion clips generated

through parametric synthesis. Parametric synthesis allows accurate generation of any motion from

an entire space of motions, parameterized by a continuously valued parameter. For example, para-

metric synthesis can generate motions of a person picking up an item from any location on a shelf.

While neither seamless motion concatenation nor parametric synthesis is a new idea, by com-

bining both synthesis techniques, parametric motion graphs can provide accurate control through

parametric synthesis and can generate long streams of high-fidelity motion without visible seams

using linear blend transitions.

To illustrate the utility of parametric motion graphs, consider a concrete example. I can create

a character that can be directed through an environment with continuous steering controls. Using

an existing blending-based parametric synthesis method, I first build a parametric motion space of

a person walking at different curvatures for two steps. Next, I quickly build a parametric motion

graph from this motion space using the algorithm presented in this thesis. The resulting graph

contains a single node, representing the parametric walking motion space, and a single edge that

starts and ends at this node (see Figure 1.5a). This edge describes how to transition from the end

of a generated walking clip to any generated walking clip in a subspace of the motion space. This

simple structure organizes many motions in a way that allows efficient character control at run-

time. By translating a user’s desired travel direction into desired curvature requests, the parametric

motion graph can be used to synthesize a continuous stream of walking motion that reacts to a

user’s commands. This stream of motion will be smooth, will run at interactive rates, and will only
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contain high-fidelity transitions between clips of motion. Figure 1.5b shows a screen capture of

an interactive walking character using parametric motion graphs. Unlike other techniques that can

create interactive walking characters, my technique requires little authoring effort, is capable of

accurate motion generation, and works with a wide range of different motions. For instance, once

I have an interactive walking character, it is easy to create a character that locomotes by running or

cartwheeling simply by building a parametric motion space of running or cartwheeling motions,

also parameterized by curvature.
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Chapter 2

Related Work

This chapter reviews research related to motion synthesis for interactive applications. The

chapter is divided into two parts. The first part covers work primarily concerned with synthesizing

motion clips, while the second discusses work on generating motion streams that consist of many

different kinds of actions. These two problems are closely related, so some related work addresses

a bit of both problems.

2.1 Motion Clip Synthesis

Researchers have studied a number of different ways to synthesize individual motion clips.

This section reviews the most relevant work in this area.

2.1.1 Synthesis by Manual Keyframing

One of the first methods employed by practitioners for synthesizing digital motion clips was

keyframing. Keyframing is the process of manually specifying the pose of the character at key

moments in time. These poses, calledkey frames, are then smoothly interpolated by the computer

to produce the motion in-between. The idea of keyframing comes directly from the method tradi-

tional animators use to produce animation [JT81]; the principle animator in traditional animation

draws keyframes of a scene, and then a secondary animator goes through and fills in the in between

frames.

Due in part to its grounding in the traditional art world, keyframing is still a useful method

for synthesizing motions. It gives an artist detailed control over the animations that are produced.
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But keyframing can be a time-consuming process. Because interpolating poses is not likely to pro-

duce realistic looking motion, artists must often add additional keyframes when interpolation fails.

In the end, a keyframed motion of high quality usually consists of a large number of keyframes.

The matter is further complicated by the fact that properly timing keyframed motion can be diffi-

cult [TM04].

Despite the difficulties associated with keyframing, keyframing will remain a viable source

of quality animation in the future. My work seeks not to replace manual keyframing but to limit

the number of motions that would need to be created by an artist, either through keyframing or

motion capture. I wish to shed light on how to use the power of the computer to synthesize new

high-quality animations from a database of examples.

2.1.2 Parametric Motion Synthesis

One useful approach for generating new motions is parametric synthesis, or the set of tech-

niques that map motion parameters to motion, allowing the generation of an entire space of mo-

tions simply by supplying the relevant parameters (see Section 3.5 for a more detailed description

of parametric synthesis). I divide existing parametric synthesis methods into two groups: those

that use a procedural, algorithmic approach to generate motions with particular parameters and

those that blend together motions from a motion database in order to produce new motions with

specific parameter values. There has been a considerable amount of work in both areas of para-

metric synthesis, and some methods combine procedural methods with blending-based methods.

My own work draws from existing work in both forms of parametric synthesis, but especially

blending-based parametric synthesis, which is used directly for gaze control (see Chapter 5) and in

parametric motion graphs (see Chapter 6). I review these methods for parametric synthesis next.

2.1.2.1 Procedural Parametric Synthesis

Some work on parametric synthesis focuses on developing procedural methods for generating

specific parametric motion spaces. Early on, Perlin [Per95] showed the utility of using simple,

yet efficient, methods combined with noise to generate rhythmic motions. Later, in theImprov
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system, Perlin and Goldberg [PG96] provided a mechanism for layering procedural methods for

motion generation to author whole new controllable actions, such as smiling. Yet it can be difficult

to capture the subtle nuances of real human motion using this type of simple motion generation.

Thus, simple methods for procedural parametric synthesis are only useful in a small number of

constrained cases.

Other methods for procedural parametric synthesis model the motions of the human body using

physically-based techniques. Hodgins et al. developed physically-based controllers for generating

running, bicycling, and vaulting motions [HWBO95, HW98]. The technique uses proportional

derivative servos to control motion during different stages of an action and a hand-tailored state

machine to navigate through these stages. Similarly, controllers were introduced by Faloutsos

et al. [FvdPT01b] for balance preservation and fall recovery; by Wooten and Hodgins for leap-

ing, tumbling, landing, and balancing motions in [WH00]; by Brunderlin and Calvert for walk-

ing [BC89] and running [BC96]; and by Laszlo et al. [LvdPF96] for balancing and walking.

While these physically-based motion synthesis methods work well for motions that are highly

governed by physics, such as the ones listed above, controllers for different types of motion are

time-consuming to produce and often do not generalize to new types of motion. Some researchers

have looked at ways to adapt existing controllers under constrained circumstances [FvdPT01a,

HP97, LvdPF96]. Yet, these techniques have been limited thus far in generalizing physically-

based controllers beyond specific motion classes, especially if motion quality is a factor. One other

drawback to these physical models is that the motions produced often lack the interesting details we

see in everyday motion, some of which is stylistic in nature [NF02]. But physical motion synthesis

has the advantage that once a model is built that describes how to synthesize a particular motion,

the model requires little storage space to generate motions at runtime. Like other example-based

techniques, blending-based parametric synthesis, as described in Section 2.1.2.2, suffers from the

need to store all of the example motions in memory in order to synthesize new motions.
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2.1.2.2 Blending-Based Parametric Synthesis

Motion interpolation methods [BW95], or ways to generate motions that arein betweenother

motions, have led to the building of continuous, parameterized spaces of motions using a set of ex-

amples from that space. For example, blending-based parametric synthesis can generate motions

of a person punching towards any location within an enclosed area by analyzing and blending ex-

ample motions of the person punching to different locations in the space. Perlin [Per95] examined

ways to generate new motions by interpolating and blending between procedurally defined exam-

ple motions. Wiley and Hahn [WH97] used multilinear interpolation to blend original example

motions for parametric synthesis. Similarly, Rose et al. [RCB98] used radial basis functions to

do parametric synthesis. Rose et al. extended their initial work in [RSC01] to better meet inverse

kinematics requests by densely sampling the parameter space, resulting in synthesized motions

that more accurately meet requested parameters; and Kovar and Gleicher [KG04] built upon this

idea for more general motion types. In [PZ05], Pollard and Zordan focused on using blending-

based parametric synthesis of hand grasping motion capture data annotated with additional phys-

ical properties, such as force, in order to tackle the difficult problem of generating hand grasping

motions. And most recently, Cooper et al. [CHP07] looked at ways to actively learn a method for

blending-based parametric synthesis that allows continuous control of the parameters.

One strength of blending-based parametric synthesis is that it serves as a natural mechanism

for organizing many motion clips of the same type of motion into one data structure. I harness

this power in the parametric motion graph data structure presented in Chapter 6. I further adapt

blending-based parametric synthesis by providing a general way to transition between different

parametric spaces of motions, allowing fast synthesis of controllable motion streams in realtime.

While most methods for blending-based parametric synthesis blend motions using a linear

model, researchers have looked at methods for using, extending, or replacing linear-blending. Sa-

fonova and Hodgins [SH05] studied the physical correctness of linearly interpolated motions.

Based on their findings, they suggest a small number of simple modifications to basic linear-

blending in order to better retain physical motion properties during blending. And, in [IAF07],
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Ikemoto et al. suggest ways to cache multi-way blend information for faster response in interac-

tive applications. As a replacement for linear-blending, Mukai and Kuriyama [MK05] introduced

geostatistical interpolation to the field of motion synthesis. Using a technique called universal krig-

ing, Mukai and Kuriyama show how correlations between the dissimilar portions of two motions

can be estimated, producing interpolated motions with fewer spatial interpolation artifacts, such

as foot-sliding, a common artifact in linearly interpolated motions. These variations on blending

have great potential to improve the results produced through linear blends. While I use basic linear

blends in all of my work, it should be possible to replace or modify my method of blending to

include these improvements without other modifications to my algorithms.

Often, good motion interpolation depends on warping the timing of the motions so that logical

actions line up. There are a number of different timewarping methods employed by researchers

to do this alignment. Park et al. [PSS02] and Rose et al. [RCB98] both had a user hand-mark

key points in the motions to be aligned, which could then be used as a reference to form a time

alignment. Ashraf and Wong [AW00] expanded these techniques by locating these key motion

points in a semi-automated way.

Other timewarping methods use dynamic timewarping based on frame-to-frame similarity to

produce a more optimal time alignment between motions. These dynamic timewarping methods in-

clude those of Bruderlin and Williams [BW95], Dontcheva et al. [DYP03], Hsu et al. [HPP05], and

Kovar and Gleicher [KG03]. I use the dynamic timewarping method of Kovar and Gleicher [KG03]

extensively in my work in order to locate correspondences and align correlations between two mo-

tions. See Section 3.4 for more information on how I align motions in time.

2.1.3 Layered Motion Synthesis

While most work on motion synthesis focuses on producing all of the degrees of freedom

(DOFs) of a character simultaneously, there has been some work on creating character motions by

layering the DOFs of different motions.

To my knowledge, splicing upper-body and lower-body motions together is common practice

in the video game industry. For example, to make a character hold a gun while running, the upper
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body of a character holding a gun is spliced onto the lower body of a character running. While I am

aware of no published descriptions of the methods employed, my experience suggests that splicing

is usually accomplished by simply swapping data between two motions, henceforth referred to as

näıve DOF replacement. Unfortunately, unless the original motions are carefully tailored, naı̈ve

DOF replacement will often produce unnatural results because it does not respect the natural cor-

relations between the upper body and lower body. Even in simple cases, such as transferring the

upper body of a walking motion to a different walking motion, naı̈ve DOF replacement can cause

disturbing visual artifacts. My method presented in Chapter 4 for splicing upper-body actions onto

lower-body locomotions is developed specifically to address these problems.

Näıve DOF replacement was also used by Perlin [Per95] and Perlin and Goldberg [PG96] to

layer procedurally-defined motions into composite actions. However, the goal of this work was

to produce scriptable characters that could flexibly interact with each other and with human par-

ticipants, rather than to synthesize high-quality motion clips. More recently, Ikemoto and Forsyth

used näıve DOF replacement to transplant pieces of motion [IF04]. Using a classifier to evaluate

the results, they added “human” looking motions to a motion database. Ikemoto and Forsyth ac-

knowledge the failures of naı̈ve DOF replacement in their work by using a classifier to guarantee

that the results look correct, but their goal of expanding a motion database offline does not depend

on having a reliable method for splicing. It is important that any method for splicing motions at

runtime be reliable; algorithms for assessing the quality of the produced motions are too slow to

be used at runtime, and a strategy of resplicing when a splice fails will not produce spliced mo-

tions in a predictable amount of time, which may cause efficiency issues. In contrast, the method I

present in Chapter 4 for splicing upper-body actions with lower-body locomotion reliably splices

in a predictable amount of time.

To build a representation of how the DOFs of a set of “base” actions (such as walking straight

forward, standing, or sitting) are affected by the addition of an auxiliary action (such as throwing),

Al-Ghreimil and Hahn [AGH03] captured examples of each base action with and without the aux-

iliary action and computed the differences. Joint trajectories that varied little in these difference

motions were replaced with an average, yielding a more compact encoding. The result was a set
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of joint trajectories that could be added on to new instances of a known base motion, e.g., a dif-

ferent actor walking straight forward. It is unclear how well this method generalizes to different

base motions, such as turning or walking in a curve. Yet, the Al-Ghreimil and Hahn method does

show that decoupling methods can drastically decrease motion data requirements. My methods

for decoupling upper-body action from locomotion (Chapter 4) and gaze from full body motion

(Chapter 5) take inspiration from this work, while at the same time focuses more on the reliability

of the decoupling methods.

Pullen and Bregler [PB00] introduced a method for producing new motions that are statistical

variations of a base motion using models that explicitly deal with body correlations. Later, they

extended these ideas to add detail to partially keyframed motion. Given keyframed values of a

small number of a character’s DOFs, Pullen and Bregler [PB02] identified segments of a motion

data set where these DOFs were similar at user-specified frequency bands. These segments of

motion data were then used to add higher-frequency content to the keyframed DOFs and to fill in

the DOFs that were not keyframed. My own work on motion decoupling differs from Pullen and

Bregler’s work in that I seek tocontrol parameters independentlyduring runtime motion synthesis.

Their work focuses on synthesizing motion offline based on partial specifications of its DOFs by

adding detail to sparse keyframes of a small number of DOFs. Yet, like my work, [PB00] shows

the utility of synthesizing motions in layers.

Similar to Pullen and Bregler’s method, Lee et al. [LBB02] developed a statistically based

method for adding eye motion detail to existing full body motions. Lee et al. found that motions

where a character’s eyes were animated using their model appeared more lifelike than those without

animated eyes or with randomly animated eyes. This finding is important to my own work on gaze

control (Chapter 5) as it points out the importance of eyes and gaze in making human motion

appear more lifelike.

One algorithm that is similar to my work on motion splicing is the work of Majkowska et al. for

splicing hand motion onto full body motion [MZF06]. This hand splicing algorithm uses temporal

and spatial relationships to perform a good splice, just as I do in Chapter 4 to produce splices of

upper-body action and lower-body locomotion. However, there are many differences between our
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two problems other than simply my focus on splicing a different part of the body. Majkowska

et al.’s goal was to be able to decouple the capture of hand animation from full-body animation,

allowing better accuracy in captured hand motion and the ability to re-use that motion for different

actors performing similar full-body motions. Instead, my goal is to allow locomotion and action

to be “mixed-and-matched” during motion synthesis. Our differing goals lead to variations in our

algorithms that are tailored towards our individual purposes, but the overall approach of temporal

and spatial alignment is used for both.

2.1.4 Constraining Motion

One common method for producing motions that meet constraints is to directly force a base mo-

tion to meet the constraints. A large body of work exists for locating and enforcing constraints on

human motion. Bindiganavale and Badler [BB98] developed a method for identifying contact con-

straints with objects in an environment by looking at acceleration zero-crossings for end-effectors.

Bodik [Bod00] developed a simple and effective method for identifying the important class of con-

straints known as footplants based on joint velocities. More recently, Ikemoto et al. [IAF06] intro-

duced a special-purpose algorithm for identifying footplant constraints. This work uses a k-nearest

neighbor classifier that is trained with labeled motion-captured examples in a semi-supervised way.

These methods provide an automated way to identify some classes of constraints in an environ-

ment.

Motion displacement maps have also been used by researchers to help enforce kinematic mo-

tion constraints. Witkin and Popovic [WP95] first introduced a smooth variant of displacement

maps called motion warping for adjusting motion to meet constraints. Gleicher [Gle98] extended

this work for retargeting existing motions to new characters . Later, Gleicher [Gle01] adjusted

these displacement mapping ideas to allow a user to interactively change the path that a char-

acter follows. More recently, Wang et al. [WDAC06] used displacement maps to control how

“animated” a character looks. These displacement maps are built using the second derivative of

the original motion, resulting in “animated” motions with exaggerated characteristics. Methods

for editing motions based on displacement maps allow easy motion modifications by introducing
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smooth changes. I extend displacement maps in Chapter 5 by building parametric spaces of spinal

displacement maps that are used to decouple gaze control from overall full body motion.

Inverse kinematics has also been a popular method for enforcing motion constraints. Shin et

al. [SLGS01] introduced a method for online retargeting of human motion onto computer charac-

ters using inverse kinematics methods and the locations of important objects in a scene. Monzani

et al. [MBBT00] also used inverse kinematics to make smooth adjustments to motions so that they

meet specified constraints. In [SKF07], Shapiro et al. used randomized path planning combined

with inverse kinematics in order to adjust motions that are subject to many complex contraints. Lee

and Shin [LS99] employed a method based on both hierarchical displacement maps and inverse

kinematics for adjusting a motion to specified constraints.

While often fast to compute, inverse kinematics is inherently ill-conditioned, making it chal-

lenging to find a single correct answer [Mac90], though the issues involved are well understood

making inverse kinematics a common method for practical motion editing. Traditional inverse-

kinematics methods also often do not produce high-quality motion if the constraints to be enforced

are far from the base motion pose. Again, these quality issues arise from the fact that there are

usually many pose configurations and motions that will enforce a constraint but few of them look

“human”. My work will allow the generation of more accurate motions at runtime, allowing these

simple inverse kinematics methods to be applied where they work best - when the base motion is

close to the actual requested motion.

Inverse kinematics and dynamics have also been used for special-purpose motion cleanup al-

gorithms. Ko and Badler [KB96] used inverse dynamics to adjust walking motions so a character

would stay in balance and have reasonable joint torques. This approach is well-suited for producing

effects like leaning to compensate for a heavy weight that is being carried, but it is less appropriate

for generating motions that are primarily driven by stylistic preferences (e.g., there are many ways

to carry a light tray while staying in balance). Kovar et al. [KSG02] developed a special-purpose

inverse kinematics method for adjusting a motion to exactly meet footplant constraints at runtime.

Again, these special-purpose inverse kinematics methods work well because they are applied to

base motions that are already close to the desired motion.
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Recently, there has been interest in example-based inverse kinematics [GMHP04, YKH04].

The idea behind this work is to learn a method for inverse kinematics from a database of example

motions by projecting the example motions into a low-dimensional space. This low-dimensional

version of the motion database can be used as a lookup table in order to find plausible motions that

enforce requested constraints at runtime. In a variation of these example-based inverse kinematics

techniques, Hsu et al. [HGP04] controlled coupled motions by building index tables based on

a low-dimensional representation of one of the motions; for instance, Hsu et al. generated the

motion of a person following a lead dancer using a lookup table based on the motion of the lead

dancer. These example-based inverse kinematics methods are motivated by the fact that human

motion is complex, making it hard to modify motions in a realistic way without a reliable example.

This dependence on examples for realism and focus on motion clip organization for interactive

control further illustrates my thesis.

Other researchers have used the principles of physics to enforce physical properties on simu-

lated motion. The work of Shin et al. [SKG03] used the physical laws of ballistic motion and zero

moment point constraints to make a motion more physically plausible. In particular, Shin et al.’s

method is capable of adjusting the motion of a person walking on a flat plane to the motion of a

person walking up a steep hill by adjusting the motion based on it’s zero moment point. Tak et

al. [TSK02] used Kalman filters to enforce physical constraints on motions and adjust for balance.

Liu and Popovic [LP02] also used the laws of physics to correct ballistic motions. This work, how-

ever, differed from the work of others by focusing on the cleanup of keyframed ballistic motion

(see Section 2.1.1). The idea is to allow a user to keyframe a small number of poses in a jump-

ing motion. Then, using simple motion interpolation combined with the laws of physics, a new

physically-plausible ballistic motion can be generated. These physically based cleanup methods

work well for making motions look more realistic when there are obvious physical properties of

the motion that should hold, but the methods are limited when it comes to producing motions with

stylistic characteristics.

The physical and biological sciences have also been used for other motion synthesis tasks.

In [KP06], Kry and Pai presented a new motion capture method by which contact forces are
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recorded along with the position of points in space. This method of capture allows new motions to

be synthesized using the physically plausible model generated from the capture process. Metoyer

et al. [MZH+07] used the science of psychology to develop a physically based model of dynamic

responses for impacts to the head and upper body. The model allows motions to react quickly

and realistically by anticipating the collision and adjusting physically at impact. This approach

of building motion models based on observations made within the psychology community is an

approach I also take in my work on gaze control, presented in Chapter 5.

2.2 Motion Stream Synthesis

While the previous section reviewed methods primarily concerned with synthesizing individual

clips of motion, this section reviews existing research on synthesizing long, continuous streams of

motion. The section starts with a discussion on generating motion streams by transitioning between

motion clips. This discussion is followed by a review of work that uses an unstructured graph to

represent possible transitions within a database of motions. The rest of the section describes tech-

niques for using deliberately structured graphs for better efficiency during motion synthesis, using

data structures specifically designed for locomotion synthesis, and representing motion streams

using statistical models.

2.2.1 Motion Transitions

One common method for producing a long motion stream is to append motion clips together

using a transition. A transition is a segment of motion that seamlessly attaches two motions to

form a single, longer motion. Early work in this area focused on ways to transition between two

motion clips in a realistic way [RGBC96, LvdP96]. One common method is to linearly blend from

one motion to another over a small window of frames. This type of transition is generally referred

to as alinear-blend transition. In my work, I use linear-blend transitions to piece together motion

clips in a continuous way. See Section 3.3 for more details on how I perform transitions.

Because of their common usage in the community, linear-blend transitions have been a topic

of study over the past couple of decades. Several researchers have looked at ways to identify
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an optimal transition point at which to make a transition between two motions [WB03, LCR+02,

KGP02, AF02]. I use the method first presented in [KGP02] to perform comparisons between

motions (see Section 3.2).

It might be possible to improve transitions between appended motions by using, extending, or

replacing linear-blending using the methods presented in Section 2.1.2.2. Again, while I use basic

linear blend transitions for my work, it should be possible to replace or modify my method for

appending motions together to include these improvements without any complex modifications to

my algorithms.

2.2.2 Unstructured Motion Graphs

Over the last decade, techniques for producing motion transitions were extended to directly rep-

resent possible transitions between motions in a motion collection using graph structures [AF02,

KGP02, LCR+02, AFO03, KPS03, SNI06]. As with Video Textures [SSSE00], the key to generat-

ing long streams of motion is being able to locate frames of motion in a motion database that look

similar enough to be used as transition points between different motion clips. These motion graph

techniques focus on using automated comparison methods to easily author the transition graphs.

But these motion graphs are unwieldy for use in interactive applications because they lack a high-

level structure. Without costly global search methods, it is hard to find motions to transition to that

meet specified constraints. More recent work in unstructured motion graphs have looked at ways

to blend paths within the graph [SH07] in order to produce more accurate motions. But, again, this

approach requires a costly search, making the technique infeasible for online applications.

For applications with a limited motion database or unbounded computation time, unstructured

motion graphs can be a simple and effective method for organizing motions clips. Because of the

quality of the results produced using these unstructured motion graphs and the ease of authoring

new graphs for character control, my work builds heavily upon these methods. However, I seek to

organize the connections in motion graphs so that global search is not necessary to synthesize new

motion streams. This idea is the foundation of my work on parametric motion graphs (Chapter 6).
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In general, it is hard to evaluate unstructured graphs or determine the range of possible motions

that can be generated using the graph. Reitsma and Pollard [RP04] tackled this problem to study the

capabilities of locomotion graphs by embedding these graphs in an environment. The embedding

showed the range of possible locations and orientations a character could reach using the specified

motion graph. Later Reitsma and Pollard extended their work in [RP07] to be more efficient as

well as to evaluate characteristics of other motion types. By organizing motion clips in a structured

motion graph, such as in the parametric motion graph I present in Chapter 6, it may be possible to

evaluate the capabilities of the graph structure more efficiently. Specifically, the work of Treuille

et al. [TLP07] showed how to efficiently determine the capabilities of a parametric motion space

during motion capture time. This ability to analyze the usefulness of parametric motion spaces

could be useful for practical use of parametric motion graphs.

Researchers have augmented unstructured motion transition graphs by precomputing properties

of these graphs to aid in interactive character control. Lee and Lee used reinforcement learning

and dynamic programming to determine how a character can best perform a desired action for any

given character state [LL04]. This data is stored in a lookup table that can be used at runtime to

efficiently generate motions that meet user requests. In a similar way, Srinivasan et al. [SMM05]

precomputedmobility mapsfrom a motion transition graph to aid in the runtime generation of

locomotion. And Lau and Kuffner [LK06] also used precomputed motion graph search trees to aid

in the character navigation task.

These augmented motion graphs are still only able to represent transitions between a discrete

number of motions and become unwieldy as the number of motions in the graph becomes large.

Furthermore, these techniques do not directly address the problem that the underlying motion

transition graph is unstructured; they instead provide methods for dealing with the unstructured

graph in a more efficient way. I suggest using a method that explicitly organizes motions for the

required task, as illustrated in Chapter 6. Other methods that explicitly organize the motions in a

motion graph are reviewed next.
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2.2.3 Structured Motion Graphs

The gaming industry often uses hand-generated graph structures called move trees to represent

ways to transition between clips of motion [MBC01]. Because move trees are constructed for easy

interactive character control, they have a deliberate structure that aids in quickly choosing motions

based on user requests. This structure facilitates controlling characters in realtime, but this ability

comes only after many man hours of work. And because a move tree only represents a discrete

number of motion clips, the accuracy of the motions it produces is limited by the granularity of

these motions. To increase the accuracy, more and more motions must be added, and each addition

to the move tree takes many man hours.

Some researchers have built structured graphs specifically designed for the task at hand. For

instance, Lee et al. [LCL06] allowed motion building blocks to be placed in an environment, form-

ing a graph of connectable motions within the environment itself. In [SDO+04], Stone et al. built

structured motion graphs for controlling speech using the grammar of the language. This approach

of embedding a motion graph in a specific task space is limited in that each method can only be

used for the specific task. Furthermore, it might not be possible to build a natural embedding; and

even if the embedding is possible, the resulting motions are often limited in quality since a natural

embedding does not necessarily correspond to natural transitions between motion clips. Yet, these

task-specific, structured motion graphs illustrate the utility of organization for interactive motion

control.

McCann and Pollard [MP07] structure their graphs in a tabular way using a statistical model

of human behavior to optimize for quick transitions after user requests in interactive applications.

They showed how their method allows fast motion stream generation with high responsiveness, but

often these quick responses come at the expense of quality. And, similar to motion trees, McCann

and Pollard’s transition graph can only represent a discrete number of motion clips, resulting in a

lack of accuracy.

One automated transition graph technique that deliberately seeks to build highly-structured

graphs for general, accurate, quality, interactive motion control is Snap-Together Motion [GSKJ03].

The key of the technique is to identify poses that appear many times in the original motion clips.
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These poses become “hub” nodes in a graph, and edges between these nodes correspond to the

individual motion clips that can transition between these poses. This technique does a good job

of automating the process of building controllable characters, but again the structure can get un-

wieldy as the number of motion variations grows large. And since Snap-Together Motion can only

represent a discrete number of motions, motion synthesis accuracy is dependent on the number of

motion examples. Sung et al. [SKG05] targeted this limitation in order to synthesize accurate mo-

tion clips for agents in a crowd by using the Snap-Together Motion graph to synthesize a motion

that nearly meets requested goals and then using editing operations on these motions to get exact

results.

Accuracy is not the only limitation of Snap-Together Motion. The technique also makes no

attempt to group logically similar motions, an approach that I use to help add more structure to my

parametric motion graph control structures (see Chapter 6). Additionally, snap-together motion

graphs are unable to represent continuously changing transition points and ranges within a single

type of motion, such as the case where a character can transition to other walking motions with

similar curvature to its current one. A snap-together motion graph must use more than one “hub”

node in order to capture a portion of the complexity of these shifting transition possibilities.

A recent extension to Snap-Together Motion groups similar clips that connect the same “hub”

nodes into parametric edges, forming a new structure called a fat graph [SO06]. Fat graphs and

parametric motion graphs are similar in that they combine parametric synthesis and synthesis-by-

concatenation to provide interactive control. But parametric motion graphs have a number of other

benefits, including the ability to produce more natural looking motion transitions. These benefits

are reviewed in more detail in Section 6.2.3.

2.2.4 Controllable Locomotion

Other researchers have studied ways to synthesize controllable locomotion in realtime (see

[MFCD99] for a thorough survey of this work through 1999). Sun and Metaxas [SM01] used a

procedurally defined parametric walking motion to generate streams of motion that adjust to user-

defined curvature requests and uneven terrain. Park et al. [PSS02] introduced a similar technique
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for generating locomotion, such as walking and jogging, using a graph built from parametric mo-

tion spaces parameterized by curvature. Yin et al. [YLvdP07] used a physics-based controller to

produce continuous steams of locomotion that react to many different environmental changes.

Example-based graph locomotion control methods also exist. Kwon et al. [KS05] grouped

motion segments based on footstep patterns. Transitions between these groups are encoded in a

hierarchical motion graph, where the coarsest level of the graph describes general transition pat-

terns while more detailed levels capture the cyclic nature of locomotion. Choi et al [CLS03] built

graph structures called roadmaps based on footstep patterns embedded in the environment. Using

a combination of path planning and displacement maps, they used these structures to quickly plan

and synthesize locomotion. Pettre and Laumond [PL06] built a blending-based parametric motion

space from a set of locomotion example motions to aid in locomotion control. These techniques for

generating controllable locomotion illustrate the utility of using structure to produce controllable

motion in realtime. The drawback of these methods is that they are designed specifically to work

on locomotion only. I will address general motion control for interactive environments with my

work on parametric motion graphs (see Chapter 6).

2.2.5 Statistical Motion Graphs

A number of other researchers have developed statistics-based graph structures where nodes

represent statistical variations of motion primitives and edges show how to connect these prim-

itives [LWS02, GJH01, Bow00, BH00]. Molina-Tanco and Hilton [TH00] produced graphs that

were also based on a statistical model but the final motion clips used in the simulations were only

original motion clips or blended versions of the clips.

These statistically-based synthesis methods focus on producing variable motion, not on con-

trolling the motion produced. Because of this, they are difficult to use to control motion. Also,

because the statistics of human motion are not necessarily modeled by the statistics of human

poses, the motions produced using statistical motion graphs often lack realism.
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Chapter 3

Background

The work in this dissertation builds directly on existing work in the area of motion synthe-

sis. This chapter describes in more detail some of the techniques and concepts unique to motion

synthesis that are used extensively throughout the rest of the document. In particular, this chapter

briefly describes how motions in this dissertation are represented, the metric used to measure the

similarity between two pieces of motion, the method used to append two motions together, the

process for aligning two motions in time, and the blending-based parametric synthesis method em-

ployed. It should be noted that none of the methods presented in this chapter are novel. All of the

described techniques are well described elsewhere. They are reviewed here to provide explanation

and motivation for the methods I build upon and to introduce important terms and notation that are

used throughout the rest of this document. Please refer to the original papers on these techniques

for more details.

3.1 Motion Representation

The raw data collected by a standard motion capture system consists of the 3D locations of a set

of points that are rigidly attached to the actor’s body. Because of the ease of animating a character

using a set of hierarchically organized joints, called askeleton, the raw data from a motion capture

shoot usually goes through the process of being skeletonized (see [BRRP97, OBBH00, ZH03] for

more information on how this process is accomplished).

While the work presented in Chapter 5 uses raw motion capture data directly, I primarily rep-

resent the human body as a rigid-body skeleton. Each joint of the skeleton has exactly one parent
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joint, with the exception of theroot joint that has no parent. A skeleton can be defined by its

joint hierarchy and initial pose, or the offset of each joint from its parent in local coordinates.

Figure 3.1 shows the standard skeleton hierarchy used in all of the experiments presented in this

dissertation. Note that the articulated skeleton can only control the body motion of the character;

the skeleton does not include joints that represent fingers, toes, or facial features. In general, this

dissertation is only concerned with a character’s overall body motion, with the notable exception

of eye movement as discussed in Chapter 5.

Given a character’s skeleton, a motion is defined as a continuous function over time:

M(t) = {p(t),q1(t), . . . ,qk(t)} [3.1]

wherep is the position of the root with respect to the origin andqj is the relative orientation of the

jth joint with respect to its parent. In the case of the root, which does not have a parent joint, the

orientation is denoted with respect to the global coordinate system at the origin.

In practice, the continuous functionM(t) is represented as a set of samples, orframes, taken

at regular time increments,M(t1), . . . ,M(tn). Values ofM in between frames are computed

by using linear interpolation of the root position and spherical linear interpolation on the joint

orientations represented as unit quaternions [Sho85]. While there are a number of other ways to

represent rotations, unit quaternions are particularly well-suited for interpolation (see [Gra98]),

making them the rotation representation of choice for many motion researchers.

3.2 Motion Similarity

Much of my work depends on computing the similarity between two frames of motion, or,

conversely, to compute the difference between two frames of motion. One could compute the

difference between two frames of motion,M(t) andM′(t′), by directly comparing the sampled

motion vectors,{p(t),q1(t), . . . ,qk(t)} and{p′(t′),q′1(t′), . . . ,q′k(t′)}, a method employed by

others studying human motion [LZWP03] as well as by researchers in other domains with high-

dimensional spaces [BBK01]. There are two problems with this type of direct comparison:
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a b

Figure 3.2 Point Cloud Representation of a Frame of Motion. (a) shows a frame of running
motion in skeletal form. (b) shows the same frame of motion in point cloud form. Notice how the
point cloud representation contains information about where each of the joints of the skeleton are

located in 3D space on the frame in question as well as the frames surrounding it.

1. It fails to account for differences introduced solely due to a motion’s global orientation in

the environment.

2. It does not take into account differences between the dynamics of the two motions.

Thus, I compute the difference between two frames of motion,D(M(t),M′(t′)), using a metric

originally introduced by Kovar et al. [KGP02]. I chose to use this algorithm for two reasons, each

of which addresses one of the two problems associated with direct motion vector comparison:

1. The metric is invariant to translations along the ground plane and rotations about the up-axis.

2. The metric can take into account joint velocities and accelerations using finite differences.

The metric works by first representing each frame of motion as a cloud of points, henceforth

called apoint cloud. The points of a point cloud correspond to the locations of relevant skeletal

joints over a small window of time surrounding the frame. Figure 3.2 shows an example of a

point cloud generated from a frame of running motion. Using the following closed-form solution

from [KGP02], I can compute the rotation about the vertical axis,θ, and translation along the floor
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plane,(x0, z0), that best aligns corresponding points,pi andp′i, in the two point clouds.

θ = arctan

∑
i wi(xiz

′
i − x′izi)− 1∑

i
wi

(xz′ − x′z)
∑

i wi(xix′i + ziz′i)− 1∑
i
wi

(xx′ + zz′)
[3.2]

x0 =
1∑
i wi

(x− x′ cos(θ)− z′ sin θ) [3.3]

z0 =
1∑
i wi

(z + x′ sin(θ)− z′ cos θ) [3.4]

wherei is an index over the number of points in each cloud,wi is a weighting term for pointpi in

the point cloud,xi andzi are the x and z coordinates of pointpi, and all barred terms correspond

to the weighted sum of the barred variables over the indexi.

Using this optimal alignment, the distance between the two frames is computed as:

D(M(t),M′(t′)) =
∑

i

(pi −Φθ,x0,z0(p
′
i))

2 [3.5]

where the functionΦθ,x0,z0(p) applies the optimal point cloud alignment transform,{θ, x0, z0}, to

the pointp.

Depending on the length of the window over which the point cloud is built, this distance metric

can implicitly take into account relative joint positions, joint velocities, and joint accelerations

when measuring similarity. Refer to [KGP02] for a more detailed description of this point cloud

distance metric.

3.3 Transitioning Between Two Motions

It is often useful to append two motions together with a transition. Unfortunately, appending

motions together by simply appending motion frame vectors is likely to cause discontinuities in

the motion. Instead, as described in Section 2.2.1, it is common to append two motions together by

using a linear blend transition between the two motions over a small window of frames centered at

the transition point.

Appending a motion,M2, to another motion,M1, using a linear blend consists of three steps:
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Figure 3.3 A distance grid. Darker regions denote greater similarity between frames. The light
red dot marks the optimal transition point.
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1. Choosing a transition point between the two motions.While a transition point can be

chosen arbitrarily between the two motions, linear blend transitioning works best if the mo-

tions look as similar as possible. For this reason, my methods choose a transition point

between the two motions by locating the point where the two motions look the most similar

to each other over the possible transition region. The point cloud distance metric presented

in Section 3.2 is used to rate the similarity of different frame pairs to determine the transition

point. My method for finding the transition point starts by calculating the distance between

every pair of frames in the possible transition regions, forming a grid. The pair of frames

corresponding to the grid cell with the minimum distance value,(t1o, t
2
o), is called the optimal

transition point. Figure 3.3 shows an example of this distance grid computation between two

motions.

2. Aligning the two motions at the transition point. Because the global position and orienta-

tion differs betweenM1 andM2, it is necessary to alignM2(t
2
o) toM1(t

1
o). This can be done

by applying the optimal alignment transform associated withD(M1(t
1
o),M2(t

2
o)), Φθ,x0,z0,

to the motionM2.

3. Synthesizing the appended motion through blending.The final step necessary to append

motionM2 to motionM1 is to blend the motions over time to produce the final appended

motion,M1+2:

M1+2(t) =





M1(t) if t < t1o − w
2

M2(t
2
o + t− t1o) if t > t1o + w

2

(1− α(t)) ∗M1(t) + α(t) ∗M2(t
2
o + t− t1o) otherwise





α(t) =
t− t1o

w

This blending process is illustrated in Figure 3.4.

I chose to use this method for appending two motions together using a linear blend transition

because it is a simple method. The limitation is that linear blend transitions only work reliably

when the motions that are being appended are already close to one another in terms of the similarity
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Motion 1

Motion 2

Transition Point

Transition Window

Figure 3.4 Appending two motions through linear blend transitioning. The green bar (top) and
red bar (bottom) correspond to the original two motions. The thinner, light blue bar shows the

weighting for the blend of the motions over time. Notice how the weights go from being fully on
motion 1 to fully on motion 2 over the transition window centered at the transition point.
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metric presented in Section 3.2. Rather than developing a more complex method for appending or

transitioning between motions, I use this simple method but ensure that I only transition between

motions with sufficient similarity.

3.4 Motion Time Alignment

Two motions,M1 andM2, may be logically similar in that they represent different motions of

the same action. For instance, both motions might be instances of a person walking, following the

same footstep pattern. Yet, these logically similar motions might have very different timing details.

For instance, each step inM1 might take twice as long as each step inM2. For some applications,

it is desirable to find a time alignment between logically similar motions such that frames in one

motion can be mapped to time-corresponding frames in the other motion. This continuous, strictly

increasing mapping is called atime alignment curve.

When computing a time alignment curve between two motions,M1 andM2, the goal is to find

a mapping between frames ofM1 and frames ofM2 that minimizes the average distance between

corresponding frames, where distance is computed using the algorithm in Section 3.2. First, the

distance between every pair of frames is calculated, forming a grid as in Section 3.3. Then using

the dynamic programming method of Kovar and Gleicher [KG03], a continuous, monotonic, and

non-degenerate path is computed for every cell in the grid that connects to the lower-left corner,

while minimizing the sum of its cells. This optimal path from the lower-left corner to the upper-

right corner of the grid provides a discrete, monotonically increasing time alignment, as shown in

Figure 3.5. To generate the final time alignment curve, a strictly increasing, endpoint-interpolating

B-spline is fit to the optimal path. See [Kov04] for more information on how to increase the speed

of this time alignment algorithm.

The dynamic timewarping method that I use in this dissertation to compute time alignment

curves is based on the work of Kovar and Gleicher [KG03], but there are several other pub-

lished methods that would work as well. In particular, the timewarping methods of Bruderlin

and Williams [BW95], Dontcheva et al. [DYP03], and Hsu et al. [HPP05] also use dynamic pro-

gramming to find a temporal alignment between motions. Hsu et al.’s method [DYP03] builds on
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Figure 3.5 A grid depicting the difference between Motion1 and Motion2. Dark areas denote
similarity between the corresponding frames. An optimal time alignment is shown by the path

through the grid.
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Figure 3.6 A parametric motion space representing punching motions, parameterized on the
location of a punch. Each point in this parametric motion space maps to an entire punching

motion, not just a single pose.

dynamic timewarping to iteratively converge on a time alignment that explicitly takes into account

pose variations. This technique can be used to improve timewarping results but requires a consid-

erable increase in computation time. A simple, greedy timewarping algorithm can also work in

cases where the motions are very similar. But I have found that greedy search does not work well

for many of the more complex cases of timewarping in this dissertation, and I recommend using a

method based on dynamic programming.

3.5 Blending-Based Parametric Synthesis

Many different types of motion are easily described using a small number ofparameters. For

instance, a punching motion might be described by the location of a punch, or a stair climbing

motion might be described by the height of the steps. It can be convenient to use these high-level

parameters as a way of describing what motions are requested by a user or application.Parametric

synthesisdescribes the set of techniques that can generate motions based solely on these high-level

parameter vectors. The infinite set of motions that can be generated using a parametric synthesis

method can be mapped to the parameter space, forming aparametric motion space. Each point
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in a parametric motion space maps from a parameter vector to an entire motion that meets those

parameters (see Figure 3.6).

One popular method for parametric synthesis is to synthesize new motions that meet requested

parameters by blending together example motions from that space (see Section 2.1.2.2 for a review

of these techniques). In this dissertation, I perform blending-based parametric synthesis using the

method of Kovar and Gleicher [KG04]. Because Kovar and Gleicher’s method is so essential to

my work on gaze control (Chapter 5) and parametric motion graphs (Chapter 6), I will use this

section to provide an in depth overview of their approach.

In [KG04], Kovar and Gleicher described how to:

1. Automatically find and extract logically similar motions, or motions where the character is

performing the same basic action, from a motion database. Their technique uses an iterative

method that locates motions that look similar to a query motion, where similarity is defined

by the metric presented in Section 3.2, and then repeats the process on each of the similar

looking motions.

2. Map these logically similar motions to a parametric motion space. Each of the logically

similar motions are registered to each other in both time and space using methods similar to

those presented in Sections 3.3 and 3.4. These registered motions become example motions

in the motion parameter space by mapping the motion to its relevant parameter vector. For

instance, the algorithm might identify the location in space where the character punches.

Figure 3.7a shows these example motions mapped in parametric motion space for a space of

punching motions.

3. Sample blends from the space to build a parametric motion. New logically similar motions

can be generated by blending together the base example motions. Yet, because of the non-

linearity of human motion, the parameter vectors associated with these new blended motions

are unlikely to be a similarly proportioned blend of the base example parameter vectors. So,

Kovar and Gleicher sampled the set of motions that can be blended together from these base
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Figure 3.7 A sampled parametric motion space of punching motions, parameterized on the
location where a character punches. (a) Logically similar punching motions from a motion

database are mapped to the parametric motion space (shown with dark, red circles) (b) Blends
between the example punching motions are sampled, producing additional data points (shown

with light, gray circles) in parametric motion space.
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example motions. Each of these sampled blends is then analyzed, just as the original exam-

ples were, to produce an associated parameter vector. The blend information then becomes

a new data point in parametric motion space at this computed parameter vector. Figure 3.7b

shows these blend samples mapped in the punching parametric motion space.

4. Use the samples from the parametric motion space to synthesize new motions that accu-

rately meet user-requested parameter vectors. Once the samples in parametric motion space

are sufficiently close together, k-nearest neighbor interpolation is used to synthesize new

motions that meet specified parameter vectors. Other methods for blending-based paramet-

ric synthesis use a linear fit model to perform this scattered data interpolation instead of

k-nearest neighbor interpolation. But k-nearest neighbor interpolation has a number of ad-

vantages: it constrains interpolation weights to reasonable, positive values, resulting in more

realistic-looking motion; it is computationally efficient for large data sets and does not re-

quire a costly optimization to calculate; and it projects all outlier parameter vector requests

back into the space enclosed by the original example motions.

I chose to use the method of Kovar and Gleicher to perform parametric synthesis because

it produces high-quality results, allows for quick experimentation with many different types of

motion, provides a simple and efficient method for producing motion clips at runtime, and results

in parameteric motion spaces that aresmooth. A parameteric motion space is considered smooth

if small changes in the input parameters produce small changes in the generated motion. This

smoothness property is important to my work on parametric motion graphs in Chapter 6.
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Chapter 4

Splicing Upper-body Actions with Locomotion

As described in Section 1.2.1, interactive applications often divide character control into lo-

comotion and action. Yet example-based motion synthesis fails to treat locomotion and action

independently. This inability to decouple locomotion and action makes using an example-based

approach to motion synthesis in interactive applications infeasible since it results in a combina-

torial number of required example motions. This problem is of particular interest to the video

game industry as many video games require locomotion and action to be decoupled during motion

synthesis.

Existing methods for decoupling locomotion and action during motion synthesis do little to

account for the natural correlations within the body. The motion of the upper body and lower

body can be be highly correlated – for example when a person walks, the swing phase of the

right arm is tightly coupled to that of the left leg – and these correlations are an important part of

many motions [PB00, MZF06]. To complicate the matter, these natural correlations not only stem

from physical needs, such as balance preservation, but also from harder-to-characterize properties

associated with the stylistic form of human motion.

In this chapter, I describe a method for splicing a character’s upper body action onto its lower

body locomotion in a manner that preserves the fidelity of the original source motions. In light

of the complicated and subtle form of the relationships I wish to preserve, I adopt an example-

based approach that produces natural motions by identifying and enforcing temporal and spatial

relationships between different parts of the body. The simple and efficient method synthesizes

spliced motions that appropriately preserve correlations. For instance, Figure 4.1 shows the results

of splicing the upper body of a person holding a cup onto the lower body of a person stepping
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Figure 4.1 A motion generated by splicing the upper body of a person carrying a cup with the
lower body of a person stepping up onto a platform.

up onto a platform. My algorithm allows the upper-body action to be decoupled from the method

of locomotion yet preserves important details, such as the shifting of the character’s weight as he

pulls himself up onto the platform, the character’s cup-carrying posture, and the forward lean of

the upper body prior to the step up.

The rest of this chapter will describe the results from a study that looks at natural correla-

tions in motion (Section 4.1), detail my algorithm for splicing upper-body actions with locomotion

(Section 4.2), provide some additional insights into using my algorithm at runtime (Section 4.3),

provide the results of some experiments involving motion splicing (Section 4.4), and conclude with

a general discussion of the technique, its advantages, and its disadvantages (Section 4.5).

4.1 Correlation Study

As defined by the American Heritage Dictionary [Ame04], a correlation is

[a] casual, complementary, parallel, or reciprocal relationship ... between two compa-

rable entities

In other words, there is a correlation between two things if one changes in a relatable when the

other changes.

The key challenge to splicing one part of a motion onto another is that the body is highly

correlated. For example, when a person does jumping jacks, her arms move up at the same time



49

that her legs spread out. This correlation between the upper-body motion and the lower-body

motion is part of what makes the jumping jack motion recognizable.

This chapter is concerned with the splicing of an upper-body action onto a lower-body loco-

motion. For this specific, yet important, motion splicing problem, parts of the body that seem

unrelated are actually closely tied together. While working on my algorithm for splicing upper-

body actions with lower-body locomotion, I analyzed these correlations in locomotion examples.

My method for analyzing the upper body and lower body correlations in a human locomotion

example consists of five steps:

1. Perform forward kinematics on the motion under analysis.

2. Plot the global orientations of each upper-body joint and the global x-rotation of the hip

joints (i.e., the part of the hip’s rotation which controls the forward and backward motion of

the leg) with respect to the root.

3. Fit a polynomial to each data line, producing a trend curve.

4. Identify correlations by finding trend curves that are in phase with the hip trend curves or

180 degrees out of phase with the hip trend curves.

5. Repeat steps 3, 4, and 5 on the local orientations of the upper body joints and the x-rotation

of the hip joints.

For the results presented here, a computer was used to perform forward kinematics, plot data lines,

and fit trend curves. The final correlation identification was done manually.

I analyzed the correlations for a number of locomotion examples; I will discuss here some of

the correlations that appeared consistently in all of my examples. The global analysis of locomo-

tion shows a consistent bobbing of the entire upper body (e.g., the upper body leans forward and

backward in time with the motion of the legs). This correlation is a lot stronger in motions where

the upper body is highly constrained, for example, when a walking character carries a heavy box

(see Figure 4.2).
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Figure 4.2 Plots of the global orientations of correlated joints in a walking motion as determined
by my method. This graph shows the large number of joints that are globally correlated in a

simple walking motion.
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Figure 4.3 Plots of the local orientations of correlated joints in a walking motion as determined
by my method. This graph shows the large number of joints that are locally correlated in a simple

walking motion.
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The local orientation analysis consistently showed that as the character moves, the upper body

twists through the spine causing the relationship between the shoulders and the hips to change.

And, in general, the head also needs to twist in the opposite direction to allow the character to

continue looking in the original direction of travel (see Figure 4.3).

Many other correlations show themselves using this type of analysis. The number and degree

of the correlations varies greatly depending on the exact motion, but the importance of correlations

to natural human locomotion becomes obvious when looking at this data. The importance of these

correlations is the driving motivation behind my algorithm for quality splicing of upper-body action

and locomotion presented in the next section.

4.2 Splicing Algorithm

My technique for splicing the upper-body action of one motion onto the lower-body locomotion

of another is motivated by two key observations. First, a captured locomotion example encodes

temporal and spatial relationships between the upper body and lower body that can be used for

splicing; in other words, if I have one example of a character performing an action while moving

around, I can transfer that action onto a different example of a character moving around. For this

reason, I require that all captured examples of upper-body actions be performed while locomoting.

In particular, this requirement provides a basis for temporal correlations, which are extraordinarily

important during locomotion (see Section 4.1).

The second key observation is that changes made within the upper body or the lower body of a

motion can affect a viewer’s perception of the action or locomotion. For example, when carrying

a heavy box, a person’s arms move little relative to the torso, and any editing operation that causes

additional arm movement will incorrectly make the box appear lighter. Since I do not know what

the upper body or lower body is doing, only that the upper body is performing an action and the

lower body is locomoting, I cannot safely make any changes within the upper body or lower body.

This leads me to restrict the kinds of changes that can be made during splicing. Specifically, I

only allow a temporal alignment and a per-frame rigid transformation at the attachment point.
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This helps retain the meaning of the upper-body and lower-body motions while allowing better

correlation between the two pieces.

4.2.1 A Technical Overview

Motion splicing is concerned with attaching the upper body of one locomotion example,MU ,

onto the lower body of another locomotion example,ML, yielding a spliced motion,MS. My goal

is to preserve the relative locations of the joints within the upper body ofMU and within the lower

body ofML while still exhibiting details related to the correlations between the two halves. To

do this, I constructMS by identifying and enforcing temporal and spatial relationships within the

motions. The process consists of three stages:

1. Time Alignment (Section 4.2.2). Using the configuration of the lower bodies of the two

example motions, find atime alignment curve, λ(t), that relates corresponding frames ofML

andMU . In particular,ML(ti) is at the same phase of the locomotion cycle asMU(λ(ti)).

The time alignment curve is used to identify temporal correlations between the example

motions.

2. Spatial Alignment (Section 4.2.3).For each frameML(ti), find a rotation about the pelvis

that best aligns the upper body ofMU(λ(ti)) with the upper body ofML(ti). Intuitively,

this alignment correlates the upper-body motion ofMU with the lower-body motion ofML

by using the upper-body motion ofML as a reference.

3. Posture Transfer (Section 4.2.4).The postureof a motion is the global relationship be-

tween the shoulders and hips of the character. A potentially undesirable side effect of spatial

alignment is that it will alter the posture ofMU so that it roughly matches the posture of

ML. Thus, the final step is to apply a posture transfer technique to retain the posture ofMU

while still preserving the high-frequency details necessary to correlate it withML’s lower

body.

The result is a spliced motion,MS, of the form

MS = {pL(t),Ql
L(t),qS

P (t),Qu
U(λ(t))} [4.1]
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where the only quantities that need to be computed are the time alignment curve,λ(t), and the

pelvis orientations,qS
P (t). Note in particular that, up to timewarping, the parameters of every joint

except for the pelvis come directly from the captured motionsML andMU .

Each step of the motion splicing algorithm uses a different part of the original motion examples

as a reference, thereby transferring and preserving important correlations: time alignment uses the

lower body ofML; spatial alignment uses the upper body ofML; and posture transfer uses the

posture ofMU .

The remainder of this section expands on each step of this algorithm.

4.2.2 Time Alignment

Before the upper body ofMU can be attached to the lower body ofML, it must be warped in

time in order to retain important temporal correlations. For example, without timewarping the arms

may appear to swing out of time with the legs. Because naı̈ve DOF replacement (see Section 2.1.3)

does not consider the temporal alignment of natural locomotion correlations, it can easily cause

motions to be spliced out of sync. In practice, example motions are carefully hand-tailored to avoid

timing issues, but this process is extraordinarily time-consuming and greatly limits the motions

that can be spliced together without temporal correlation problems. Figure 4.4 shows a graph of a

motion that has been spliced together without any timing adjustments.

Timewarping is accomplished by constructing a time alignment curve,λ(t), that maps frames

of ML to corresponding frames ofMU . Since the characters in both example motions are loco-

moting,λ can be built by using the similarity of the lower-body motions ofML andMU to build

the alignment curve.

Specifically, in this step of the motion splicing algorithm, the goal is to find a mapping between

frames ofML and frames ofMU that minimizes the average distance between corresponding

frames. The distance between frames is calculated as described in Section 3.2, using the positions

of the root and both knees to form the point clouds. To compute the optimal time alignment, first

assume that the initial framesML(t0) andMU(t0) are in phase, i.e., both motions begin at the

same point in the locomotion cycle. Then, use the algorithm presented in Section 3.4 to compute
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Figure 4.4 Timing difference caused by splicing two motions that have not been time aligned.
Notice how the rotations of the arms are in sync and the rotations of the legs are in sync, yet the

arms and legs are not correlated with each other. These correlation issues make the motion appear
odd, even to someone unfamiliar with the reason why.
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the optimal time alignment curve grid. Next scan the cells in the top and right edges of the grid

for the path whose cells have the smallest average value. As described in Section 3.4, this optimal

path defines a continuous time alignment curve for the two motions.

If the initial frames ofML andMU are not in phase, then crop an appropriate number of frames

from the beginning ofMU before computing the time alignment curve. This is done by computing

the distance betweenML(t0) and every frame ofMU and croppingMU at the first local minimum.

4.2.3 Spatial Alignment

Once a time alignment curve is available, the system can attach corresponding frames together.

The question at this stage is what local rotation should be used for the pelvis of the new motion.

One possible choice is the local orientation of the pelvis inMU . However, the local orientation

of the pelvis is tightly coupled to that of the root. The local orientation not only controls how the

upper body should turn, bend, and twist in relation to the lower body, but it also compensates for

movement within the root, effectively stabilizing the upper body. Because the root orientations of

MU andML are not identical, simply copying the local pelvis orientation will destroy the coor-

dination of the movement. This coupling is one of the main reasons why naı̈ve DOF replacement

often produces wobbly looking upper body motions (see Section 2.1.3). Figure 4.5 illustrates the

wobbling issues associated with naı̈ve DOF replacement.

Another possibility for the local rotation of the pelvis is to preserve the joint’s original global

orientation, but this can also be problematic. For instance, if a motion of a character walking east

is spliced with one of a character walking west, the upper body will face backwards in the result

(see Figure 4.6).

I instead approach this problem as one of spatial alignment. Just as the lower bodies of the

two example motions were used for time alignment, the upper bodies can be used for spatial

alignment. Specifically, for each pair of corresponding frames, the goal is to find a local pelvis

orientation that best aligns the shoulders and spine ofMU with those ofML. This method ensures

that the upper body faces the correct general direction while also adding details to the orientation

that are appropriately correlated with the motion of the lower body. For example, when a person
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Figure 4.5 Stability comparison of naı̈ve DOF replacement and my motion splicing algorithm.
This graph shows the position of the neck in relation to the root for a motion spliced together

using näıve DOF replacement and a motion spliced together using my method. Both motions were
spliced from the same source data - the upper body of a person carrying a cup and the lower body

of a person stepping up onto a platform. Notice how the naı̈ve DOF replacement result moves
erratically and wildly when compared with the more stable result produced using my technique.

Figure 4.6 The result of splicing the upper body of a person walking west with the lower body of
a person walking east using the global orientation of the characters for alignment. The result does

not look natural because the upper body faces backwards on the lower body.
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Figure 4.7 A comparison between two motions spliced from a person carrying a heavy box and a
person walking in a curve. The green motion was generated using my entire technique, while the

blue motion lacks the adjustments made by posture transfer. Note that the green motion leans
back, balancing the weight of the heavy box. The character is rendered as a stick figure to better

illustrate this difference.

moves, their upper body rotates with each step. Step size, speed, and path curvature are just a few

characteristics that can affect the exact details of these rotations. By aligning the upper body of

MU with the upper body ofML, these orientation details are transferred to the spliced motion.

As with the temporal alignment step, point clouds are used to perform spatial alignment (see

Section 3.2 for more information on point clouds). To spatially align the upper bodies ofML(ti)

andMU(λ(ti)), first form a point cloud for each of the two motions based on the locations of the

pelvis, spinal joints, and both shoulders. Then translate and rotate the point clouds so that the co-

ordinate systems of the pelvis coincide with the origin. Finally, using the method of Horn [Hor87],

find the 3D rotation at the origin,qA, that minimizes the sum of squared distances between cor-

responding points. Then the local pelvis orientation in relation to the root ofML that best aligns

the upper body ofMU with the upper body ofML is simplyqL
P ∗ qA, whereqL

P is the local pelvis

orientation ofML.

4.2.4 Posture Transfer

For many upper-body actions, an important and necessary aspect of the motion is the overall

orientation of the shoulders in relation to the hips over the duration of the motion. For example, a

person carrying a heavy box leans back so as to counter the weight of the box. I call this overall
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relationship between the shoulders and the hips thepostureof the motion. The spatial alignment

procedure described in Section 4.2.3 preserves subtle correlations between the upper-body and

lower-body motions by tracking the movements of the torso and shoulders, but it has the potentially

undesirable side-effect that it changes the motion’s posture. For instance, if the upper body of the

person carrying the box were to be attached to the lower body of a person walking normally, the

per-frame spatial alignment would rotate the upper body forward so that it would line up better

with the straight-backed upper body of the normal walking motion (see Figure 4.7).

Let MS′ be the result of splicing the upper body ofMU with the lower body ofML using only

time alignment (Section 4.2.2) and spatial alignment (Section 4.2.3). The goal of posture transfer

is to replace the posture ofMS′ with the posture ofMU while still preserving the high frequency

details dictated by the lower-body motion ofML. The general strategy is to compute a point cloud

representation (again, see Section 3.2 for more details on point clouds) for the overall posture of

each motion, and then to find the 3D rotation,qG, that best aligns these temporally global point

clouds, as was done in Section 4.2.3. This rotation specifies howMS′ should be globally adjusted

in order to transfer the posture ofMU .

To compute the point cloud representation for a single motion, form a point cloud for each

frame of the motion based on the locations of both shoulders. Then translate and rotate each point

cloud so that the pelvis is at the origin and the vector defined by the hips is aligned with the

x-axis. The point cloud posture representation is simply the average of these aligned per-frame

point clouds. Then find the 3D rotation,qG, that minimizes the sum of squared distances between

corresponding points, again using the method of Horn [Hor87]. So, for each frame, the final local

orientation of the pelvis,qS
P , is qS′

P ∗ qG.

4.3 Runtime Modifications

To effectively use the methods presented in this chapter to synthesize a motion clip at runtime

in an interactive application, it is necessary to apply the algorithm in a slightly different manner

from that presented. In particular, the time alignment (Section 4.2.2) and posture transfer (Sec-

tion 4.2.4) steps require that the motions be processed globally. Even more problematic is that the
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time alignment algorithm scales poorly with the length of the motions being compared; if there are

u frames in motionMU and there arel frames in motionML, the algorithm scales withO(ul).

Thus, I make the following two suggestions for performing motion splicing at runtime:

1. The time alignment curve,λ(t), should be precalculated and stored in a lookup table for easy

access. This can either be done directly between every pair of possible spliced motions, or

done indirectly by time aligning each motion to a baseline reference locomotion example.

The latter method is overall a better approach as it is considerably faster to compute and

requires onlyO(n) storage space, wheren is the total number of example motions. The

former method does have a slight advantage over using a baseline motion - determining the

time alignment between two motions at runtime only requires a single time alignment curve

lookup while the baseline motion method requires the composition of two time alignment

curve lookups. Yet the storage savings garnered by using the baseline motion method far

outweigh this constant time increase in computation time. For either case, these stored time

alignments can be used to temporally align motions for quick splicing at runtime.

2. For each of the upper-body example motions, I also suggest computing and storing the pos-

ture of the motion prior to runtime. Again, these precomputed postures can be accessed

quickly for posture transfer. The posture computations ofMS′ can be calculated in one

of two ways: as a running average, a method that should work well given that posture

could change slightly over the course of a motion; or, since the spatial alignment step (Sec-

tion 4.2.3) causes the posture ofMS′ to roughly match the posture ofML, a precomputed

posture forML can be used as an approximation of the posture ofMS′ .

These simple modifications to the application of the algorithm make it applicable as a direct re-

placement for runtime naı̈ve DOF replacement in existing interactive applications.

4.4 Results

I tested a number of different motion combinations while developing this motion splicing tech-

nique. Here I describe in detail some of these splicing results:



60

Figure 4.8 A motion generated by splicing the upper body of a person carrying a chair with the
lower body of a person making a sharp 180 degree turn.

a b

Figure 4.9 An unusual motion splice. (a) is an original motion-captured example of a person
boxing. (b) was generated by splicing the upper body of the person boxing with the lower body of

a person walking up a set of stairs.
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Figure 4.10 A motion generated by splicing the upper body of a person carrying a chair with the
lower body of a person walking up a set of stairs.
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Carrying a Box in a Curve. Figure 1.3 shows the result of splicing the upper body of a person

carrying a heavy box with the lower body of a person walking along a curved path. As

described in Section 1.2.1, the spliced character leans into the turn, leans back to counter the

weight of the box he is carrying, and twists his upper body slightly with each step. When

this result is compared with ground truth, motion-captured data of an actual person walking

along a curved path while carrying a heavy box, it is difficult to distinguish one from the

other; both characters twist, turn, and bend in similar ways.

Stepping-Up While Carrying Cup. Figure 4.1 shows the results of splicing the upper body of a

person holding a cup onto the lower body of a person stepping up onto a platform. Important

correlating details are clearly seen in the motion; the character shifts his weight as he pulls

himself up onto the platform, the character retains a rigid cup-carrying posture that would

keep the contents of the cup inside the cup, and the character leans forward with his upper

body prior to stepping up onto the platform.

Sharp 180 with a Chair. I have found that my method works well even in cases where the two

lower bodies look very different. For example, a motion of a person making a sharp 180-

degree turn looks considerably different from a typical forward walking motion. Yet the

principles presented in this chapter remain valid, and I have successfully spliced motions

where a person walks forward while performing a variety of actions, such as carrying a

chair, onto a sharp turn (see Figure 4.8).

Punching while Climbing Stairs. Figure 4.9 shows another example of a challenging splice: an

upper body of a boxer is spliced onto the lower body of a person climbing a set of stairs.

Notice how the lower body of the boxing motion is not a traditional locomotion example,

but since the character generally moves from one foot to the other throughout the motion,

the algorithm is able to correlate the upper-body punching motion with the lower-body stair

climbing motion. The punch is timed correctly with the motion of the legs as the character

climbs the steps.
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Climbing Stair with a Chair. Figure 4.10 shows the result of splicing the upper body of a person

carrying a chair with the lower body of someone climbing a set of stairs. With each step up

the stairs, the character’s upper body twists slightly more than it does when walking straight

forward, a characteristic of step climbing motions. The character also leans forward with his

upper body before taking the first step.

Descending Stairs with a Heavy Box.I can also splice the upper body of a person carrying a

heavy box with the lower body of a person descending a set of stairs. The character correctly

settles his weight backwards when he reaches the bottom of the steps in the spliced motion

(see Figure 4.11).

Running While Carrying a Cup. Motions of people walking can also be spliced onto motions

where the character is moving much faster. For instance, Figure 4.12 shows the result of

splicing the upper body of the cup-carrying character onto the lower body of a person running

in a curve. Again, the cup stays upright throughout the motion, the left arm swings in time

with the motion of the legs, and the entire motion leans into the curve.

Walk-to-Run with a Heavy Box. The motion splicing algorithm also works when the timing of

the locomotion changes. Figure 4.13 shows the result of splicing the upper body of the

character carrying a heavy box onto the lower body of a person who is walking and then

begins to run. The character leans back throughout the motion to counter the weight of the

heavy box, and the upper body twists from side-to-side with varying intensities as he changes

from walking to running.

Side-stepping While Pushing.The last example shows another unusual splice. The upper body

comes from a character who is stepping randomly while pushing something, and the lower

body is from a character who steps around an obstacle. The spliced motion is of the character

pushing something as he steps around it (see Figure 4.14). Notice how the character appears

to look to the left as he steps around the object, a characteristic that is transferred from the

original lower body motion.
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Figure 4.11 A motion generated by splicing the upper body of a person carrying a heavy box
with the lower body of a person walking down a set of stairs.

A few other locomotion examples that I have tested my algorithm on include motions of a person

jogging, walking with a jaunt, and tip-toeing. I have also run tests using a number of different

upper-body actions including acting like a zombie and carrying a ceramic pot with both hands.

4.4.1 Limitations

While the method presented in this chapter works well on a wide variety of motions, there are

limitations. Most importantly, since the method adjusts the way in which the shoulders twist, turn,

and bend in relation to the lower body, an upper-body action whose shouldermotionis important to

the meaning of the action cannot be spliced safely. For instance, when a person throws a football,

not only does the arm rotate backward, so does the shoulder. My splicing method cannot guarantee

preservation of this important shoulder twist.

One potential drawback of the motion splicing method is that it does not explicitly take into

account the physics of the original motions. In some cases, not explicitly dealing with dynamics

could affect the perceived physical characteristics of the objects in the scene. For example, a very

heavy object may look less heavy because the character is able to accelerate with relative ease.

Some of these potential problems could be fixed by running a physics cleanup algorithm, such as

those in [TSK02] and [SKG03]. However, my results show that many effects due to physics are

transferred from one motion to another using my example-based method. Even more importantly,
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Figure 4.12 A motion generated by splicing the upper body of a person carrying a cup with the
lower body of a person running.

Figure 4.13 A motion generated by splicing the upper body of a person carrying a heavy box
with the lower body of a person walking and then running.

Figure 4.14 A motion generated by splicing the upper body of a person pushing something with
the lower body of a person side stepping around an obstacle.
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my method has the added advantage of preserving stylistic properties that are hard to capture with

purely physically-based methods.

Additionally, because it depends on the locomotion cycle for time alignment, my motion splic-

ing algorithm will not work on motions where the character is not locomoting. But because of

the speed of my algorithm, it is feasible to try it on non-obvious motions, such as the boxing mo-

tion presented earlier. Unlike the results produced using the naı̈ve DOF replacement algorithm, I

have found that my motion splicing algorithm performs predictably, identifying and enforcing the

desired temporal and spatial relationships.

4.4.2 Algorithm Performance

In this section, I describe how my motion splicing algorithm performs in each of the six cate-

gories described in Section 1.1.

Efficient Synthesis All of the examples in this chapter were computed on a2.0GHz Intel Pentium

4. Each example took less computation time to produce than the duration of the final clip.

For example, the110-frame spliced motion (1.83 seconds) depicted in Figure 4.1 took.67

seconds to compute. This timing data includes the time it takes to build a time alignment

curve and calculate the global posture information. If temporal and postural information is

precomputed, then each frame of motion can be computed inO(1) time. On average, this

constant amount of time is only.0008 seconds. This data shows that the splicing algorithm

works quickly and in a predictable amount of time per frame.

Efficient Data Storage Because the algorithm effectively decouples locomotion from action, it

reduces the amount of required storage space for example motions and associated data from

O(nm) to O(n + m), wheren is the number of locomotion examples needed for flexible

navigation andm is the number of actions that the character can perform while locomoting.

Low Latency or Response TimeBecause the motion splicing algorithm is designed for motion

clip generation and not motion stream generation, this characteristic is not applicable.
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Accurate Motion Generation For splicing motions, requests take the form of which two motions

should be spliced together. Since the algorithm always does the splice between the two

requested motions, it accurately meets this request.

Visual Quality Since motion quality is partially subjective, it can be difficult to measure the qual-

ity of the motions produced. However, by limiting the changes that are made to the original

motions (see Section 4.2.1), there is little deviation from the original example motions, which

are assumed to be of high-quality. In addition, all of the changes made to temporally and

spatially align the spliced motions are smooth and continuous.

Automated Authoring The algorithm for splicing the upper body of one motion with the lower

body of another is completely automated and uses no user-defined parameters.

4.5 Discussion

This chapter presented a simple and efficient method for splicing the upper-body action of

one motion sequence onto the lower-body locomotion of another, thereby decoupling a character’s

action from the method and path of locomotion. To preserve realism, the spliced upper body is

timewarped and rotated about its attachment point on a per-frame basis in order to achieve better

correlation with the lower body. Given enough example locomotion data to allow flexible control,

adding different upper-body actions requires capturing just one additional example motion. In

contrast, with previous algorithms for data-driven motion synthesis, creating a character that can

perform multiple motions simultaneously requires a combinatorial explosion in the number of

example motions that must be captured. Motion splicing has the potential of reducing the data

requirements to more manageable levels by allowing independent examples to be layered atop one

another.

For the examples in this chapter, I primarily used motion-captured example motions in the

experiments, but procedural, keyframed, or edited motions would serve just as well as example

motions. For instance, standard techniques can be used to automatically cyclify a motion in order
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to extend it in length [LCR+02, AF02, KGP02]. This is a technique that was used to create some

of the examples presented in this chapter.

My focus on the practical and important problem of splicing upper-body actions with lower-

body locomotion rather than the more general problem of transferring any subset of the body from

one motion to another has allowed me to develop a fast, simple, and reliable algorithm. But while

splicing characters at the waist in order to decouple upper-body action from locomotion is useful

for a large number of applications, there may be applications where splicing the body in a different

location is desirable. For example, one could imagine splicing only the arm of a waving motion in

order to make a character wave. While the details of my algorithm do not apply in this single limb

case, the general technique of using example motions as references in order to identify and enforce

spatial and temporal relationships is still relevant. Furthermore, it is likely that the three steps

of the algorithm - temporal alignment, spatial alignment, and overall spatial relationship transfer

- can be generalized to deal with these other splicing problems. This belief is supported by the

similarities between my algorithm and the algorithm of Majkowska et al. for splicing hands onto

a full body motion [MZF06]. By showing the utility of decoupling motion parameters through

splicing, I hope that my algorithm with inspire other related work.
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Chapter 5

Gaze Control

Because humans depend heavily on their sense of sight, it is natural for a person to look at

interesting objects in the environment or down the direction of travel. To an observer, shifts in

the location or direction where a character is looking might not only indicate a shift in attention

but can also convey a person’s goal before they act on it. For instance when faced with a choice

between five different colored cups lined up on a table, a person will fixate on the cup they choose

before reaching their hand out to grasp the cup. I call these natural cues thegazeof a human.

Currently, methods for motion clip synthesis fail to provide a way to synthesize high-quality

motion of a character adjusting their gaze independently of overall body motion. Because of this,

interactive characters in video games and training simulations most commonly lack gaze cues

altogether. This lack of gaze cues leads to characters who look as if they are disconnected from the

environment they are placed in. A human in a real environment needs to adjust their gaze many

times in order to effectively take in their surroundings.

In this chapter, I present a new method for decoupling the gaze of a character from his full body

motion in a way that allows high-quality, controllable motion clips to be synthesized at runtime.

This model takes the form of aparametric gaze mapthat maps a requested gaze change to a

low-dimensional representation of the way a human adjusts their gaze. This parametric gaze map

can be applied to a base full body motion in order to adjust the gaze direction of that motion

realistically and by an accurate amount. This model combines knowledge from the biological and

psychological sciences with examples captured in a motion capture studio in order to achieve these

realistic-looking results using little storage space. The method produces results that retain the

correlations originally exhibited in each base motion while effectively adjusting the motion’s gaze
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a b

Figure 5.1 Gaze adjustment for a zombie motion. (a) A motion captured example motion of a
person walking like a zombie. (b) A motion generated by adjusting the gaze of the zombie

walking motion so that the gaze is directed over the right shoulder.
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direction. Figure 5.1 shows the result of the technique applied to a motion of a person acting like

a zombie. The gaze adjusted motion still clearly shows the character acting like a zombie but the

overall configuration of the upper body has been adjusted in a natural way in order to achieve the

desired gaze direction.

The rest of this chapter is organized as follows. Section 5.1 describes in detail the example-

based, biologically and psychologically inspired model used to control gaze. Next, Section 5.2

describes how to construct and use a parametric gaze map to adjust character gaze. This section

includes a detailed explanation of the capture procedure for example motions of a person adjusting

their gaze in a motion capture studio. Section 5.3 then presents some results of the technique.

Finally, Section 5.4 concludes with a general discussion of the method’s uses.

5.1 Gaze Motion Model

In an interactive application, there are many instances when character gaze could be important.

A character might look at objects that they are interacting with or gaze at key people or scenery

as they walk by. These types of environmentally driven gaze cues can cause the character to

appear more connected to the environment. Gaze cues might also be used more directly by a

user. In particular, for interactive environments where many different virtual characters are being

controlled by different people, such as in a massively-multiplayer online video game, a user could

directly adjust the gaze of a character in order to point out interesting landmarks. As it is already

commonplace in video games to control the global orientation of a character independently of the

viewing direction, it would be possible to use these same controls to adjust the gaze direction of a

character in order to provide better cues to other players.

A small number of recent video games have exhibited gaze cues, indicating an interest in gaze,

but typically the methods employed consist of little more than twisting the head in order to point

the eyes in the gaze direction1. But studies originating in the biological and psychological sciences

indicate that gaze control is not a simple function but one that involves coordination between the

1One notable exception is the game Half-Life 2 where many man hours of work produced an intricate facial muscle
model and eye focus controller, creating NPCs with realistic eye motion. However, the focus in Half-Life 2 is on the
face and eyes, not necessarily on the motion of the body that achieves an overall gaze pose.
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eyes, head, and spinal joints. In fact, these studies have found that head rotation actually factors

little into overall gaze change [GV87, FS00].

Interactive applications are in need of a realistic method for adjusting the gaze of a character.

While a character is performing some other action or actions with their full body, such as walking,

running, shooting a gun, or holding a suitcase, it would be desirable to be able to redirect the

character’s gaze in response to environmental or user-directed gaze goals without unduly affecting

the overall body motion.

The goal of gaze control in this chapter is to be able to synthesize a newclip of motion where a

character performing some independent full body motion, called thebase motion, adjusts his pose

in a natural way such that his eyes point in a specified direction in relation to where they would

point without the adjustment. Gaze control allows gaze to be directed independently of full body

motion.

Because of the importance of both efficiency and realism, my approach to gaze control is to use

motion-captured examples of a person adjusting their gaze to build a low-dimensional model for

motion adjustment that effectively captures important aspects of gaze. In the rest of this section, I

review work in the biological and psychological sciences that study how real humans adjust their

gaze. I then describe in detail my example-driven model for gaze control, called aparametric gaze

map, that is informed by these observations.

5.1.1 Biological and Psychological Observations

For many decades, the biological and psychological communities have been interested in un-

derstanding how humans (and other primates) unconsciously adjust their gaze. These studies have

observed a number of interesting facts about human gaze that can be used to support and inform a

model for virtual gaze control.

Many of the studies on how humans adjust their gaze focus only on how the head and eyes

contribute to overall gaze by restricting the motion of the shoulders [KGM07, GV87, FS00], but

more recently researchers have begun to focus on the importance of the spine for adjusting gaze as

well. In particular, McCluskeyl and Cullen’s [MC07] recent study of the way unrestrained rhesus
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monkeys adjust gaze shows that the spinal joints can have a significant effect on gaze direction,

especially for gaze shifts of more than40◦.

Psychological literature observes that the proportional motion of the spinal joints, head, and

eyes used to adjust gaze to a desired direction is primarily guided by complex psychological pro-

cesses in the brain rather than by the mechanics of the body [GV87, FS00]. And this work further

shows that these proportions change depending on the subject as well as the size of the gaze ad-

justment. These observations argue against models of human gaze that attempt to achieve a desired

gaze goal by minimizing the amount of energy expended.

But the biological and psychological literature also observes that gaze adjustments follow a

definable pattern. One pattern observed in gaze adjustment motions is that the onset of movement

used to adjust gaze cascades from the eyes down the spine [KGM07, GV87, FS00, MC07]; the

eyes begin to move before the head, and the head begins to move before the upper back, and so on.

The study performed by Kim et al. [KGM07] drew attention to another pattern of gaze adjustment

motions. In this study, when presented with a target to look at, a subject would quickly adjust

their gaze direction in a gross way, usually overshooting their target, and then slowly readjusting

in order to correct for this gross motion. However, Kim et al. also observed that the details of how

a person adjusts their gaze differs from one subject to another. The speed of the motions, the point

at which each joint begins to move, and the amount by which subjects overshoot their target differ

between subjects.

These findings in the biological and psychological communities support my approach of using

an example-based, low-dimensional gaze model to adjust character gaze in two ways. First, the

findings show that individuals adjust gaze differently depending on many factors, including per-

sonal characteristics, such as flexibility. This individuality motivates an example-oriented approach

that would allow the gaze of a virtual character to be adjusted in accordance with an individual-

ized model. Second, biologists and psychologists observe that even though different people adjust

their gaze differently, each of these individuals follows patterns that are consistent across all gaze

adjustment motions. These similarities can be used to design a low-dimensional model for the way

an individual gaze adjustment is made.
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5.1.2 A Biologically and Psychologically Inspired Model for Gaze

The biological and psychological literature reviewed in Section 5.1.1 provides a pattern for

gaze control. In particular, it observes that:

1. the spinal joints, head, and eyes contribute to the adjustment of gaze

2. the initiation of the movement of these different joints follows a cascading effect, and

3. during the gaze adjustment, gaze often overshoots its goal orientation, resulting in a slow

readjustment period.

But this general pattern does not provide the quantitative details necessary to adjust gaze. These

missing details include how much the gaze overshoots, the time at which thisovershoot peakis

reached, the time delay between the movement initiation of each of the joints, and the proportional

amount that each joint contributes to the overall gaze adjustment. In fact, the literature suggests

that there is not a single correct value for these terms; instead, details differ depending on the size

of the gaze adjustment as well as the individual who performs the adjustment.

My method for decoupling character gaze from overall body motion is strongly guided by

these observations. To represent the adjustments made to a base motion in order to adjust gaze, I

have developed a low-dimensional model that explicitly accounts for the patterns observed in real

human motion. Quantitative values associated with the model are filled in using example motions

of a human subject adjusting their gaze.

My model is called aparametric gaze map. A parametric gaze map maps the amount by which

a character’s gaze needs to be adjusted to a motion of the spinal joints, head, and eyes that in a

short amount of time will achieve the desired gaze adjustment when added to the base motion2.

I can parameterize the amount of a gaze adjustment as the change in yaw,ryaw, and pitch,rpitch,

of the eyes in relation to the root. This parameterization is equivalent to a latitude/longitude pa-

rameterization of the unit sphere. Biologically, it is possible to adjust the gaze of a person looking

straight forward by an amount that corresponds to any point on the unit sphere,(ryaw, rpitch) where

2This mapping assumes that the way that a person adjusts their gaze does not depend on their starting configuration,
but within the psychological community there is a debate as to whether this is true or not [KGM07].
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ryaw → {−180◦, 180◦} andrpitch → {−90◦, 90◦}. In fact, [KGM07] observes that horizontal gaze

in the range{−180◦, 180◦} is possibleevenwhen the shoulders are rigidly held.

For each(ryaw, rpitch) pair, the parametric gaze map supplies the spine, head, and eye ad-

justments needed to achieve the desired gaze change. I call these additive spinal motionsgaze

displacement motions. A gaze displacement motion consists of two parts that explicitly encode the

patterns observed in real human motion. A gaze displacement motion consists of two parts. The

first explicitly represents the change in a character’s skeletalposethat is used to achieve a desired

gaze orientation. The second focuses on the pattern of themotionused to achieve this final pose.

I represent the final pose adjustment for a gaze displacement motion,P+, as a displacement of

the spinal joints, head, and eyes from the base pose3. For my skeletal model, this can be stored as

a 5-tuple of quaternion rotational offsets:

P+ = {q+
Pelvis,q

+
LowerSpine,q

+
UpperSpine,q

+
Neck,q

+
Eyes} [5.1]

The motion portion of a gaze displacement motion uses a 7-tuple of floating point numbers.

This includes:

• l: The length of time in seconds that it takes to adjust gaze, starting from the point when the

adjustment begins and ending when the full gaze adjustment,P+, has been reached.

• T = {tPelvis, tLowerSpine, tUpperSpine, tNeck}: The time at which each joint starts moving,

other than the eyes, which are assumed to start moving immediately. For convenience, this

time is normalized to the range0 to 1 with respect to the length of the motion.

• tβ: The time at which the motion reaches its overshoot peak, also normalized to the range0

to 1 with respect to the length of the motion.

• β: And, finally, the amount by which the motion overshoots, stored as a multiplier associated

with the final pose displacement.

3Note that because eyes are not a part of the skeletal hierarchy presented in Section 3.1 but are an important part
of gaze, I augment my skeleton hierarchy with the addition of eyes. For data without eye orientation information, the
eyes are assumed to be looking straight forward from the head.
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Figure 5.2 A pictorial depiction of a gaze displacement motion.
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Putting all of these numbers together, a gaze displacement motion,G, can be defined as:

G = {P+, l,T, t+, β} [5.2]

This representation of the motion of a person adjusting their gaze is a direct mapping of the three

pattern observations from the biological and psychological sciences described at the beginning

of this section. The values for any particular gaze displacement motion can be filled in using an

example gaze adjustment motion (see Section 5.2.2.2). See Figure 5.2 for a pictorial representation

of a gaze displacement motion.

I construct a parametric gaze map from a set of example gaze displacement motions using a

form of blending-based parametric synthesis. The gaze displacement motion,G, returned for any

(ryaw, rpitch) can be layered onto a base motion to adjust the character’s gaze. By representing

an entire example motion with just a few parameters, my method not only reduces the amount of

storage needed for a gaze displacement motion but also allows gaze to be applied efficiently at

runtime.

5.2 Parametric Gaze Maps

This section describes my method for capturing example motions of a person adjusting their

gaze in a motion capture studio, converting the raw motion capture data collected at the studio

into a gaze displacement motion, building a parametric gaze map from these gaze displacement

motions, and applying the parametric gaze map to a base motion to adjust gaze.

5.2.1 Capturing Gaze

For this dissertation, I sought to capture example motions for a parametric gaze map that show

how a human adjusts their gaze when asked to look at different locations in 3D space. Unfor-

tunately, because of the confines of the capturing environment, it was necessary to limit vertical

gaze to a much smaller range -rpitch → {−12◦, 12◦} for all of the experiments presented in this

dissertation; the horizontal gaze range of the subject was captured in full. Because of my model’s
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dependence on a specific type of gaze motion, this section describes in detail how these example

motions were captured for this dissertation.

5.2.1.1 Motion Capture Preparation

To capture example motions of a subject adjusting their gaze, it is useful to have objects in the

motion capture environment that can be used as gaze targets. Acting as these points of interest,

33 signs labeled with letters were placed around the motion capture environment. With a human

subject at the center, signs were placed at36◦ increments along the horizontal axis and at12◦

increments along the vertical axis, starting from the point(0, 0), or the point where the subject’s

gaze is directed when at rest. Figure 5.3 diagrams the setup of the signs along these axes.

Markers were then attached to the subject’s upper body along the spine, on the head, and on

the arms. For the subject’s spine, I marked three landmarks with an equilateral triangle of markers:

the lower back, the upper back, and the base of the neck, between the shoulder blades. By using

a triangle of markers, I was able to guarantee that I could construct a coordinate system at each

of these points along the subject’s spine during processing (see Section 5.2.2.2). I also placed a

marker at the base of the spine as a reference point for the motion. The subject’s head was outfitted

with a hat with four markers attached to the sides in a square and one marker attached to the top,

in the middle. A small additional marker was placed between the subject’s eyes. I used several

extra markers for visualization purposes only: one on each of the subject’s shoulders, elbows, and

wrists. These markers were observed and recorded by a standard optical motion capture system.

Figure 5.4 shows the arrangement of these markers in 3D space.

My marker setup does not support capturing the motion of the eyes, but as stated previously,

the eyes play an important role in gaze. As described later in Section 5.2.2.1, the orientation of the

eyes in relation to the head is inferred from the overall orientation of the upper body in conjunction

with the known target gaze direction.
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Figure 5.3 Sign placement. Signs with letters on them were arranged within the motion capture
environment to act as targets for gaze capture. In all, there were33 signs arranged in3 latitudinal
lines and11 longitudinal lines. (a) shows an overhead view of sign placement along the middle
latitudinal line. The eye and arrow in the center depict the location and orientation of the subject
at rest. (b) shows a side view of sign placement along the front longitudinal line. Again, the eye

and arrow depict the location and orientation of the subject at rest.
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5.2.1.2 Capturing Each Example Motion

The goal of the motion capture session was to capture the motion of the subject adjusting his

gaze from a starting position to each of the target locations indicated by the lettered signs. For each

captured motion, an assistant and I would:

1. point a laser pointer at the target sign, and

2. play a tone twice, in a short, long pattern, using a tone making device positioned behind the

target sign. The tone making device was capable of playing 3 tones. The highest tone was

always played for targets located along the highest latitude line, the middle tone was always

played for targets located along the middle latitude line, and the lowest tone was always

played for targets located along the lowest latitude line.

Because I wanted to capture the natural way that the subject adjusts his gaze, it was important

that the subject not consciously plan his motions. Thus, the33 motions were captured in a random

order. The subject was told to do the following for each of these trials:

1. Look straight ahead at the letterA.

2. Close your eyes.

3. When you hear the first, shorter tone, open your eyes.

4. When you hear the second, longer tone, look at the target sign, as indicated by the tone and

laser pointer.

5. Read what is written on the target sign.

Each of the motions were captured at60hz and stored as raw motion capture data (i.e., the 3D

locations of each of the markers on each frame). The next section describes how I use this raw data

to create a parametric gaze map.
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5.2.2 From Raw Motion Capture Data to a Parametric Gaze Map

The motions captured using the method described in Section 5.2.1 provide examples of the

way the subject adjusts his gaze over a large range of possible gaze changes. In this section, I

describe how to transform these motion-captured observations from moving 3D positions in space

to a parametric gaze map that can be effectively applied at runtime to adjust a character’s gaze.

5.2.2.1 Cleaning the Data

When motion is captured in a motion capture studio, the raw data that is produced often needs

to be cleaned to conform to the standards needed for the example motions. For the case of the

gaze example motions captured for gaze control, it is important that the 3D locations of each of

the markers appear in every frame of motion, that the upper body motion is stabilized in relation

to any extraneous lower body motion, and that the motion is trimmed to only include the region of

time that is interesting for gaze control.

When a motion is captured using the sensors at a motion capture studio, it is possible that

one marker might become “invisible” to the sensors for a brief period in time. For instance, for the

optical motion capture system used to capture all of my example motions, it is possible for markers

to become blocked from the cameras by objects in the environment or self-occlusion of the subject.

If they are well-placed, it is unlikely for the markers to disappear for long. Thus the first step for

cleaning the captured gaze examples is to fill in any missing marker data points.

For each motion-captured gaze example, missing marker locations are inferred using linear

interpolation of existing data in temporally nearby times. In particular, a missing marker data

point at timet is calculated as the weighted average of the marker’s last known location, prior to

time t, and next known location, after timet, weighted according to the amount of time between

the observations.

After filling in missing marker data, the motion examples can be stabilized. My gaze model

presented in Section 5.1 considers only the motion of the spine, head, and eyes. Yet, slight changes

in the global position of the base of the subject’s spine affects the velocities of the markers on the

rest of the upper body. Thus, the second step needed to clean the gaze example data captured at
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the motion capture studio is to stabilize the root such that it does not move, while maintaining the

relative distance between each of the markers in 3D space. This can be done efficiently by shifting

the entire captured motion on a frame-by-frame basis so that the marker at the base of the spine is

always at the origin.

Finally, because the motion capture equipment begins recording each motion before the subject

starts to move and continues to record after the subject has completed the task of changing his

gaze, the raw data for each motion-captured example contains additional frames of motion before

and after the needed example motion. Ideally, each motion would begin at the moment when the

subject begins to move and end after the subject has finished reading the letter printed on the target

sign (see Section 5.2.1 to review the sequence of steps used to capture the gaze example motions

in a motion capture studio). This region of motion can be extracted from the adjusted motion by

locating periods of time when the subject is barely moving, henceforth referred to asperiods of

rest. To do this, my system uses the following simple, automated technique:

1. For each frame of motion,ti, it calculates the average velocity magnitude of the markers,vi,

using finite differences.

2. Next, the system labels a framei as “still” if vi is below a tunable threshold,V . For process-

ing all of the data in this dissertation,V = 6mm/s. A sequence of “still” frames are then

grouped together to form a period of rest.

3. To ward against the effects of noise, the system combines periods of rest that are separated

by a short amount of time (1/6 of a second for my data) to form a single larger period of

rest.

4. I can assume that the first period of rest temporally corresponds to the period of time when

the subject is waiting for the cue to change his gaze. Similarly, the second period of rest most

likely corresponds to the time when the subject has settled his gaze on the target sign and is

reading the writing. Thus, the motion data is automatically cropped by the system such that

it only contains the frames of motion starting from the end of the first period of rest to the

end of the second period of rest.
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In most cases, this simple technique effectively crops the example motions. The notable special

case is the gaze motion whose target is(0, 0). Since a change of gaze from(0, 0) to (0, 0) does

not actually include a period of motion, the example must be cropped manually. All of the other

example motions for this chapter where cropped automatically.

5.2.2.2 Building a Parametric Gaze Space

After the captured example motions have been processed, they can be quickly and automat-

ically constructed into a parametric gaze map that allows fast and accurate synthesis of motions

with gaze adjustments. First, each of these motions are translated into a gaze displacement motion

(see Section 5.1). These gaze displacement motions are then mapped into a parametric motion

space of gaze motion, forming the parametric gaze map. This parametric gaze map can be applied

at runtime to adjust gaze as described later in Section 5.2.3.

To calculate gaze displacement motions for the processed motion data, the system analyzes

the orientations of the joints throughout the example motion. To do this, it is necessary to be

able to calculate the orientations of each joint in the captured motion. For the joints along the

spine that were marked with a triangle of points, the orientation can be defined by constructing

the local coordinate system defined by the triangle (or the square, for the head). When placed in

matrix form, this coordinate system represents the orientation of the landmark in relation to the

origin. This matrix can be converted to a quaternion representation using the standard conversion

equation [Sho85].

Given this method for computing the global orientation of a joint from the raw motion capture

data, my system calculates the pose portion of the gaze displacement motion,P+, that coorre-

sponds to a processed, example motion using the following method:

1. The final orientations of the joints are translated into a displacement from the initial pose by

subtracting the orientation of each joint in the first frame from the corresponding joint in the

last frame.
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2. These global displacement orientations are then converted into hierarchical displacement

orientations, or into a local orientation displacement from its parent joint.

3. Finally, because each gaze displacement motion was captured with a known, calibrated gaze

goal, (ryaw, rpitch), the local orientation of the eyes in relation to the head can be inferred

as the orientation needed in order to achieve a global displacement of the eyes equal to

(ryaw, rpitch).

Next, to fill in the motion portion of the gaze motion, it is necessary to locate the point in time

when the motion reaches its overshoot peak, as well as the points in the example motion where

each joint begins to move.

Locating the Overshoot Point: 1. The method starts by calculating the velocity of the global

orientation of the head in each frame,i. This velocity can be calculated using finite

differences as the angle between the orientation of the head in framei− k and and the

orientation of the head in framei + k, wherek is a tunable parameter used for finite

differencing.

2. A framej is identified as a possible overshoot peak if the velocity atj has a different

sign from the velocity ofj − 1.

3. The overshoot point is identified as the first flagged frame where the average velocity

of the frames{j − m, j − 1} and the average velocity of the frames{j + 1, j + m}
have different signs. Again,m is a tunable parameter used to define a local window

size around the frame in question.

Identifying the Start Times for Each Joint: To identify the start time of each joint, the algo-

rithm calculates the velocity of the local orientation of the joint in question using the same

method used to locate the overshoot point. The first frame at which the magnitude of this

velocity surpasses a tunable threshold is defined as the start point for that joint. If no start

point is found, the algorithm assumes that the joint begins moving slowly at the start of the

gaze change. For all of the examples in this chapter, I set the tunable velocity threshold to

18◦/s.
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As described in Section 5.1, the motion of a person changing their gaze is strongly dependent

on the gaze parameters(ryaw, rpitch). The gaze example motions act as a sampling of the space of

all possible gaze changes. Following the blending-based parametric synthesis work presented in

Section 3.5, I can represent the way a person adjusts their gaze as a parametric gaze motion space,

parameterized on the orientation of the gaze,(ryaw, rpitch). Each motion in this space is defined as

a blend of the example gaze motions. My system directly uses the parametric synthesis method

of Kovar and Gleicher [KG04] presented in Section 3.5 to construct this space of gaze motions.

However, since the motions in this motion space are represented using the gaze motion model

presented in Section 5.1, it is necessary to be able to blend motions in this representation.

The form of the representation of a gaze motion makes blending two gaze motions together

straightforward. Because the pose of a gaze motion is represented as a displacement from the base

pose, blending the poses of two gaze motions does not require the motions to be spatially aligned.

Thus, to blend the pose portions of two gaze motions, the5-tuples of quaternion offsets can be

linearly interpolated without modification. Similarly, the motion portion of a gaze motion does

not require temporal alignment since the key events are already explicitly marked in time (e.g.,

the gaze motion representation explicitly stores the time at which the head begins to move). So

blending the motion portion of two gaze motions is as easy as linearly interpolating each of the7

floating point numbers used to describe the shape of the motion (see Section 5.1).

5.2.3 Applying the Parametric Gaze Map

A parametric gaze map can be used to efficiently adjust the gaze of an existing base motion

clip. A user or application simply supplies the desired change in gaze,(ryaw, rpitch). These pa-

rameters are used by the parametric motion space of gaze motions represented by the parametric

gaze map. Using the blending-based synthesis method discussed in Section 3.5 combined with the

gaze motion blending algorithm presented in Section 5.2.2.2, the parametric gaze map can supply

a gaze displacement motion that accurately describes how to adjust the character’s gaze by the

desired amount.
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This new target gaze motion can then be applied to a base skeletal motion by adding in the

appropriate spinal, head, and eye orientation displacements on each frame. Using the definition of

a gaze motion from Section 5.1, the orientation displacement of a joint,j, at timet, is:

q+
j (t) =





I if t < tj

( t−tj
tβ−tj

∗ (1 + β)) ∗ q+
j if tj ≤ t ≤ tβ

(1 + (1− t−tβ
1−tβ

) ∗ β) ∗ q+
j if tβ < t





whereI represents the identity rotation. In other words, there is no local orientation displacement

of a joint, j, from its parent until timetj. At time tj, the joint’s displacement begins changing

linearly until it reaches its overshoot orientation,(1 + β) ∗ q+
j , at time tβ. Finally, the joint’s

displacement changes linearly from this overshoot point until it reaches its goal orientation,q+
j ,

when time equals1.

In practice, the system produces motions withc(1)-continuity by replacing the linear inter-

polation terms t−tj
tβ−tj

and t−tβ
1−tβ

with an ease-in/ease-out function that was originally presented

in [HWG07]. This function introduces acceleration and deceleration periods to the interpolation,

providing better continuity.

By only applying this smooth displacement map to the base skeletal motion, the system guar-

antees that it will not introduce discontinuities that might be striking to the eye. Additionally, the

method avoids producing motions that appear too smooth by layering these low-frequency gaze

changes on top of the motion that already exists. The high-frequency details that exist in the base

motion often contain correlating submotions, such as the slight bobbing of the head in time with

footsteps, that are necessary to make a motion appear natural. All of these correlating details are

retained when a parametric gaze map is used to adjust a character’s gaze.

5.3 Results

To test the methods presented in this chapter, I applied the parametric gaze map I developed to

a number of different base motions.

Figure 1.4 shows the result of adjusting the gaze of a character stepping up onto a platform

so that he looks over his left shoulder. The motion retains the correlating details of the original
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base motion, such as a dramatic nod of the head as the character steps up onto the platform, while

the overall gaze of the character is adjusted realistically to meet the requested gaze change. The

motion of the character also exhibits overshoot of the gaze goal, a characteristic of real human

motion [KGM07]. Figure 5.1 shows another example of a gaze change applied to the motion of

a person walking like a zombie. Note that the resulting adjusted motion is still recognizable as a

zombie motion, but the pose of the character’s upper body has been adjusted to change gaze.

Figure 5.5 more effectively illustrates the overshoot phenomenon. This figure shows the results

of adjusting a walking character’s gaze such that it is pointed towards the ceiling over the left

shoulder. Before the gaze adjustment is made, the eyes peer straight forward in relation to the root

(Figure 5.5a). As the character adjusts his upper body orientation in order to meet the requested

gaze, the eyes pass their intended goal (Figure 5.5d). The character then follows up by slowly

correcting for this overshoot until he achieves the desired gaze adjustment (Figure 5.5f).

One of the strengths of using an example-based method for controlling gaze is that it cap-

tures nuances of gaze adjustments that are particular to specific subjects. For instance, the subject

whose gaze was captured for the experiments in this chapter does not adjust his gaze in a symmet-

rical way; through evaluation of the captured motion data, it is clear that the subject’s spine is more

easily twisted towards the right. For all of the captured example motions where the subject turned

towards the left, the subject’s eyes and head contributed in a much greater proportion to the overall

gaze change than when the subject turned towards the right. This asymmetrical gaze characteristic

is transferred using the parametric gaze map. Figure 5.6 shows the final skeletal configuration after

applying the parametric gaze map to a motion consisting only of the dress pose4. This figure illus-

trates how motions that represent a gaze change to the left result in a pose where the spinal joints

contribute relatively little to the overall orientation when compared with the same gaze change to

the right.

Figures 5.7 and 5.8 show additional examples of a character’s gaze being adjusted using a

parametric gaze map. In the first is a detailed look at the motion synthesized by adjusting the gaze

of a person carrying a heavy box along a curved path so that the character looks more intently at

4The dress pose of a skeleton is the pose of the skeleton where all of the local joint orientations are set to0
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Figure 5.5 A motion of a person adjusting their gaze toward the ceiling over their left shoulder.
This motion was synthesized by applying a parametric gaze map. The character starts by looking
straight forward in (a). Notice how in (d) the character has overshot his gaze goal (focus on the
rotation of the eyes, as this is the easiest way to notice the overshoot in a series of still images)

before coming to rest at his goal adjustment in (f).
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Figure 5.6 Asymmetric gaze changes captured by a parametric gaze map. (a) and (b) show front
and top views, respectively, of the final pose configuration of a skeleton after applying a gaze
change of approximately140◦ to the right and left. The skeleton was initially configured in a
dress pose, where each of its local joint orientations were set to0. (c) and (d) show a similar

application of the parametric gaze map for rotations of approximately175◦ to the right and left.
Notice how in both instances, the righthand gaze change is not symmetrical with the lefthand gaze
change. Instead the eyes, whose orientation is clearly indicated by the red cones protruding from

the head, contribute more to the overall orientation when the character turns towards the left.
Compare the angles between the red eye cones and the green head orientation cones.
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Figure 5.7 A motion synthesized by adjusting the gaze of a character walking along a curved path
such that the character looks at the ground along his intended direction of travel. The images in
the top row focus on the motion of the head and eyes over time, while the images in the bottom

row provide an overview of the entire motion from the side and the top.
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the ground along his direction of travel. Figure 5.8 compares the results of different gaze changes

applied to the same base motion.

5.3.1 Algorithm Performance

In this section, I describe how my biologically and psychologically inspired method for adjust-

ing the gaze of a character at runtime performs in each of the six categories described in Section 1.1.

Efficient Synthesis The examples in this paper were computed on a laptop computer with a

1.75GHz Pentium M Processor,1GB of RAM, and an ATI Mobility Radeon X300 graph-

ics card. All of the generated motions were sampled at30Hz. Because applying a gaze

change to an existing motion clip is a fast, constant time operation, it is possible to apply

gaze changes quickly at runtime. The only part of applying a parametric gaze map that is

not necessarily constant is constructing the blended gaze motion in the parametric motion

space of gaze motions. The time it takes to construct a blended gaze motion is dependent on

the number of example motions being blended together. But because Kovar and Gleicher’s

method for blending-based parametric synthesis [KG04] limits the number of motions that

can be blended together at each of the sample points in a parametric motion space, this time

is effectively bounded.

Efficient Data Storage The storage requirements for a parametric gaze map are low. Since the

example motions are stored using the compact, biologically and psychologically inspired

gaze motion model, it is possible to store many example motions in a small amount of

space. Additionally, since my algorithm effectively decouples gaze from full body motion,

it reduces the number of example motions that need to be stored for quality control of more

than one motion parameter simultaneously.

Low Latency or Response TimeSince the method for adjusting the gaze of a character is de-

signed for motion clip generation and not motion stream generation, this characteristic is not

applicable.
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Figure 5.8 Variations on a motion: Three motions synthesized by applying a parametric gaze map
to a tip-toeing motion using different gaze goals. One character is turning to look high over his

right shoulder, another is looking down towards his feet, and the last is turning towards the left by
a small amount.
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Accurate Motion Generation Because each gaze displacement motion is computed from the ex-

ample motions using blending-based parametric synthesis methods, it is possible to identify

a motion that should accurately adjust a character’s gaze. But there are limitations to the

model that could compromise the accuracy of the method. It is necessary that the base

motion that a parametric gaze map is applied to not already contain any gaze changes. A

low-frequency gaze direction change in the base motion would require a new gaze change

goal. Furthermore, the small details in the base motion that are retained by only applying a

smooth displacement map during gaze changes might cause the gaze direction of the char-

acter to “bob.” This bobbing can be naturally corrected by adjusting the eye and/or head

orientation slightly in order to compensate for these small submotions.

Visual Quality Again, the quality of a virtual character motion is a partially subjective character-

istic. By limiting the changes made to the base motion (see Section 5.1), deviations are small

relative to the original example motion, which is assumed to be of high-quality. In addition,

all of the changes made to adjust the spine, head, and eyes are smooth and c2-continuous. As

the gaze model is informed by studies in the biological and psychological communities, it

explicitly captures characteristic features of gaze change motions. However, the gaze motion

model is lossy. In the gaze motion representation, the motion of each joint from starting pose

to overshoot pose and from overshoot pose to final pose are assumed to be simple functions.

Any deviation of the actual motion from this simple representation will be lost by the model.

Automated Authoring The algorithm for building the parametric gaze map for gaze control is

highly automated, using only a small number of user-defined parameters, with the notable

exception that a human is needed to capture the original example motions. It is also necessary

for a user to supervise the automatic processing of the raw motion capture data in order to

intervene when automated cleanup fails.
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5.4 Discussion

This chapter presented a new method for decoupling gaze from overall body motion, greatly

reducing the number of example motions needed to control gaze on top of other parameters si-

multaneously. Because the method is inspired by biological and psychological research, it treats

motions of a person changing their gaze in a natural way, explicitly capturing many characteristics

of these motions, such as overshoot and cascading joint motion. And, because the model uses cap-

tured example motions of a person adjusting their gaze, it is capable of synthesizing motions with

stylistic properties associated with the way an individual adjusts their gaze, such as asymmetry.

For the examples in this chapter, only motion-captured example motions and base motions

were used in my experiments, but procedural, keyframed, or edited motions would serve just as

well. For instance, it should be possible to synthesize a stream of walking motion using one of

the techniques discussed in Section 2.2.4 and then to apply the gaze model to these synthesized

motions in order to have the character look at interesting objects in the environment. An artist

could also keyframe (see Section 2.1.1) a set of example motions of a character changing their

gaze. For instance, an artist could produce a small number of example motions where a character

whose torso has been injured changes his gaze. These example motions could then be used to build

a parametric gaze map for the way the character adjusts their gaze when injured.

While the work presented in this chapter provides a reliable method for adjusting the gaze of

a character when the target is known, it does not tackle the equally important question of where a

character’s gaze should be directed at any point in time. Yet my reliance on psychological litera-

ture to develop a model for gaze could be extended to look at models for realistically determining

when humans direct their gaze towards specific types of targets. By providing a method for decou-

pling gaze from full body motion, I hope that my work will inspire others to tackle the problems

associated with gaze control.
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Chapter 6

Parametric Motion Graphs

This chapter presents a new approach for controlling interactive human character using a novel

example-based motion synthesis data structure called aparametric motion graph. Like other

example-based data structures, parametric motion graphs provide easy authoring of high-quality

motions, but they also supply the responsiveness, precise control, and flexibility demanded by in-

teractive applications. A parametric motion graph describes possible ways to generate seamless

streams of motion by concatenating short motion clips generated through blending-based paramet-

ric synthesis. As described in Section 3.5, blending-based parametric synthesis allows accurate

generation of any motion from an entire space of motions, by blending together examples from

that space. For instance, parametric synthesis can generate motions of a person picking up an item

from any location on a shelf by blending together a small set of example motions. While neither

seamless motion concatenation nor parametric synthesis is a new idea, by combining both tech-

niques, parametric motion graphs provide accurate control through parametric synthesis and can

generate long streams of high-fidelity motion without visible seams using linear-blend transitions.

In contrast to many other automated methods for representing transitions between motions

(see Section 2.2), parametric motion graphs are highly structured, facilitating efficient interactive

character control. The nodes of a parametric motion graph represent entire parametric motion

spaces that produce short motions for given values of their continuously valued parameters. The

directed edges of the graph encode valid transitions between source and destination parametric

motion spaces. This structure efficiently organizes the large number of example motions that can

be blended together to produce the final motion streams. Because of this structure, I have been able
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Figure 6.1 An interactively controllable walking character using parametric motion graphs to
smoothly move through an environment. The character is turning around to walk in the

user-requested travel direction, depicted by the red arrow on the ground.
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to easily author interactively controllable characters that can walk, run, cartwheel, punch, change

facing direction, and/or duck in response to user-issued requests.

While prior work on synthesis by concatenation has focused on representing seamless transi-

tions between individual clips of motion (see Section 2.2.1), I face the problem of defining valid

transitions between parametricspacesof motions, where it is not often possible to transition from

any motion in one parametric motion space to any motion in another. For example, consider a

parametric motion space representing a person taking two steps, parameterized on curvature. One

can imagine that this parametric motion space can follow itself; a person can take two steps, and

then take two more, and so on. However, a transition should not be generated between a motion

where the character curves sharply to the right and another where the character curves sharply to

the left; the resulting transition would not look realistic. Thus, the edges in a parametric motion

graph must encode therangeof parameters of the target space that a motion from the source space

can transition to, as well as the correct way to make the transition between valid pairs of source

and destination motions. The key challenge to parametric motion graphs is finding a good way to

compute and represent these transitions. By approaching the problem from a sampling perspective,

I provide an efficient way to compute and encode the edges of a parametric motion graph, allowing

automated authoring and fast transition generation at runtime.

To provide parametric motion graphs as a method for interactive character control, this chapter

describes how to:

Build Parametric Motion Graphs: Using a method based on sampling, I can efficiently locate

and represent transitions between parametric motion spaces.

Extract Data from Parametric Motion Graphs: My representation of transitions allows fast lookup

of possible transitions at runtime using interpolation.

Use Parametric Motion Graphs for Interactive Control: Because parametric motion graphs are

highly structured, they facilitate the fast decision-making necessary for interactive character

control. Furthermore, because all motion clips in the graph are generated using parametric

synthesis, motions accurately meet relevant constraints.
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The rest of this chapter is organized as follows. Section 6.1 details my methods for building and

extracting information from a parametric motion graph. Then, Section 6.2 presents results from

some experiments using parametric motion graphs, including controlling interactive characters in

realtime. Finally, Section 6.3 concludes with a general discussion of the presented technique,

including a number of the technique’s limitations.

6.1 Parametric Motion Graphs

This section describes in detail the methods developed for building parametric motion graphs

and extracting data from them. My methods for controlling a character using a parametric motion

graph are presented later in Section 6.2.

6.1.1 Building a Parametric Motion Graph

To facilitate efficient motion synthesis at runtime, much of the needed computation for control-

ling interactive characters is done while building a parametric motion graph offline. A parametric

motion graph only needs to be built once, resulting in a small text file representation of the graph

that can be loaded at runtime.

As described at the beginning of this chapter, each node of a parametric motion graph represents

a parametric motion space implemented using blending-based parametric synthesis. For all of the

examples in this dissertation, blending-based parametric synthesis is performed using the method

presented in Section 3.5. While the nodes of a parametric motion graph can be built using this

existing technique, the key challenge is finding a way to identify and represent possible transitions

between these parameterized nodes. Because the parametric motion spaces represented by the

graph nodes are smooth, as described in Section 3.5, I can tackle this challenge using sampling and

interpolation. The rest of this subsection describes in detail how to identify and represent edges

between source and target graph nodes,Ns andNt respectively. Throughout this description,

the parametric motion space represented by nodeNi is denoted byP i(l), wherel is a vector of

relevant motion parameters, such as the target of a punch; a parametric motion space produces a

short motion,Mi, for any given value,li, of its continuously valued parameters.
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6.1.1.1 Identifying Transitions Between Motion Spaces

To start, consider the case where the nodesNs andNt represent small motion spaces whose

valid parameter ranges only include a single point. This case reduces to the traditional synthesis-

by-concatenation problem; is there a frame of motion near the end of the motion generated byNs,

M1, and a frame of motion near the beginning of the motion generated byNt, M2, that are similar

enough to allow a linear-blend transition from one to the other over a short window centered at

these frames? A good transition exists fromM1 to M2 if and only if there exists a frame,t1, near

the end ofM1 and a frame,t2, near the beginning ofM2 such thatD(M1(t1),M2(t2)) ≤ TGOOD,

whereTGOOD is a tunable threshold. If the distance value of the optimal transition point found

using the method presented in Section 3.3 is belowTGOOD, then it is possible to transition between

M1 andM2 at that point,(t1o, t
2
o).

Now consider the general case whereNs andNt represent larger spaces. For any sufficiently

large space, it is unlikely that the motions represented by the space look similar enough to be

treated like a single motion. For instance, in the walking example discussed at the beginning of

this chapter, the walking character can only transition to other walking motions where the charac-

ter walks at a similar curvature to its current one. However, since each parametric motion space

represents an infinite number of motions, it is infeasible to compare all possible pairs of motions

represented by each of the parameterized nodes. One possible approach is to reduce each paramet-

ric motion space to a discrete number of motions chosen from the full space. To find and represent

good transitions between all pairs of motions from a source set of sizem and a target set of sizen,

I would need to repeat the technique described abovemn times. Unfortunately, by transforming a

continuous motion space into a discrete set of motions, I lose much of the accuracy that parametric

synthesis provides; accuracy can be increased by adding more motions to these sets but this re-

sults in a combinatorial explosion in the number of required comparisons and the amount of space

needed to store the possible transitions.

Yet, in a smooth parametric motion space, motions generated for any local neighborhood of

parameter space look similar. For example, consider a parametric motion space representing mo-

tions of a person punching, parameterized on the location of the punch. Two motions in this space
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Figure 6.2 Process of determining the valid transition region in target parameter space. (a) A set
of randomly chosen samples from the target space. (b) Darkened circles produce good transitions,

crossed out circles produce bad transitions, and empty circles produce neutral transitions. The
shaded box encloses all good samples but also includes some bad samples. (c) The adjusted,

shaded box excludes all bad samples. In practice, little to no adjustment is usually made to the
bounding box.

where the punches land1mm apart look similar. In this case, I can compute the possible transitions

from one of these motions and use the result for both. This observation leads me to approach the

problem of identifying and representing transitions between parametric motion spaces using sam-

pling, extending the method presented in Section 3.3 for locating possible linear blend transitions

between individual motions.

6.1.1.2 Building a Parametric Motion Graph Edge

An edge between source and target nodes,Ns andNt respectively, maps any point,lsi , in Ps

to the subspace ofP t that can be transitioned to fromMs
i = Ps(lsi ). It also supplies the time at

which that transition should occur. Assuming it is possible to transition from every point inNs

to some subspace inNt, we can build an edge between these nodes using sampling. I start by

generating two lists of random parameter samples,Ls = {ls1, . . . , lsns
} andLt = {lt1, . . . , ltnt

} (see

Figure 6.2a). In order to accurately capture the variations in the target space,nt should be large.

The exact number depends on the size of the parameter space, but I have found1000 samples to be

more than enough for all of the cases I have tried, even for parametric motion spaces that have three
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parameters. In contrast,ns should be small, while still covering the extremes of the source space,

as this number affects the amount of storage needed for an edge as well as performance efficiency

of the graph when used to produce motion at runtime (see Section 6.2.4). For the examples in this

dissertation,ns ranged from4 to 200.

Now consider a sample fromLs, ls1. This sample corresponds to the motionMs
1 = Ps(ls1).

I can determine ifMs
1 can transition to each motion represented by the parameter samples inLt

by computing the optimal transition point with each motion{Mt
1, . . . ,M

t
nt
} using the method

presented in Section 3.3. Samples fromLt that produce good transitions are added to the list of

parameter samplesLt
GOOD.

Using the observation that motions close in parameter space look similar, I can assume that

any parameter vector forP t whose nearest parameter samples fromLt appear inLt
GOOD can also

be transitioned to fromMs
1. Thus, the listLt

GOOD defines the subspace ofP t to whichMs
1 can

transition.

Unfortunately, I cannot represent the subspace ofNt that can be transitioned to fromMs
1 by

listing the points inLt
GOOD because, as described at the beginning of Section 6.1, I plan to deter-

mine what transitions are possible at runtime using a simple and efficient interpolation scheme (as

shown in Figure 6.3); interpolating between potentially different numbers of uncorrelated points in

a meaningful way is difficult, if not impossible. So, instead, I represent each subspace as a simple

shape that can always be interpolated (i.e., bounding boxes, spheres, triangles). I have found axis-

aligned bounding boxes work well for my data; I use axis-aligned bounding boxes to represent all

of the transition parameter subspaces.

Using simple, easily interpolated shapes to represent transition regions introduces a consider-

able problem. Any simple shape that contains all points inLt
GOOD could also contain other points

from Lt that were not deemed good transition candidates (see Figure 6.2b). To guarantee that bad

transitions are not included in the transition subspace ofNt, I take a conservative, double threshold

approach. First, while constructing the listLt
GOOD, I also form a list,Lt

BAD, containing all samples

from Lt that generate motions whose optimal transition point distance is greater thanTBAD, where

TBAD ≥ TGOOD. Next, I compute the bounding box of all parameter samples inLt
GOOD. Finally,
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I consider each sample inLt
BAD; if the sample falls within the subspace defined by the bounding

box, I make the minimal adjustment to the dimensions of the bounding box so that the sample falls

at leastε away, whereε > 0. In this way, I construct a bounding box that contains many, if not all,

of the samples fromLt
GOOD without including any of the samples fromLt

BAD. Neutral samples

from Lt whose optimal transition point distance falls betweenTGOOD andTBAD are considered

good enough if they fall within the transition subspace ofNt but will not be explicitly included

in the space (see Figure 6.2c). In practice, the system makes few bounding box adjustments to

remove bad samples and in most cases makes none at all.

I also compute a single transition point fromMs
1 to any of the motions located in the subspace

of Nt defined by the computed bounding box. In Section 3.3, I described the optimal transition

point of two motions as the pair of frames where the two motions are most similar. For computing

a generic transition point for the entire subspace, it is useful to normalize these frame numbers

to the range0 to 1. Again, because nearby motions in a motion space look similar, the optimal

transition points are likely to be at similar normalized times. So, I average the normalized optimal

transition points for each sample ofLt
GOOD that falls inside the adjusted bounding box to calculate

the normalized transition point for the subspace.

Putting all the pieces together, an edge can be defined betweenNs andNt as a list of transition

samples, one for each parameter vector inLs. Each sample includes:

• The value of the parameter vectorlsi

• The computed transition bounding box forlsi

• The average, normalized transition point forlsi

I could also store the average alignment transform between the motionMs
i and each of the motion

samples inLt
GOOD but recomputing this alignment using the method presented in Section 3.3 is

fast; instead I save storage space by computing the alignment transform for each transition at

runtime.

Up until this point, I have assumed that I can transition from every point inNs to some subspace

of Nt. I define that a transition exists between nodesNs andNt if and only if for any motion
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Figure 6.3 Mapping a parameter vector, depicted by the X, from the1-D parameter space on the
left, to a valid transition region in the2-D parameter space on the right. X’s bounding box is the

weighted average of the bounding boxes for its2-nearest neighbors.

contained inNs there existssomesubspace inNt that it can transition to. Thus, if I find any

sample inLs whose adjusted bounding box is empty, I cannot create an edge betweenNs andNt

6.1.2 Extracting Data from a Parametric Motion Graph

Synthesizing motion using a parametric motion graph is quick and efficient. The data that is

stored in each node of the graph allows fast lookup for possible transitions. In particular, given the

node,Ns, and relevant parameter vector,l̃s, for a motion clip, I can determine what subspaces of

other parametric motion spaces can be transitioned to as well as when that transition should occur.

For each outgoing edge ofNs, begin by finding thek-nearest neighbors tõls from the transi-

tion sample list, in terms of Euclidean distance, wherek is normally one more than the number

of dimensions ofPs. Call these neighborsls1, . . . , l
s
k, ordered from closest to farthest from̃1s.

Following the work of Allen et al. [ACP02] on skinning human characters using k-nearest neigh-

bor interpolation and on Buehler et al.’s work on rendering lumigraphs using k-nearest neighbor
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interpolation [BBM+01], eachlsi is associated with a weight,wi:

wi =
w′

i∑k
j=1 w′

j

[6.1]

w′
i =

1

ε(l̃s, lsi )
− 1

ε(l̃s, lsk)
[6.2]

whereε gives the Euclidean distance between parameter samples. This method of determining

weights has two relevant advantages over using a linear map constructed as a best fit optimization

over weights and motion parameters. First, this method does not introduce large negative weights.

Using a linear fit method, these large negative weights often appear in order to artificially produce

a better fit, even though the quality of the results suffer. Second, computing weights using this

algorithm is fast as it does not require a costly global optimization and scales well with the number

of example motions in the database.

For any outgoing edge ofNs, calculate the subspace of the target node,Nt, that can be transi-

tioned to,B(Ns,Nt), as follows:

B(Ns,Nt) =
k∑

i=1

wi ∗ β(lsi ) [6.3]

whereβ(lsi ) gives the value of the bounding box for the samplelsi , represented by the location of

the box’s center and its width in each dimension, as stored in the edge (see Figure 6.3). Similarly,

compute the normalized transition point as a weighted sum of the average, normalized transition

points for eachlsi stored in the edge.

6.2 Results

This section provides details for some of the example parametric motion graphs I designed for

interactive character control. Following the description of these graphs, I present the results of a

number of experiments for testing the usefulness of these graph structures in interactive applica-

tions.
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Graph Name # of Nodes # of Edges # of Example Motions

Walking 1 1 44

Running 1 1 198

Cartwheeling 1 1 10

Walking and Running 2 4 242

Many Everyday Actions 7 14 256

Boxing 3 9 275

Table 6.1 Size and make-up of the parametric motion graphs in this dissertation. Each line
provides the name of the parametric motion graph, the number of nodes in that graph, the number
of edges connecting those nodes in the graph, and the total number of example motions organized

by the graph.

6.2.1 Graphs

I have constructed six different parametric motion graphs in order to show the utility of the

technique. These graphs are described throughout this section. Refer to Table 6.1 for a summary

of the size of these graphs in terms of number of nodes, edges, and example motions.

The process of building parametric motion graphs is highly automated. An author starts by

choosing the parametric motion spaces needed for the graph from an available motion space

database built using the blending-based parametric synthesis technique described in Section 3.5.

These parametric motion spaces then appear as disconnected nodes in the graph.

Next, the author chooses two nodes to generate an edge between and specifies values for

TGOOD, TBAD, ns, andnt. While it is possible to set the values ofTGOOD andTBAD with-

out user input, the ability to adjust these values allows an author to determine where to set the

tradeoff between motion quality and flexibility discussed later in this section. In practice, it took

two or three iterations in order to tune the parametersTGOOD andTBAD for each edge. Empiri-

cally, settingTGOOD to .5 andTBAD to .7 served as a good starting point. For my example graphs,

the amount of time it took to generate a single edge varied from2 − 147 seconds, depending on

the complexity of the source and target parametric motion spaces.
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Or

Figure 6.4 Graph for walking, running, or cartwheeling.

6.2.1.1 Single Node Locomotion Graphs

While other researchers have dealt specifically with generating controllable streams of loco-

motion in realtime (see Section 2.2.4 for a review of these methods), I chose to create several

single-node locomotion graphs because it is easy to see artifacts in this commonly performed ac-

tivity. In my first graph, I encoded streams of walking motion that only contain smooth turns. This

graph consists of a single node representing a parametric motion space of a character walking for

two steps at different curvatures. The parametric motion space maps the angular change in the

character’s travel direction from the beginning to the end of the motion (between−131 degrees

and138 degrees) to synthesized motions. Similarly, I built a running graph as a single node rep-

resenting a parametric motion space with a valid angular travel direction change between−120

degrees and99 degrees.

Since my technique requires little authoring effort, it is possible to experiment with non-

obvious motions. I also built a parametric motion graph that encodes locomotion control through

cartwheeling. Like the graphs for walking and running, my cartwheel locomotion graph con-

tains only a single node. This node represents a parametric motion space of a character doing a

cartwheel, rotating towards the right by varying amounts on one foot, and then doing a cartwheel
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walk run

Figure 6.5 A locomotion graph for walking and running.

in another direction. Again, the parametric motion space maps the angular change in travel direc-

tion of the character from the beginning of the motion to the end (between−13 degrees and157

degrees) to synthesized motions.

Each of these single node locomotion graphs take less than5 minutes to build from beginning

to end using my unoptimized system.

6.2.1.2 General Graphs

In addition to single-node locomotion graphs, I have also built several larger graphs. The

simplest is a two-node graph that combines the walking and running nodes described earlier (see

Figure 6.5). This graph can control the travel direction of a character that can both run and walk.

I have also built a seven-node, fourteen-edge graph containing motions for a number of differ-

ent everyday actions: walking and running at different curvatures, sitting down and standing up

from chairs of heights between1ft and1.9ft tall, stepping up onto and stepping off of platforms of

heights between.8ft and1.8ft tall, and leaping over distances between2 and3ft (see Figure 6.6).

It takes about11 minutes to build this graph. The final graph organizes a total of256 example

motions so that they can be blended to produce continuous streams of controllable animation.

In order to show that my technique works when controlling a number of different non-locomotion

actions, I built a parametric motion graph that encodes the motions of a boxer punching, ducking,

and “dancing” from one foot to the other. The boxing graph consists of three nodes. The first node

represents all motions of a boxing character punching to some location in a6ft wide,2ft tall, and5ft
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walk run

stand up
sit down

jump

step up step down

Figure 6.6 A graph for controlling a number of different everyday actions.
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punch

dance duck

Figure 6.7 A boxing graph.
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deep space. The parametric motion space maps desired punch locations in relation to the starting

configuration of the root to synthesized punching motions. The second node of the boxing graph

represents motions of a boxing character ducking below different heights (between3.4ft and5.6ft

from the ground) and is parameterized on how low the character ducks. The third and final node

encodes motions of a character “dancing” from one foot to another while maintaining a boxing

ready stance. When “dancing”, the character rotates by different amounts (between−27 and46

degrees). Thus, the “dancing” motion space maps the change in facing direction from the beginning

of the motion to the end of the motion to synthesized “dancing” motions. In total, the parametric

motion spaces used for these graph nodes blend between275 different motion-captured examples.

A discrete motion transition graph, like those described in Section 2.2.2 and Section 2.2.3, that

represents transitions between this number of motions would be large and unwieldy. In contrast,

the final parametric motion graph (Figure 6.7) contains only nine edges, one connecting every pair

of nodes. It takes approximately7 minutes and40 seconds to build the graph.

6.2.2 Applications

I implemented a number of different applications to test the usefulness of my technique. In this

section, I describe these applications in detail and provide an overview of my results.

6.2.2.1 Random Graph Walks

My first application shows that parametric motion graphs can generateseamless, high-fidelity

motion streams in realtime. For each of the graphs described in Section 6.2.1, I can produce a

random stream of motion by taking random walks on the graph.

I start by choosing a random node and parameter vector from the graph. When the parametric

motion space associated with the node is supplied with the chosen parameter vector, I can render a

motion that matches this parameter request in realtime using the method presented in Section 3.5.

While playing the motion, when I reach the possible transition region, I randomly choose an edge

from those leaving the current node. The node that this edge points to is the new target node. Using

the method described in Section 6.1.2, I compute the optimal transition point and the parameter
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Figure 6.8 Using parametric motion graphs, this character walks to a specified location, depicted
by the red square on the ground. The path on the ground plane is not prespecified. It is shown

only to illustrate the path the character takes to the target.

subspace of the target node that I can transition to from my current parameter vector. I then

randomly choose a new target parameter vector enclosed in this subspace. Finally, when I reach

the blending window centered at the optimal transition point, I can append my current motion to

my newly chosen motion using a linear blend transition, as described in Section 3.3. This process

is then repeated indefinitely to produce an infinitely long stream of motion.

By randomly generating long streams of motion, I can confirm that my technique produces

continuous motions and avoids poor transitions. I can also show that the algorithm for synthesiz-

ing new motion with a parametric motion graph is efficient enough to be used in an interactive

application.

6.2.2.2 Target Directed Control

My second application tests whether my walking character canaccuratelyreach a target loca-

tion using a greedy graph search similar to ones used for locomotion control [SMM05] and crowd

control [SKG05]. For this application, I generate a motion stream in the same way as for random

graph walks (see Section 6.2.2.1), except that when it is time to choose a new parameter vector

from the target bounding box, I choose the parameter vector that best adjusts the character’s travel

direction towards a target. Figure 6.8 shows that the walking character is able to accurately reach

a target location without wandering by using this simple control algorithm.
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Figure 6.9 Using parametric motion graphs, this character walks to a specified location, and
arrives while oriented in the requested direction. The red box and arrow on the ground depict the
desired location and orientation respectively. The path on the ground plane is not prespecified. It

is shown only to illustrate the path the character takes to the target.

Figure 6.10 Using parametric motion graphs, this walking character cannot arrive at the specified
location while oriented in a particular direction. The turning radius of the character is too small.
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Figure 6.11 Locations that the walking character can reach in a short period of time. Height
corresponds to possible orientations that the character can be in when it reaches the location. This

experiment shows that most locations on the ground plane can be reached by the walking
character but that there are only a small number of orientations in which the character can be in

when they arrive at each of these locations.

I also allow a user to request that the character reach the target location oriented in a particular

direction. For this case, I choose the parameter vector that both adjusts the character’s travel

direction towards the target and orients the character towards the desired facing direction. I place

more weight on the orientation component of this optimization function as the character gets closer

to the target. In several cases, the walking character can perform the requested action well (see

Figure 6.9). But I find that in others, the character approaches the target and then turns in circles

trying to orient itself (see Figure 6.10). This result is anticipated as I know that the character’s

minimum turning radius is quite large.

Inspired by the work of Reitsma and Pollard [RP04, RP07], I used a discrete, brute force

method to embed the walking parametric motion graph in the environment in hopes of better un-

derstanding this problem. The embedding made it clear that the walking character could meet

location constraints within a reasonable radius but that for most locations, there were only a few

orientations that the character could be in when they arrived. Figure 6.11 shows the results of this

embedding.
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Figure 6.12 An interactively controllable running character using parametric motion graphs to
smoothly move through an environment. The character has changed running direction in order to

travel in the user-requested direction depicted by the red arrow.
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Figure 6.13 An interactively controllable cartwheeling character using parametric motion graphs
to smoothly move through an environment. The character has changed cartwheeling direction in

order to travel in the user-requested direction depicted by the red arrow.

6.2.2.3 Interactive Character Control

My last and most important application allows users to interactively control a character, testing

all of the necessary characteristics of interactive applications (see Section 1.1). To do this, I attach

a function to each node that translates user requests to parameters. For example, for walking and

cartwheeling, I wanted a user to control the travel direction of the character by specifying the

desired travel direction using a joystick. So, I attached a function to each of these nodes that

could compute the angular change between the character’s current direction of travel and desired

direction of travel.

With these translation functions in place, I can again generate motion streams as I did when

generating random graph walks (see Section 6.2.2.1) except that when it is time to choose a pa-

rameter vector from the target bounding box, I query the user’s current request. Then I use the

translation function for the requested node to compute a parameter vector. These parameter values

are adjusted so that they fall within the target bounding box if they were not within bounds already.
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Figure 6.14 An interactively controllable character using parametric motion graphs to smoothly
move through an environment by walking or running. The character has just transitioned from
walking to running, and is now changing his travel direction in order to meet the user-requested

direction depicted by the blue arrow.
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Figure 6.15 An interactively controllable boxing character that uses parametric motion graphs.
The character is punching towards a user-requested target in the top image. In the bottom image,

the character is ducking below a user specified height.

This process has the effect of creating interactive characters that perform requested actions as

accurately as possible without introducing poor transitions between motion clips. By limiting the

transitions to good ones, our characters occasionally miss targets; in these cases, the character still

“reacts” to the target by choosing a good transition that gets closest to meeting the request. For

instance, the boxing character shown in Figure 6.15 occasionally misses its punching target when

the target appears on the periphery of the region in front of his body. This is because it is not

possible to hit the target without producing a bad transition. So, instead, the character will rotate

his body as much as possible and punch near to the target, thus “reacting” to the request but not

quite meeting it.

Using this technique, I have produced:

1. awalkingcharacter whose travel direction can be controlled (see Figure 1.5b).

2. a runningcharacter whose travel direction can be controlled (see Figure 6.12).

3. a cartwheelingcharacter whose travel direction can be controlled (see Figure 6.13). Note

that the cartwheeling character is an interesting one because the character only knows how

to turn to the right. So, when the character is asked to turn to the left, he makes two large

right hand turns. This reaction is not “programmed” into the control structure, instead it

happens naturally because of the way parametric motion graphs work.

4. a character who can eitherrun or walk in a desired travel direction (see Figure 6.14).
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Figure 6.16 An interactively controllable character using parametric motion graphs. The
character has just stepped up onto a platform after sitting down in a chair.

5. a boxingcharacter that is able to change facing direction while “dancing”, punch towards

specified 3D locations, and duck below a specified height (see Figure 6.15).

6. a character that can performeveryday actions- walking or running in a desired direction,

stepping onto and off of platforms, sitting down and standing up from chairs, and leaping

over distances (see Figure 6.16)

6.2.3 Comparison with Fat Graphs

Parametric motion graphs are similar to another method for constructing structured motion

graphs called fat graphs [SO06]. As described in Section 2.2.3, a fat graph is constructed by first

identifying key poses within a motion database that appear many times. These poses are then repre-

sented as “hub” nodes within the graph. The edges represent parametric motion spaces of motions

that can transition from the same two key poses. Like parametric motion graphs, this structure

explicitly combines parametric synthesis with synthesis-by-concatenation methods to produce a

structured representation of motion transitions that can be used efficiently at runtime to accurately

control a human character.
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Figure 6.17 At the transition point between two motions of a character turning towards the right,
the character using a parametric motion graph remains leaning into the turn (as shown in green)
while the character using a fat graph must return to the common transition pose with no lean (as

shown in blue), causing the character to “bob” as it goes around the turn.
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Yet, parametric motion graphs have a number of advantages over fat graphs. Because all mo-

tions representing the same logical action, such as walking or dodging, are explicitly grouped to-

gether, parametric motion graphs provide additional logical structure to the graph. A graph author

can easily see the logical connections between motion types, allowing the graphs to be designed

easily for specific applications.

Parametric motion graphs also represent continuously changing transition points and ranges

within a single type of motion. Like Snap-Together Motion, the technique fat graphs are based

on (see Section 2.2.3), a fat graph must use more than one “hub” node in order to capture some

of this complexity. For instance, in a fat graph representation, a walking parametric motion space

might be divided across three parametric motion spaces in order to avoid transitioning from a sharp

righthand curvature walking motion to a sharp lefthand curvature walking motion: one where the

character is curving a lot towards the right, one where the character is curving a lot towards the

left, and one where the character is curving mostly forward. And even if these motions are grouped

into these three separate parametric motion spaces, each motion within a single parametric motion

space will have exactly the same possible target transition motions. Parametric motion graphs

represent continuously changing transition points using sampling.

Fat graphs are also limited in the quality of their results by the use of “hub” nodes; motions are

constantly forced to return to the same average pose at each transition point. For instance imagine

a character who is walking at a curvature that is very sharp to the right; when that character reaches

the “hub” node, he must transition to the average pose of all of the walking motions represented by

the parametric graph edge, even if the character continues to walk at a curvature that is very sharp

to the right. By forcing motions to return to an average pose at “hub” nodes, motion streams often

exhibit repetitive “bobbing” artifacts, as illustrated in Figure 6.17. On the other hand, parametric

motion graphs handle natural variations in the transition poses of similar motions.

6.2.4 Algorithm Performance

In this section, I describe how parametric motion graphs perform in each of the six categories

described in Section 1.1.
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Node Name Mean Clip Length Min Clip Length Max Clip Length

Walking 1.6s 1.4s 1.8s

Running 1.0s 0.8s 1.1s

Cartwheeling 2.9s 2.5s 3.5s

Stepping Up 1.9s 1.9s 2.0s

Stepping Down 1.9s 1.8s 1.9s

Sitting Down 4.8s 4.3s 5.3s

Standing Up 3.0s 2.9s 3.1s

Jumping 1.5s 1.4s 1.6s

Punching 1.1s 0.5s 1.9s

Ducking 1.6s 1.1s 2.6s

Boxing Dance 0.9s 0.6s 1.1s

Table 6.2 Example motion length information for each parametric motion space. Each line in the
table contains the name of the parametric motion space, the average length of a motion clip in the
parametric motions space, the minimum length of a motion clip in the parametric motion space,

and the maximum length of a motion clip in the parametric motion space.
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Efficient Synthesis The examples in this paper were computed on a laptop computer with a

1.75GHz Pentium M Processor,1GB of RAM, and an ATI Mobility Radeon X300 graphics

card. All of the generated motions were sampled at30Hz. Each of the generated parametric

motion graphs can synthesize and render streams of motion at more than180 frames per

second, consistently. Because I use k-nearest neighbor interpolation and the weighting al-

gorithm presented in Section 6.1.2, synthesis times are nearly independent of the number of

example motions in the database. It should be noted however that computation time is de-

pendent on the number of examples being blended together. Because Kovar and Gleicher’s

method for blending-based parametric synthesis [KG04] limits the number of motions that

can be blended together at each of the sample points in a parametric motion space, this time

is effectively bounded.

Efficient Data Storage Even for my largest graph, it is possible to store the graph’s structure

and edge information in a plain text file requiring less than50KB of space. The storage

required for this graph structure scales linearly withns, or the number of samples from the

source motion space (see Section 6.1.1.2). Thus, it is useful to keepns small. Since it is

unnecessary to densely sample the source nodes, in generalns can remain low; however,ns

scales exponentially in relation to the dimensionality of the space being sampled1. Though,

because blending-based parametric synthesis requires a more densely sampled space, it will

fail due to high-dimensionality well before the limit ofns is met for a parametric motion

graph. In Section 6.3, I will discuss a possible way to alleviate the dimensionality problem

using decoupling methods.

Low Latency or Response TimeIn terms of responsiveness, my method is limited by my ability

to transition between motions only at one point near the end of a clip. Similarly, I do not

adjust the parameter vector while generating a motion. These limitations mean that for

motion spaces that represent long motions, it may take time for the character to react to

1This phenomenon of an exponentially increasing volume caused by adding dimensions to a mathematical space
is a well studied problem in statistics. It is often referred to as thecurse of dimensionality, a term coined by Richard
Bellman [Bel57]
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user requests. This problem can be lessened by choosing parametric motion spaces that

represent short motion clips, as the maximum length of an example clip acts as an upper

bound on the amount of time that the user must wait for a transition to a new motion (see

Table 6.2 for detailed timing information about the length of the example clips used for this

dissertation). Another possible way to improve the response time for some motions is to

use a representation of blending-based parametric motions that is specifically designed for

continuous, parameter vector changes, such as that in [TLP07].

I advocate improving response times for motions that are necessarily longer in natural ways.

For instance, while it may take time for a human to begin accelerating, a gaze cue, such as

those that can be generated using my technique in Chapter 5, can be used to indicate that

the character is about to start moving; a simple change of gaze can easily be perceived as a

response to a motion request.

Accurate Motion Generation and Visual Quality Because the motion clips in a parametric mo-

tion graph are generated using existing blending-based parametric synthesis methods, it is

possible to produce motion clips that are of high-quality and that accurately meet user re-

quests. However, a tradeoff exists between the quality of the transitions produced between

motion clips and the accuracy of those clips. By settingTGOOD to be high, synthesized mo-

tions are more likely to be accurate since the graph edge will allow a much larger range of

transitions, but this might cause the transitions to look less good. For instance, by setting

TGOOD high when building the walking parametric motion graph, it might be possible for

a character to transition from any walking motion to any other, allowing very fast changes

in curvature. The synthesized motion streams would react accurately to each request for a

curvature change as all curvature changes are possible, but the motion would look unrealistic

during the transition. By allowing a user to setTGOOD andTBAD manually, I allow the user

to explicitly manage this tradeoff.

Automated Authoring The process of authoring a parametric motion graph is highly automated.

As described at the beginning of this section, an author must simply choose which existing
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parametric motion spaces to connect together, set the tunable thresholds,TGOOD andTBAD,

for determining the tradeoff between motion quality and accuracy, and decide how many

samples to take from the source and target nodes. It is also possible for my system to identify

all possible links between chosen parametric motion spaces automatically, but in practice,

the information an author supplies about which types of motions can transition to which

other types of motions is invaluable for minimizing the complexity of the graph, allowing

more efficient synthesis of controllable motion streams.

6.3 Discussion

As presented, parametric motion graphs are able to produce seamless, controllable motion

streams in realtime. The authoring process is highly automated, making parametric motion graphs

useful for interactive applications that would not normally have the resources to build the structures

necessary for accurate character control.

While I use the method of Kovar and Gleicher [KG04] to produce parametric motion spaces,

my methods do not require that motions be generated with any particular parametric motion syn-

thesis method. However, parametric motion graphs do require smooth parametric motion spaces

(see Section 3.5); my sampling and interpolation methods depend on nearby motions in parame-

ter space looking similar (see Section 6.1.1). While I have not provided an example, my method

should work just as well using a procedural parametric synthesis method, as long as it produces

smooth motion spaces.

One limitation to the technique in this chapter is that it cannot represent transitions between

two nodes if there is any motion in the source node that cannot transition to the target node (see

Section 6.1.1.2). For example, consider two nodes that represent a person walking at different

curvatures where the first allows a much wider range of curvatures than the other. Because the

extreme motions of the first node do not look like any of the motions in the second node, I will be

unable to create an edge between the nodes.

One possible solution to the problem of building edges between partially compatible nodes is

to dynamically add additional nodes to the graph when large enough continuous pieces of a source



126

node can transition to the target node. This new node would represent the same parametric motion

space as the first except that its range would be limited to the range of parameters that have valid

transitions to the target node. This solution has the drawback of adding greater complexity to the

parametric motion graph, a characteristic that should be avoided in order to facilitate fast decision

making at runtime. But there may be a way to balance the tradeoff between graph complexity and

overall transition representation.

Another extension to this work that could lead to better methods for interactive control is to

develop better local search methods than the greedy one in Section 6.2.2.2. Planning a long motion

that consists of a series of motion clips using a parametric motion graph is at the moment an

unexplored area of research. This lack of planning is in part designed into parametric motion

graphs; the ability to make quick decisions without planning allows the graph to react to changing

user requests efficiently and often. However, in some circumstances, it could be useful to know

how to reach a specific motion outcome within the graph that requires synthesizing multiple motion

clips before the outcome can be reached.

This chapter shows that motions for interactive characters can be designed in an automated way,

allowing fast, accurate, high-fidelity motion generation in realtime. My method gains the benefits

of accurate motion generation using parametric synthesis as well as the ability to make good transi-

tions between clips using a continuous representation of transitions between parameterized spaces

of motion. This technique can decrease the amount of time it takes to author interactive charac-

ters, increase the accuracy and efficiency of these characters at runtime, and provide high-fidelity

motion in a reliable way.
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Chapter 7

Discussion

The problem of synthesizing quality human motion is a difficult one not only because of the

intricacies of the human body but also because humans are good at being able to recognize when

a motion is flawed. For interactive applications, the problem becomes even harder; motions must

necessarily be generated under much tighter processing and storage requirements while at the

same time accurately meeting the ever-changing requests of a user. Example-based methods for

human motion synthesis have aided the goal of producing natural looking, accurate motions; these

techniques use nuanced example motions captured in a motion capture studio to synthesize new

motions that are as nuanced as the originals. However, most of these example-based synthesis

methods are not used in practice due to two drawbacks:

1. the exponentially large number of example motions needed to control many different motion

parameters simultaneously

2. the processing time and latency necessary for synthesizing a stream of controllable motion

This dissertation has addressed both of these problems by decreasing the number of example mo-

tions needed for motion clip synthesis through parameter decoupling and by increasing synthesis

and response time through motion clip organization. Taking a practical approach, I focused on

developing methods for decoupling commonly used motion parameters and automatically con-

structing highly structured control mechanisms for realtime character control. Specifically, I made

the following technical contributions:

1. Runtime Method for Splicing Upper-Body Actions with Locomotion. Chapter 4 in-

troduced a new method for splicing the upper body action of one motion with the lower
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body locomotion of another. Unlike prior techniques for performing upper-body, lower-

body splicing, my method explicitly considers the natural correlations between the upper

and lower body. My approach of using temporal and spatial alignment to retain correlations

produces high-quality results that exhibit physical as well as stylistic characteristics seen in

the original two example motions. And because the method decouples motion parameters,

it considerably reduces the storage requirements for interactive applications that need many

different action/locomotion combinations at runtime. Since upper-body/lower-body splicing

is already commonplace in the video game industry using naı̈ve methods, my technique has

potential to influence real world motion synthesis in interactive applications.

2. Runtime Method for Adjusting the Gaze Direction of a Character. In Chapter 5, I pre-

sented another decoupling method. This method decouples gaze direction from overall body

motion. By basing my method on studies in the biological and psychological sciences, I

have been able to produce a simple, efficient model for human gaze that uses little storage

space and can be easily applied to any base motion at runtime. The ability to control gaze at

runtime in a realistic way not only has the potential to increase the feeling of connectedness

between a character and its environment, but it also has the potential for increasing character

responsiveness through use of subtle gaze cues.

3. Method for Automated Authoring of Parametric Motion Graphs. My method for con-

structing a parametric motion graph as presented in Chapter 6 is highly-automated. The

technique tackles the difficult problem of defining good transitions between entire spaces of

motions using sampling. Without using an automated graph construction method, an author

would be hard pressed to manually define these transitions without carefully hand-tweaking

the motion data itself.

4. Runtime Method for Using Parametric Motion Graphs. Chapter 6 also shows how the

structure of parametric motion graphs makes them a natural mechanism for controlling in-

teractive characters in realtime. The synthesized motion streams exhibit quality transitions

without pauses due to processing. In fact, processing times are extraordinarily quick, even
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using my unoptimized, prototype system. This ability to synthesize controllable motion

streams in realtime for interactive characters makes it possible for even low-budget applica-

tions to explore higher-quality methods for motion synthesis.

With these specific technical contributions, I have shown that example-based motion synthesis

methods can be used to effectively synthesize quality human motion that accurately meets user

requests in an interactive application.

While the methods presented in this dissertation either tackle the problem of motion clip syn-

thesis through decoupling or focus on the problem of motion stream synthesis using highly struc-

tured control mechanisms, these methods could be combined to gain the advantages of both types

of techniques. One possibility with great potential is to use a combination of motion clip synthesis

methods within each node of a parametric motion graph (Chapter 6) in order to decouple motion

parameters during motion clip generation. For instance, one node in a graph might represent all

motions where a person walks at a particular curvature and looks in a particular direction. Inter-

nally, this node could use blending-based parametric synthesis to synthesize a base walking motion

and then use the technique presented in Chapter 5 to layer the gaze direction of the character onto

the base motion. The algorithms presented in this dissertation would not change even though the

clips produced by each node of the parametric motion graph might be synthesized using a layering

of decoupled methods; any smooth parametric motion space can be sampled no matter how the

synthesized motions are produced.

To develop the algorithms presented in this dissertation, I built a custom testbed where motion

clips and motion steams could be synthesized both online and offline. My system allows the

upper-body action of one motion to be spliced onto the lower-body locomotion of another, allows

a parametric gaze map to be applied to any base motion, and supports the interactive control of

virtual human characters using parametric motion graphs. Because of the dependence on example

motions, the effective use of these techniques in real world situations would not only require more

optimized implementations of these algorithms but also tools for analyzing and browsing a motion

database. Additional artist-oriented tools would also need to be developed to allow the authoring

and tweaking of parametric gaze maps (Chapter 5) and parametric motion graphs (Chapter 6).
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The rest of this chapter describes the applications for the methods I have introduced in this

dissertation, the limitations of the overall approach of my work, and some potential directions for

future research related to human motion synthesis for interactive applications.

7.1 Applications

The main focus of my work is on synthesizing human motion for interactive applications. The

industry that often drives technology development in this realm is the video game industry. And

the needs of the video game industry have strongly inspired the algorithms presented in this disser-

tation. My methods and insights have the potential to improve the quality and accuracy of human

motions in a video game. Video games need the ability to decouple upper-body action from lower-

body locomotion and currently fulfill this need using a simple naı̈ve DOF replacement algorithm.

My technique could be used as a direct replacement for these methods in order to improve splices

in next-generation video games. And now gaze control is becoming a part of video games, again

using simple, yet efficient methods that sacrifice motion quality. However, my gaze control model

could be applied at runtime in order to perform more realistic looking gaze adjustments. Finally,

the idea of combining blending-based parametric synthesis and synthesis-by-concatenation using

sampling can increase the accuracy and quality of the motion streams synthesized in modern video

games and greatly reduce the amount of time it takes to author controllable human characters.

My work also applies well to the area of online or offline crowd simulation. Crowd simulation

is also restricted to using efficient methods for motion synthesis because of the sheer number of

motions that must be synthesized. My decoupling methods can be used to efficiently synthesize a

large variation of different motions using the same small set of example motions. And parametric

motion graphs can allow both high-quality random motion synthesis (see Section 6.2.2.1) as well as

motion synthesis that is guided by high-level goals (see Section 6.2.2.2), like those that an agent in

a crowd might be required to meet. Using my techniques, a crowd might exhibit greatly variability

as well as more accurate interactions with the environment.

Finally, my work applies well to synthesizing motions for training simulations that can aid in

preparing workers for their jobs or teaching students about new subjects. The ability to control
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gaze in an interactive application could lend a greater sense of believability to the actors in a

simulation, making it easier to connect the lessons learned with the real world. Furthermore, as

with video games, the ability to divide upper-body action from locomotion can increase flexibility

in the motions that can be mixed-and-matched at runtime. Finally, because of the ease with which

controllable characters can be produced using parametric motion graphs, even low-budget training

simulations can begin to experiment with how motion quality affects the transference of the lessons

being taught within the simulation. The impact of my work on training simulations could be

significant in increasing the realism of these simulations while reducing the time and effort needed

to author believable human characters.

7.2 Limitations

While the work presented in this dissertation meets my goal of increasing the utility of example-

based motion generation methods for interactive applications by supplying insight into techniques

that provide efficiency, low latency, high accuracy, quality, and automated authoring, there are

still limitations. This section describes some of the most important limitations to consider when

applying my approach to real applications.

7.2.1 Data

The effectiveness of any example-based human motion synthesis technique is necessarily tied

to the quality and consistency of the motion database. It is important that capture motions are of

high-quality as example-based techniques make this assumption. Furthermore, example motions

must be captured in such a way as not to exhibit motion variations that are not intended. For

instance, it is easy to capture30 example motions of a person walking at various curvatures; it

is much harder to ensure that the actor does not begin to exhibit subtle motion characteristics

associated with fatigue towards the end of the motion capture shoot. It is usually not desirable to

produce an interactive character that appears “tired” whenever he curves sharply to the right, for

example.
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All of the methods presented in this dissertation assume that the motions being blended or

spliced are compatible with one another. The motions cannot come from two different actors with

drastically different proportions or be mapped to different skeletal hierarchies. Some of the prob-

lems associated with data set compatibility can be overcome using motion retargeting methods, like

those in [Gle98, SLGS01], but these types of techniques cannot address more stylistic compatibil-

ity issues; for instance, it might be possible to splice the upper body of a drunk person walking

with loose joint control and the lower body of another person walking with a rigid, straight-legged

waddle, but these motions are not necessarily compatible with one another.

And, as with many other example-based motion synthesis methods, the techniques presented

in this dissertation depend on having enough example motions to adequately cover all possible

motions that might be synthesized. My techniques are incapable of producing motion that is con-

siderably different from the motions in the database. This includes transitions between motions.

My reliance on linear blend transitioning rather than a more complex method means that I limit the

motions that can be appended together to those that already appear similar. However, the problem

of generating a quality transition between any two motion clips is an open problem that may be

intractable.

7.2.2 Generalization

With the methods presented in this dissertation, I have shown the utility of decoupling and

structure by developing methods that directly address some specific problems in motion synthe-

sis for interactive character control. While these methods illustrate the advantages of my general

approach, the methods themselves do not directly generalize. In particular, the methods for de-

coupling motion parameters during motion synthesis do not provide a method for decoupling any

general parameter from any other.

Furthermore, all of the methods presented are primarily designed for the control of full body

motion. Techniques for better control of facial features or hands, either independent of or in con-

junction with full body motion, are not addressed.
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7.2.3 User Input

While a goal of my work is to automate the process of authoring controllable human characters

for interactive applications, my methods do depend on goals or hints supplied by a user. For

instance, while my technique for building a parametric motion graph automates the process of

constructing transition mappings from one parametric motion space to another, it still depends

on user input to design the global shape of the graph (i.e., which nodes connect to which other

nodes). The process of building an edge between parametric motion spaces also requires that a

user specify a small number of tunable parameters that effectively define the tradeoff between

motion quality and accuracy. Similarly, the automated methods for processing example motions

of a person adjusting their gaze require that a user specify values for several tunable parameters;

these parameters allow the algorithms to be adjusted for different motion capture environments by

depending on the knowledge of the user.

Additionally, all of the methods presented depend on a user to supply the high-level information

about what motion to synthesize. In truth, this ability to supply a high-level goal is the point of

interactive motion synthesis, but in some cases, such as for gaze control, there may be automated

methods that could help identify a plausible goal given the configuration of the environment and

the current motion of the character.

7.3 Future Work

Considering the current trend towards using video games and training simulations to supple-

ment classroom learning and on-the-job training, the need for quality, interactive human motion

synthesis will only grow. And yet, there are still many open problems in the area of human motion

synthesis:

Better Understanding of Human Perception: One area of human motion research that is only

just starting to be explored is the area of human perception. When synthesizing human

motion, techniques often introduce artifacts, such as foot-sliding, knee-popping, and bone-

stretching. The goal of many researchers is to limit the introduced artifacts to ones that are
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not offensive. Yet few papers like [HRvdP04], which studies the perceptual effects of bone-

stretching, have appeared. More work is needed to determine which artifacts humans can

perceive and to what extent. Using careful experimental design, it may be possible to study

the perception of human motion to help inform motion synthesis techniques.

Better Motion Quality Metrics: One important characteristic of a virtual character motion is its

quality. In this dissertation, I have sought to provide only high quality motion synthesis

methods. However, as stated throughout this document, quality is a partially subjective char-

acteristic and there is no standard way to measure motion quality directly. My work focuses

on ensuring only some quality characteristics, such as artifact appearance and continuity.

Yet, in the future, better metrics and processes for measuring the quality of a human mo-

tion could greatly impact not only my own work but also the work of others in the motion

synthesis community.

Better Physical Models: One downside to example-based human motion synthesis is that the mo-

tions generated using these techniques might break some of the laws of physics. Some re-

searchers have begun studying physically based models for motion generation, but these

models fail to recognize the importance of characteristics, such as personality, that a purely

physical approach cannot capture. Future work on ways to combine example-based ap-

proaches with physically based approaches in order to create realistic motions with desirable

physical as well as stylistic properties could have great potential to the interactive application

community.

Motion Browsing: The proliferation of example-based motion synthesis techniques means that

the number of motions in a typical motion database is bound to grow. Large numbers of

motions not only present a problem for motion synthesis techniques, but large number of

motions also make it difficult to browse a motion database. The community is in need of

better ways to present the data in a motion collection so that a human can browse it rapidly.

Solutions to the problem of motion browsing might include better methods for automatically
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identifying motion characteristics as well as better methods for “summarizing” a motion in

a single thumbnail image.

I hope that my work on efficiently generating accurate, quality motion using an example-based

approach will increase the quality and accuracy of human motion in real world applications and

inspire others to develop practical yet quality-oriented algorithms for motion synthesis in interac-

tive applications.
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[SSSE00] A. Scḧodl, R. Szeliski, D. H. Salesin, and I. Essa. Video textures. InProceedings of
ACM SIGGRAPH, pages 489–498, 2000.

[TH00] L. M. Tanco and A. Hilton. Realistic synthesis of novel human movements from a
database of motion capture examples. InProceedings of IEEE Workshop on Human
Motion, 2000.

[TLP07] A. Treuille, Y. Lee, and Z. Popovic. Near-optimal character animation with continu-
ous control. InProceedings of ACM SIGGRAPH, 2007.

[TM04] S. C. L. Terra and R. A. Metoyer. Performance timing for keyframe animation. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, pages 253–258, 2004.

[TSK02] S. TAK, O. SONG, and H. KO. Spacetime sweeping: An interactive dynamic con-
straints solver.Computer Animation, pages 261–270, June 2002.

[WB03] J. Wang and B. Bodenheimer. An evaluation of a cost metric for selecting transi-
tions between motion segments. InProceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2003.

[WDAC06] J. Wang, S. M. Drucker, M. Agrawala, and M. F. Cohen. The cartoon animation filter.
In Proceedings of ACM SIGGRAPH, pages 1169–1173, 2006.

[WH97] D. Wiley and J. Hahn. Interpolation synthesis of articulated figure motion.IEEE
Computer Graphics and Applications, 17(6), 1997.

[WH00] W. Wooten and J. Hodgins. Simulation of leaping, tumbling, landing, and balancing
humans. InProceedings of IEEE International Conference on Robotics and Anima-
tion, 2000.



144

[WP95] A. Witkin and Z. Popovic. Motion warping. InProceedings of ACM SIGGRAPH,
1995.

[YKH04] K. Yamane, J. Kuffner, and J. Hodgins. Synthesizing animations of human manipu-
lation tasks. InProceedings of ACM SIGGRAPH, 2004.

[YLvdP07] K. Yin, K. Loken, and M. van de Panne. Simbicon: Simple biped locomotion control.
In Proceedings of ACM SIGGRAPH, 2007.

[ZH03] V. B. Zordan and N. C. Van Der Horst. Mapping optical motion capture data
to skeletal motion using a physical model. InProceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 245–250, 2003.


