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Structural and functional brain images are playing an important role in helping us understand the changes
associated with neurological disorders such as Alzheimer's disease (AD). Recent efforts have now started
investigating their utility for diagnosis purposes. This line of research has shown promising results where
methods from machine learning (such as Support Vector Machines) have been used to identify AD-related
patterns from images, for use in diagnosing new individual subjects. In this paper, we propose a new
framework for AD classification which makes use of the Linear Program (LP) boosting with novel additional
regularization based on spatial “smoothness” in 3D image coordinate spaces. The algorithm formalizes the
expectation that since the examples for training the classifier are images, the voxels eventually selected for
specifying the decision boundary must constitute spatially contiguous chunks, i.e., “regions” must be
preferred over isolated voxels. This prior belief turns out to be useful for significantly reducing the space of
possible classifiers and leads to substantial benefits in generalization. In our method, the requirement of
spatial contiguity (of selected discriminating voxels) is incorporated within the optimization framework
directly. Other methods have made use of similar biases as a pre- or post-processing step, however, our
model incorporates this emphasis on spatial smoothness directly into the learning step. We report on
extensive evaluations of our algorithm on MR and FDG-PET images from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) dataset, and discuss the relationship of the classification output with the
clinical and cognitive biomarker data available within ADNI.
© 2009 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is an irreversible neurodegenerative
disorder and the leading form of dementia worldwide. Significant
ongoing research is devoted toward establishing clinical biomarkers of
the disease, and for the development of new drugs. A number of
studies have indicated that AD-related neurodegenerative change
begins decades in advance of symptomatic disease (Johnson et al.,
2006; Reiman et al., 1996; Sager et al., 2005; Thompson and
Apostolova, 2007). This suggests that advanced imaging techniques
may be able to provide insights into the early phases of the disease,
long before symptoms of dementia are observable. Studies have
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shown that AD characteristics such as structural atrophy (Jack et al.,
2005; deToledo-Morrell et al., 2004; Thompson et al., 2001) and
impaired metabolism (Hoffman et al., 2000; Matsuda, 2001; Min-
oshima et al., 1994) can be identified (in structural and functional
images) in Mild Cognitive Impaired (MCI) and AD patients, as well as
at-risk individuals (Small et al., 2000). In an effort to utilize such
images in the diagnostic process, a number of groups are focusing on
the development of better diagnostic tools using ideas from machine
learning. Typically, available scans of a cohort of confirmed (or highly
likely) AD cases and control subjects, are exploited as training
examples for a machine learning algorithm. The algorithm seeks to
optimize some statistical discrimination measure corresponding to
the image data (such as specific brain regions) that is most indicative
of whether the subject image is from the AD or control group. The
optimized classifiermay then be used to automatically classify (or give
a confidence score for) images of individual subjects where the
diagnosis is unknown.

The classification of structural/functional brain images using
machine learning techniques has been applied in the context of
osting for AD classification with evaluations on the ADNI dataset,
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specific diseases such as schizophrenia (Shen et al., 2003; Demirci et
al., 2008), Alzheimer's disease (Davatzikos et al., 2008b; Klöppel et al.,
2008; Vemuri et al., 2008; Duchesne et al., 2008; Arimura et al., 2008),
and obsessive–compulsive disorders (Soriano-Mas et al., 2007). In the
remainder of this section, we briefly review several interesting AD
classification focused research efforts, and lay the groundwork for
introducing our contributions. In Fan et al. (2008b,a) and Davatzikos
et al. (2008a,b), Davatzikos and colleagues proposed a pattern
recognition technique for classification using structural Magnetic
Resonance (sMR) scans from the Baltimore Longitudinal Study of
Aging (BLSA) dataset (Shock et al., 1984). Their method used a
segmentation of the images into different tissue types such as gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
regions, followed by a warping that preserved a measure of specific
tissue types. This was followed by a feature selection step2 where
voxels were discarded (or selected) based on their statistical relevance
for classification (Sahiner et al., 2000). The processed data was then
used to train a linear Support Vector Machine (SVM) (Bishop, 2006),
which led to good accuracy on their dataset. Recently, Klöppel et al.
(2008) also used linear SVMs to classify AD subjects from controls. In
addition, they were also successful in separating AD cases from other
types of dementia (Frontal Temporal Lobar Degeneration or FTLD)
using whole-brain images. The authors reported a high level of
accuracy (N90%) on confirmed AD patients, and less where post-
mortem diagnosis was unavailable. Independently, Vemuri et al.
(2008) showed promising evaluations on another dataset obtaining
88–90% classification accuracy (also using linear SVMs). The authors
observed that using all image voxels as features within their
framework was counter-productive, as many of these voxels were in
fact misleading their method into choosing inferior classifiers. To
address these difficulties, the authors employed demographic and
Apolipoprotein E genotype (APOE) data as auxiliary features in their
model and adopted significant pre- (and post-) processing on the
images. For instance, the authors down-sampled the data to
22×27×22 voxels, effectively aggregating many voxels' outputs into
a single voxel at a lower resolution. Then, they discarded voxels with
less than 10% tissue densities in half or more of the images, and finally
used an ROI to remove the cerebellum. Feature selection was
performed by training a linear SVM, and discarding zero-weight
voxels, and then training a second linear SVM on the remaining voxels
as the core learning algorithm. In order to compensate for SVM's
inability to directly consider spatial relationships between voxels, they
pruned the weights from the second SVM by only retaining non-zero
weights in a spatially contiguous 3×3×3 neighborhood around top-
ranked voxels. More recently, related to our work, the methods in Fan
et al. (2008a) and Misra et al. (2008) have been applied to the
Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (http://
www.loni.ucla.edu/ADNI/Data/) (Mueller et al., 2005), consisting of a
large set of Magnetic Resonance (MR) and (18-fluorodeoxyglucose
Positron Emission Tomography) FDG-PET images, giving accuracy
measures similar to those reported in Fan et al. (2008b,a) and
Davatzikos et al. (2008a,b).

A feature of some of the studies discussed above is the important
observation that exploiting the spatial structure of the data can lead to
improvements in accuracy. The spatial structure refers to the fact that
neighboring voxels are related, and the feature vector representation
of the image volumes also inherits this dependency (between its
coordinate values). Note that the techniques in Davatzikos et al.
(2008b), Klöppel et al. (2008) and Vemuri et al. (2008) make use of
this fact, by employing classification models which do not enable
2 If each voxel is considered a “feature”, feature selection involves the estimation of
which features are useful for the problem at hand, and which subset of features can be
safely discarded. Note that this procedure almost always involves loss of information,
and the extent of this loss varies as a function of the specific problem and dataset being
studied.
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direct interaction between spatial information and the choice of a
classifier. That is, the process of choosing a classifier treats spatial
regularization as fixed, and vice versa, meaning that such spatial
properties can only be utilized via pre- (or post-) processing steps.
This typically includes feature reduction or direct manipulation of the
learned classifier itself. This suggests (as also noted in Vemuri et al.
(2008)), that improvements may be possible by designing a
classification model that leverages the spatial information explicitly.
Motivated by this observation, we pursue a unified learning frame-
work better suited to exploit inter-voxel dependency (Singh et al.,
2008), a typical characteristic of learning problems where the input is
in the form of images. Our newmodel uses this additional information
as constraints or priors during the optimization. The calculated
classifier, therefore, does not require post-processing (such as pruning
or redistributing weights) as it is intrinsically aware of the spatial
information. By directly incorporating this prior, our model allows a
more nuanced balance between the need to address accuracy, and the
need to enforce spatial regularity on the learned classifier than is
possiblewhen such priors are applied as pre- or post-processing steps.
We consider the issue of efficacy in detail in Experiments and Results
by an extensive set of experimental results on baseline image scans
from the ADNI data set. We also report on analysis relating the
classifier confidence to approximately twenty different cognitive
biomarker data made available as part of the ADNI Study.

The main contributions of this paper are: (1) we present a new
predictive classification framework based solely on imaging data,
which incorporates spatial regularity priors, which until now have
been utilized in other frameworks by pre- or post-processing steps,
but not included in the learning model explicitly. We present this new
model in Materials and methods; (2) we have conducted exhaustive
experiments on the ADNI dataset which we hope will allow objective
comparisons between classification methods, in a way which closely
matches real-world conditions. We present these results in Experi-
ments and Results, and believe it is a useful addition to a small set of
classification studies and experiments that have been reported on the
ADNI dataset (Fan et al., 2008a); and (3) we have also analyzed
anomalous subjects in the hope of identifying examples of hetero-
geneous AD pathology in the interest of better characterizing them,
that we may improve future iterations of classification methods
developed by various groups, and perhaps even to discover subjects
who are not properly identified as AD or controls by the study. These
results are presented in Analysis of anomalous cases. We conclude the
paper in Conclusion and future directions.

Algorithm

We briefly discuss some characteristics of the problem in the
following section before outlining our proposed algorithm in Boosting
approach and weak classifiers–Classification model.

Problem setting

Consider a learning problem in a computer assisted diagnosis
setting. The learning task is to utilize “training data” (where
confirmed or highly likely diagnosis of the patients into diseased or
healthy classes is given) to learn a classifier to be used for disease
diagnosis. Now, if the data is in the form of images, the first step is to
encode the image as a feature vector. Notice that an image volume of
size 1002×100 in the training set yields a 106-dimensional vectorial
representation. However, the image datasets are in general relatively
small (with at most several hundred images) due to practical
difficulties in volunteer recruitment and associated cost issues. As a
result, our feature space is sparse, and the classification model may
very easily overfit and give poor generalization (Bradley and
Mangasarian, 1998; Mitchell, 1997). One obvious consequence of
this may be that the “learnt” classifier performs well on training data
osting for AD classification with evaluations on the ADNI dataset,
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Fig. 1. Classifying/sorting image volumes in two classes using a single voxel. (a) Output
of the 2000 most significant (voxel specific) weak classifiers using the given GMP data.
Each row corresponds to a single weak classifier's output, individually sorted in non-
decreasing order so that each column corresponds to an image volume in the training
set. The image volumes are ordered differently in each row. Note that this is only the
weak classifier output and does not correspond to ground truth. (b) If given access to
ground truth labels, we can calculate the prediction error. Green regions denote entries
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but poorly on “test” images that we want to classify. This is because
the model learns the examples in the (relatively small) training set,
without learning the underlying distribution (or its regularity
structure). One way to address this issue is to utilize a larger training
set but this may be infeasible in a variety of settings. On the other
hand, if sufficient information about the data is given (e.g., distribu-
tion is Gaussian), we may be able to effectively employ such
knowledge in datasets where such assumptions are valid. Another
common strategy to address the high dimensionality is to explicitly
utilize dimensionality reduction tools such as principal components
analysis (PCA) (Jolliffe, 2002). PCA capitalizes on the spatial distribu-
tion of examples in a high-dimensional space (rather than spatial
information in the 3D coordinate system of the images themselves) to
reduce the dimensionality. PCA works well in many cases but also
makes linearity and Gaussian assumptions (Jolliffe, 2002), and
consequently the ‘signal’ may be attenuated for non-Gaussian datasets.
These ideas and well known results from learning statistical theory
(Bishop, 2006; Mitchell, 1997) suggest that inclusion of effective priors
(introducing bias) to regularize the classification model is a promising
means of improving performance. We will investigate such priors in
the form of the spatial structure of our data, i.e., the fact that feature
vectors in the training set are encodings of images.

Our classification method utilizes “boosting”. Boosting seeks to
boost the accuracy of weak (or base) classifiers—the general idea is to
assign each classifier a weight and evaluate the goodness of their
aggregate response (Freund, 1995; Mitchell, 1997; Schapire, 1990;
Demiriz et al., 2002). The weak classifiers, when considered
individually may have low predictive power. However, the underlying
premise is that if the weak classifiers' errors are uncorrelated, their
combination gives a better approximation of the underlying “signal”.
Linear Programming boosting (LPboosting) is a boosting approach
(Demiriz et al., 2002; Grove and Schuurmans, 1998) where the final
classifier is learnt within a linear optimization framework but with a
soft margin bias. That is, our emphasis is placed on separating the
feature space into two regions (where each region contains either
positively or negatively labeled examples), such that the margin
between the positive and negative regions is maximized. The model
places a 1-norm penalty on the weights, which also has the effect of
reducing many of the weights to zero3. Our model in Classification
model will build upon the LPboosting model with a set of additional
priors. Weak classifiers in our case correspond to individual voxels (or
features), which we discuss in more detail in the next section.

Boosting approach and weak classifiers

Let us denote the set of images in the training set as I={I1, I2,…, In}
with known class labels y={y1, y2,…, yn}, y1∈{+1,−1}. Without loss
of generality, AD-positive patients (and controls) are denoted as −1
(and +1) respectively, and I= IAD∪ IAD where IAD (and IAD) are the
image sets of theAD (and control) groups respectively. The set of image
volumes in I are spatially normalized to a common template space, as a
first step. Therefore, a voxel located at (x, y, z) in one image
“corresponds” to the voxel located at (x, y, z) in other images in I.

The proposed method makes no assumption on a specific imaging
modality. For instance, when utilizing T1-weighted MR scans, the
images are segmented into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF), and probability maps of different tissue types
are generated using standard techniques (Ashburner and Friston, 2000;
Ashburner, 2007; Friston et al., 1996). Either one of these quantities
(voxel intensities) are then used to construct weak classifiers. Our weak
classifier construction is partly motivated by voxel-wise group analysis
methods. Each weak classifier at a voxel (x, y, z) tries to correlate
variation at that voxel with the likelihood of AD diagnosis. Since AD is
3 In linear SVMs, the penalty is on the 2-norm of the weights, which places more
emphasis on the width of the margin, in a Euclidean sense.
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characterized by atrophy in specific brain regions, we should expect
some weak classifiers to be more discriminative than others. Our
algorithmwill seek to automatically select and boost such classifiers. For
notational convenience, in the remainder of this paper we will refer to
voxels using a single index such as i, rather than (x, y, z).

Let us consider a list of the intensities of voxel i of all images in the
training set, I. Now, given the class labels of individual images in the
set, what is a good “thumb rule” if we were to use only this voxel for
classification? Clearly, if this voxel is highly discriminative, the
distribution is likely to be well separated (bi-modal). A threshold
separating the two modes will work well for classifying any yet
unseen test image (and also images in I), if the training set were
sampled i.i.d. from the unknown but fixed underlying distribution. In
general, however, the information from only one voxel will be far from
the ideal setting above. Nonetheless, the labels on the training data
can be used to determine a threshold. The classification induced by the
threshold is the response of the weak classifier. Note that such a
threshold maymisclassify all examples in the regionwhere the modes
overlap. Fig. 2 shows that the weak classifiers give more incorrect
where the sign of the weak classifier was correct, red and blue indicate false positive
and false negative respectively. The prominent regions of misclassification suggest that
individual weak classifiers are not very accurate. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

osting for AD classification with evaluations on the ADNI dataset,
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outputs near the threshold, where there is more overlap between the
modes, though they are also prone to errors even in the “safer” regions
where their outputs have greater confidence. While such a predictor
may be rather poor for many voxels, fortunately, we only require
better accuracy (N50% when there are two groups), and only on a
subset of voxels.

The responses of the weak classifiers will populate a matrix, H of
size m×n, where m is the number of images and n is the number of
classifiers (or voxels). We adopt a “soft” thresholding approach, i.e.,
the response of the weak classifier assigns a confidence score to the
classification for each image rather than explicitly classifying it in
either group. We use a logistic sigmoid function with a variable
‘steepness’ parameter ρ, and adjust the range to be [−1, +1]. We first
chose a voxel specific threshold, τi, so that the response is negative (or
positive) if less than (or greater than) the threshold. The τi value is
calculated as the midpoint between the gray matter probability (or
voxel intensity) means at voxel i for the IAD and ICN groups. Because a
decline in GMP represents gray matter atrophy, a clinically consistent
assumption here is that the control group mean, μCN(i) is greater than
the AD group mean μAD(i) (Fox and Schott, 2004). Our choice of an
adjusted logistic sigmoid curve is based on the fact that its first
derivative closely approximates the Gaussian distribution, and
conversely the value of the sigmoid (before adjustment) corresponds
to the area under the Gaussian density function up to that point. This
means that while the weak classifiers do not output actual
probabilities, the level of confidence is related to the probability of
class membership.

Let Hij be the output of a weak classifier i (a certain voxel or
feature) on image j.

Hij =
2

1 + exp τi − ρ · Ij ið Þ
� � − 1

where ρ is the “steepness” parameter, Ij (i) is the GMP at voxel i in
image Ij∈ I, and the threshold is given as τi=(μCN (i)−μAD (i))/2. We
illustrate the observed steepness as a function of ρ in Fig. 3.

Spatial constraints

A characteristic of the problem, as discussed in Problem setting is
that the feature vectors are representations of image data. This results
in a certain dependency between the feature vector coordinates, and
also the weak classifiers, see Fig. 3. This property of the data can be
Fig. 2. Weak classifier outputs as a function of ρ values.
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leveraged to introduce a bias (or prior) in the classification which has
an advantage of constraining the complexity (expressiveness or
degree of freedom) of possible classifiers, encouraging better general-
ization. The classifier consists of a set of weights on weak classifier
outputs to define a separating hyperplane. We enforce spatial
regularity by requiring that the weights assigned to neighboring
weak classifiers should be similar. Such a spatial regularizer also has
the benefit that it avoids selecting individual spatially isolated voxels.
Rather, it prefers spatially localized ‘regions’—a desirable character-
istic since isolated voxels are seldom clinically relevant, and markers
of AD, if observable in the image, must be spatially localized.

Classification model

Our final optimization model is given as

min
w;ni ;tjk

wT p̃+ C
P
i

ni + D
P

jfk
tjk

s:t: yiw
THi + niz1 8i

wj − wk − tjkV0 8jfk
wk − wj − tjkV0 8jfk:

ð1Þ

The vectorw defines a separating hyperplane, and the termwTHi is
the projection of example i onto the vector normal to the hyperplane.
The sign of this quantity determines the side of the hyperplane onto
which example i falls (this is zero for points on the decision
boundary). The term given by the product of wTHi and by yi (the
given class label of example i: {+1,−1}) imposes a lower bound of +
1 on the examples. For cases where the data are not linearly separable,
a set of “slack variables” ξi are used to compensate for incorrectly
classified examples. The penalty on the slack variables (second term in
objective) ensures that the hyperplane will be chosen so that it
correctly classifies as many examples as possible. The 1-norm penalty
on weights w used here has the effect of selecting a sparse set of the
most discriminative voxels. This allows for an easier clinical
interpretation as the output consists of only a few but highly
discriminative (highly weighted) localized regions, and serves a
feature selection purpose (Bradley and Mangasarian, 1998; Fung and
Mangasarian, 2004; Gaul and Ritter, 2000), in many applications. The
vector, p̃, represents the training set error rate of every weak classifier
(first term in objective). By adjusting the penalty on each weight wj

relative to its training set error rate, we allow weak classifiers with
greater accuracy to be given slightly greater weight. The auxiliary
variables tjk represent the absolute difference between weights on
neighboring voxels j and k (indicated as i∼ j). These variables are
similarly penalized, which leads the optimizer to choose a separating
hyperplane whose weights correspond to a set of spatially coherent
voxels. Note that if t=|w| then t≥w and t≥−w must both hold
simultaneously. Thus, tjk=|wj−wk|. The parameter C controls the
amount of emphasis placed on training set accuracy relative to margin
width. The emphasis on spatial regularity is similarly controlled by D.
The model benefits from a good choice of regularizers, C and D. In
Model (1) above, we observed that in practice DN10·C is a reasonable
choice to sufficiently enforce the neighborhood constraints. We also
observed that despite the 1-norm penalty, in practice a feature
selection step is still necessary, for computational reasons, as well as
tomitigate the possibility of over-fitting. In our experimentswe used a
very simple t-test on each voxel (using only training examples,) and
selected the top 1% most significant voxels. However, more sophis-
ticated methods can be utilized if desired and will likely further
improve the empirical performance of the system.

Finally, we note that the linear program in (1) can be optimally
solved efficiently in polynomial time. Once the solution is obtained,
the weights w can be interpreted as the coefficients of a separating
hyperplane in the feature space. We use this hyperplane directly as
our classifier, and no additional post-processing is required.
osting for AD classification with evaluations on the ADNI dataset,
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Materials and methods

Data set

Data used in the evaluations of our algorithmwere taken from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.
loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public–private partnership. The primary goal of
the ADNI has been to test whether serial magnetic resonance imaging
(MRI), Positron Emission Tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer's disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials.
The Principal Investigator of this initiative is Michael W. Weiner, M.D.,
VA Medical Center and University of California, San Francisco. ADNI is
the result of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Canada. The
initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to
participate in the research—approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people with MCI to be
followed for 3 years, and 200 people with early AD to be followed for
2 years.

The baseline data used here includes:

(1) T1-weightedMagnetic Resonance (MR) images: using both gray
matter and white matter probability maps (for classification).

(2) 18-fluorodeoxyglucose Positron Emission Tomography (FDG-
PET) images (for classification).

(3) Cognitive and neuropsychological biomarker data (only used to
demonstrate that the classification confidence is correlated
with known relevant biomarkers, and is not used in
classification.)

Our experimental evaluations utilized a portion of the ADNI
database. T1-weighted MPRAGE image data for 183 ADNI participants
(112males, 71 females) were available having gradwarp correction for
spatial distortion due to gradient nonlinearity, B0 correction for B0
inhomogeneity, and non-parametric non-uniform intensity normal-
ization. These image data were downloaded by June 2008. Of these
subjects, 149 individuals (88 males, 61 females) also had FDG-PET
scans available.

Of the 183 subjects in the MR population, neuropsychological test
scores were available for 182 subjects, and semi-automatically
derived brain region volumes from the Anders Dale Lab at UCSD
were available for 126 subjects. We will refer to this as UCSD.
Similarly derived hippocampus volumes from Colin Studholme at
UCSF were also available for 135 subjects. We will refer to this as
UCSF. A summary of demographic and neuropsychological data are
presented in Table 1.
Table 1
Study population demographics.

Controls (mean) Controls (s.d.) AD (mean) AD (s.d.)

Age 75.81 4.46 76.11 6.99
Gender(M/F) 59/35 – 53/36 –

MMSE 29.01 0.78 21.71 3.04
ADAS 10.14 4.26 32.32 9.10

Demographic and neuropsychological characteristics of the study population. The FDG-
PET population is a subset of this population.
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Preliminary data processing

Image processing of the T1weighted images was performed using
voxel-based morphometry (VBM) toolbox in Statistical Parametric
Mapping software (SPM, http://www.fil.ion.ucl.ac.uk/spm). Segmen-
tation in SPM employs a unified approach, combining: segmentation
of the original anatomical images into gray matter (GM), white
matter, and cerebrospinal fluid images; normalization (12-parameter
affine transformation and non-linear deformation with a warp
frequency cutoff of 25) of the segmented images to the Montreal
Neurological Institute template (MNI); and bias correction, in one
iterative process. A modulation step was also employed, which scales
the final GM images by the amount of contraction required towarp the
images to the template. The final result is GM volume maps for each
participant, where the total amount of GM remains the same as in the
original images. Finally, the normalizedmapswere smoothed using an
8-mm isotropic Gaussian kernel to optimize signal to noise and
facilitate comparison across participants. Analysis of gray matter
volume employed an absolute threshold masking of 0.1 to minimize
the inclusion of the white matter in analysis.

Experiments and results

We validated our algorithm using ADNI data as described in §3, and
present an analysis of its performance characteristics here. Our
evaluations with the ADNI image data were performed using leave-
many-out cross-validation, as described in detail in Breiman (1996).
Briefly, the leave-many-out scheme is a generalization of leave-one-
out cross-validation.While in the leave-one-out scheme each example
is held aside and classified by a model trained on the remaining
examples, in the leave-many-out setting the test sets consist of more
than one example. In our experiments we used test sets (or folds) of
size two. One advantage of leave-many-out cross-validation in our
application is that it requires fewer folds (offering computational and
other advantages (Breiman, 1996)); the size of the training set in each
fold is not much different from leave-one-out (where the test sets
sizes were a small constant). For each fold, a feature selection stepwas
performed in which a t-test was used to choose the top 1% voxels
having themost significant group differences among the training data.
This led to some “orphan” voxels (i.e., voxels with no neighbors in the
chosen set) which were also discarded. Classification accuracy was
then averaged across all folds.

We first cover our results on the T1-weighted MR images, before
moving to accuracy evaluations with FDG-PET image data in FDG-PET
image data. We then discuss the relation between the classification
confidence and various biomarkers in Relationship with cognitive
biomarkers and semi-automatically traced brain region volumes.
Finally, we describe our solution to several implementation issues in
our experiments.

MR image data

In these experiments we used only the gray matter probability
maps (GMPs). We also used GMPs together with the white matter
probability maps (WMPs) for training and classification, however
this did not yield any significant improvements. The classification
accuracy was determined by calculating the number of ‘test’ images
on which the classifier's class prediction (AD or CN) was incorrect;
we report on the mean of these errors for both the above mentioned
cases. The classification accuracy of the model using GMPs was 82%,
and the sensitivity (and specificity) was 85% (and 80%). In order to
verify that the neighbor constraints are indeed having the desired
effect we re-ran the experiments with D, the parameter controlling
the cost associated with the neighbor constraints, to 0. This has the
effect of removing the spatial augmentation of our method. In
addition to causing a deterioration in accuracy, the number of non-
osting for AD classification with evaluations on the ADNI dataset,
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Table 2
Experimental results.

Data set Spatial
augmentation

Accuracy Sensitivity Specificity Area
under ROC

GMP Y 82% 85% 80% 0.8789
GMP N 77% 76% 76% 0.8350
FDG-PET Y 84% 84% 82% 0.8716

Results of classification experiments on ADNI image data. One set of experiments were
conducted with Gray Matter Probabilities (GMP) derived from T1-weighted MR images
as input. The other set of experiments were conducted with FDG-PET images.

Fig. 4. (a) Classifier's output for test images on the MR population. (b) ROC curves on
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zero voxel weights returned by the algorithm dropped significantly,
demonstrating the effect that the augmentation has on the
algorithm. The results are summarized in Table 2, and suggest that
the proposed technique works well for the AD classification task
using MR image data.

Recall that in addition to a class label for the test images, the
algorithm may be asked to report a classification confidence for
each case (i.e., prediction); the summary of these results are shown
in Fig. 4. In Fig. 4(a) we see that the classifier output on AD cases is
concentrated between 0 (closest to the classification boundary) and
−3 (farthest from the classification boundary), but the model
incorrectly classifies some cases (which account for the misclassi-
fications in the accuracy reported in Table 2 below). Classification
confidence can also be used to generate Receiver Operating
Characteristic (ROC) curves, in which the True Positive Rate (TPR)
(sensitivity) is plotted as a function of the False Positive Rate (FPR),
(1-specificity). Here, “positive” refers to AD subjects. The points in
this plot are generated by setting different thresholds at which the
classifier predicts that the subject has AD. That is, the confidence of
every subject is used as a threshold, and all subjects with
confidence higher than that threshold are classified as AD, and a
TPR/FPR point is calculated from this, resulting in the curve shown
in Fig. 4(b). The area under the curve (AUC) of 0.8789 suggests a
good predictive accuracy.

An important component of our experiments was to evaluate the
relative importance of various brain regions in terms of specifying a
good classifier, and whether these regions are consistent with
Fig. 3. Spatial relationships (neighborhood) in the original image space are inherited as
pair-wise relations in the feature vector.

the MR population.

Please cite this article as: Hinrichs, C., et al., Spatially augmented LPbo
NeuroImage (2009), doi:10.1016/j.neuroimage.2009.05.056
clinically accepted distribution of AD-specific pathology. Fig. 5
shows our results for the entire MR population. We see that the
selected voxels (or weak classifiers) are concentrated in the
hippocampus and parahippocampal gyri, but that there are also
some voxels in the medial temporal lobe bilaterally, and scattered in
other regions. We find these results encouraging because the
selected regions are all known to be affected in AD patients (Braak
et al., 1993).

FDG-PET image data

We applied our algorithm to the FDG-PET scans from the ADNI
dataset as well. In all, there were 149 subjects in the MR population
who also had FDG-PET scans. We call this group the FDG-PET
population. Our method obtained 80% classification accuracy on the
FDG-PET population, The specificity was 78%, and the sensitivity was
78%, while the area under the ROC curve was 0.8781 as shown in
Table 2. With the spatial constraints removed by setting the D
parameter to 0, the number of non-zero weights dropped signifi-
cantly as it did for GMP data; with the spatial constraints the
algorithm typically chose between 150 and 500 non-zero voxels on
FDG-PET data. Removing the spatial augmentation did not have a
significant effect on accuracy. Because FDG-PET data is highly smooth
to begin with, we do not expect a significant gain in generalization
osting for AD classification with evaluations on the ADNI dataset,
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Fig. 5. Brain regions selected when using GMPs derived from MR scans as input. Numerical scale corresponds to each voxel's weight in the classifier, and has no applicable units.
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Fig. 6. (a) Classifier's output for test images in the FDG-PET population (149 subjects
overall). (b) ROC curves on the FDG-PET population.
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performance through the use of spatial constraints. Because the level
of accuracy was not significantly different, we do not present the
results of these experiments.

Fig. 6(a) shows the output of our classifier on the 149 subjects of
the FDG-PET population. Similar to the MR population, most of the AD
Fig. 7. Brain regions selected when using FDG-PET scans as input. Numerical scale correspo
indicate greater weight. (For interpretation of the references to colour in this figure legend

Please cite this article as: Hinrichs, C., et al., Spatially augmented LPbo
NeuroImage (2009), doi:10.1016/j.neuroimage.2009.05.056
subjects are concentrated between −1 and −2 (and similarly the CN
subjects are concentrated between 1 and 2), while some subjects were
misclassified. Again, the area under the ROC curve in Fig. 6(b) is an
indication of the high accuracy of this method.

We also evaluated the brain regions selected by our algorithm in
the experiments utilizing FDG-PET scans in terms of their relevance to
AD-specific pathology. From Fig. 7 we can see that the posterior
cingulate cortex and bilateral parietal lobules are well represented, as
well as the left inferior temporal lobe. These regions are known to
have well established associations with AD-related neurophysiologi-
cal changes. These results illustrate that the algorithm is able to
reliably determine clinically relevant regions in different scanning
modalities.

Relationship with cognitive biomarkers and semi-automatically
traced brain region volumes

Clinical diagnosis of AD depends on various cognitive test results,
such as theMini-Mental State Exam (MMSE). It is reasonable to expect
that the output of an effective classification algorithm will agree with
these cognitive and clinical measures. We present results showing
that our algorithm exhibits these desirable characteristics. The
biomarkers available are divided into two broad categories: neurop-
sychological battery scores and hand-traced brain region volumes. As
expected, the classification confidence of the algorithm on the MR
population displays a strong statistical correlation with many of these
biomarkers, as shown in Fig. 8. Most of the image-based correlation
indices are above 0.5 (in absolute value). In Fig. 8(b) we see that the
MMSE scores (a measure of global cognitive status) are tightly
correlated with the classification confidence of our algorithm.

Implementation issues

Our proposed algorithmwas implemented in Matlab, using CPLEX
as the linear program solver for (1). The parameters C and D in (1)
were chosen to be 100 and 1000 respectively, and ρ was set to 20, see
Fig. 1(a). In practice, we observed that when the parameter D, in (1) is
set to 0 (removing the neighbor constraints), then irrespective of the
variations introduced in the other parameters, the algorithm always
chooses between 5 and 25 voxels (non-zero weights), and gives
inferior accuracy. However, when D is set to a reasonable non-zero
value depending on the smoothness of the data (e.g. FDG-PET data is
far more regular than unsmoothed GMPs) the number of voxels
selected varies between 150 to a few thousand. In most cases, a choice
of D as described above leads to a 4% increase in classification
accuracy. The 1-norm penalty in (1) was scaled (adjusted) using the
nds to each voxel's weight in the classifier, and has no applicable units. Lighter colors
, the reader is referred to the web version of this article.)

osting for AD classification with evaluations on the ADNI dataset,
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4 Units are mm3.

Fig. 8. (a) Statistical correlation between each of the biomarker outputs and the
algorithm's output in the MR population. Note that both the UCSD and UCSF
hippocampal volumes are in close agreement with our method. (b) Classifier's output
as a function of MMSE score for each subject in the MR population. A linear best-fit
approximation is shown. Note that MMSE scores alone are nearly sufficient to decide
the clinical diagnosis for the ADNI cohort, and in fact is a major criterion for the
diagnosis of AD.
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p-values for each corresponding voxel. Neighboring constraints were
not introduced between neighboring weak classifiers where their
training set accuracy varied significantly, leaving several ‘orphan’
weak classifiers (i.e., those which do not participate in any neighbor-
ing constraints); such orphan voxels were discarded. As stated earlier,
for computational reasons, we limited the number of weak classifiers
by calculating t-test p-values for each voxel, and discarding all but the
most significant ones. We found that using the top 1% of weak
classifiers worked well in practice. The running time of the algorithm
was 15 s to 60 s for each fold on a modern workstation (2.33 GHz
quad-core Xeon). While the implementation is not optimized for
speed or memory usage, the computation utilizes no more than 3 GB
RAM on our dataset of about 180 volumes of size 91×109×91. No
resampling was needed. The paper has a companion website (http://
pages.cs.wisc.edu/hinrichs/spLPBoost) where the code and other
supplemental information has been made freely available for use
in other studies and to facilitate objective comparison of different
techniques.
Please cite this article as: Hinrichs, C., et al., Spatially augmented LPbo
NeuroImage (2009), doi:10.1016/j.neuroimage.2009.05.056
Analysis of anomalous cases

In addition to the classification experiments described above, we
performed a post-hoc analysis on the images, in an effort to control or
identify possible outliers. This analysis revealed that a subset of the
images strongly resembled the opposite class, i.e., some AD subjects
resembled controls, while some controls resembled AD subjects. We
briefly discuss these results next. For convenience, we refer to this
smaller subset of anomalous images as group II, while group I refers to
the remaining images not included in group II. That is, group I
represents the more homogeneous cases, while group II is comprised
of anomalous cases.

Rationale

It is well known that AD-related neurodegenerative pathology is
heterogeneous (Thompson et al., 2001). In addition, while the ADNI
dataset is based on the most rigorous quality control protocol possible
barring access to gold standard diagnostics such as biopsy or post-
mortem analysis, there is some expectation that subjects will be
misclassified. This may be because of the difficulty in distinguishing AD
from other types of dementia such as Frontotemporal Lobar Dementia
(FTLD) or Lewy bodies (Klöppel et al., 2008). Further confounding the
situation is the possibility of comorbidity of AD with other neurode-
generative and neurovascular diseases such as stroke or multi-infarcts.

Identification of possible outlying data

The criterion we used in order to find this group was based on
the extent to which the gray matter levels over the whole brain
seemed to contradict the clinical label given each subject, i.e., AD or
CN. In order to do this, we chose the 2000 most significant voxels in
terms of p-values derived from a t-test, and examined the weak
classifier predictive outputs on those voxels. These outputs are
shown in Fig. 9(a). Each column corresponds to a single example,
and each row to a single weak classifier. The columns, i.e. subjects,
are ordered from those having the most false negatives at the left, to
those having the most false positives at the right. The color
indicates the degree of incorrectness, which is shown in Fig. 9(b),
with blue indicating false negative, green correct response, and red
false positive, respectively. We can clearly see that there are two
“bars” at either end, consisting of subjects which are given the
wrong label by nearly the entire set of weak classifiers. Subjects for
which more than 65% of the weak classifiers gave incorrect outputs
were placed in group II (note that this closely matched the “bars” in
Fig. 9(a)). This gave 10 controls, and 13 AD subjects. Fig. 9(b) shows
the percentage of weak classifiers giving incorrect outputs on each
subject. Our labeling of anomalous subjects in this manner is not
simply an artifact of our weak classifiers, but reveals a systemic
pattern of deviation from the mean in each group. Evidence from
hippocampus volume measures yields a similar labeling. That is, the
set of subjects more than one standard deviation away from the
group mean (of hippocampal volume), is almost identical to the set
of examples placed in group II as above.

Characteristics of group II controls

We found that in several respects the group II controls were very
similar to group I AD subjects.

• Our first observation was that group II controls had significantly
less total brain volume, even relative to group I AD subjects:
8.8×105 (group II CN)4 compared to 1.02×106 (group I CN) and
9.48×105 (group I AD) with p-valuesb10−9.
osting for AD classification with evaluations on the ADNI dataset,
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Fig. 9. (a) Weak classifier outputs for the 183 members of the MR population. Each
column corresponds to an individual subject, and each row corresponds to one of the
2000 selected voxels; columns are ordered by the number of weak classifiers giving
incorrect outputs. Color indicates type and degree of incorrectness; blue corresponds to
false negative, red to false positive, and green indicates correct response. Note the sharp
boundaries between the red and blue bands at either end—these are the members of
group II. (b) Percentage of weak classifiers giving incorrect responses for the same
subjects. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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• All regions (where manual tracings are provided in the ADNI
dataset) were significantly smaller in group II controls compared
to group I controls (p-valuesb10−3). Regional volumes for group
II controls were closer to the respective measures from group I
AD subjects.
Table 3
Biomarkers significantly differing between AD subjects in groups I and II.

Biomarker (AD subjects) Group I

Mini-Mental State Exam (MMSE) 21.5 (3.04)
Tau-protein 111.94 (51.77)
Logical memory- immediate recall 3.13 (2.18)
Logical memory- delayed recall 0.48 (0.8)
Boston naming- spontaneous correct responses 19.69 (6.95)
Audio visual 1.1 (1.08)
Brain volume (UCSD) 948005.03 (84947.0
L. Hippocampal volume (UCSD) 2706.69 (382.98)
R. Hippocampal volume (UCSD) 2813.38 (432.2)
L. Entorhinal cortex volume (UCSD) 2.44 (0.46)
R. Entorhinal cortex volume (UCSD) 2.50 (0.46)
L. Hippocampal volume (UCSF) 1518.45 (246.11)
R. Hippocampal volume (UCSF) 1498.39 (334.53)

Comparison of relevant biomarkers in group I AD and group II AD. MMSE is included for refer
0.05 level.

Please cite this article as: Hinrichs, C., et al., Spatially augmented LPbo
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• The ventricles in group II controls were not significantly smaller
than controls in group I, which indicate that the above variations
cannot be attributed to smaller brain sizes alone (and suggest
possible atrophy).

• The hippocampal volume measures showed even larger varia-
tions in controls between groups I and II.

• Our VBM analysis between group II controls and group I AD
subjects gave no discriminating regions and only isolated voxels.

• VBM analysis also revealed a significant gray matter density
deterioration (p-valuesb10−6) in the hippocampus and para-
hippocampal gyri for group II controls, when compared to
controls in group I.

Characteristics of group II AD subjects

AD subjects in group II similarly resembled group I controls.

• The mean total brain volume of group II AD subjects was almost
identical to that of group I controls (≈1.02×106 in both groups).
By comparison, the mean total brain volume of group I AD
subjects was 9.48×105.

• In the hippocampus and entorhinal cortex the mean volume
among group II AD subjects was nearly the same as that of group
I controls: 7159.93 (UCSD) in group II AD subjects versus 7390.93
(UCSD) in group I controls for the hippocampus. By comparison,
the same measures were 5520.07 (UCSD) in group I AD subjects.
The mean entorhinal cortex volumes had a similar proportion.

• Our VBM analysis showed greater gray matter densities in the
hippocampus for group II AD subjects compared to group I AD
and hypertrophy in the thalamus relative to group I controls.

Cognitive status

While the image-based biomarkers showed significant variations
between groups I and II, the associated cognitive status and
neuropsychological scores (e.g., MMSE) were relatively consistent.
This is not surprising because cognitive status, especially the MMSE
score, is highly relevant to clinical diagnosis. However, group II AD
subjects did show significant group differences in tests measuring
logical memory—both immediate and delayed recall, number of
spontaneous correct responses given on the Boston Naming Test,
and audio visual tests. In all of these, group II AD subjects scored
higher indicating slightly healthier cognitive status (consistent with
lower observed atrophy in the preceding discussion). Of these, the
delayed recall was themost significantly different (p-value≈0). There
was no significant difference between the performance of group I and
group II controls on any measure of cognitive status. Summaries of
biomarkers significantly differing between both groups I and II are
presented in Tables 3 and 4 in the Appendix.
Group II Z-test p-value

22.94 (2.84) 0.08
151.88 (88.34) 0.0147
4.91 (3.338) ∼10−3

3.13 (2.54) ∼10−16

25.49 (4.70) ∼10−3

1.99 (2.15) 0.0374
7) 1025001.3 (79868.99) ∼10−3

3446.61 (573.23) ∼10−10

3713.32 (368.21) ∼10−12

3.03 (0.36) ∼10−5

3.18 (0.42) ∼10−7

1996.95 (426.44) ∼10−10

2163.35 (341.04) ∼10−14

ence; all other biomarkers listed are significantly different between groups at at least the

osting for AD classification with evaluations on the ADNI dataset,

http://dx.doi.org/10.1016/j.neuroimage.2009.05.056


Table 4
Biomarkers significantly differing between controls in groups I and II.

Biomarker (CN subjects) Group I Group II Z-test p-value

9 Mini-Mental State Exam (MMSE) 28.98 (0.8) 29.19 (0.69) 0.33
Ventricles volume (UCSD) 38788.18 (23264.37) 40085.85 (13514.94) 0.84
Brain volume (UCSD) 1023746.53 (86217.87) 880452.33 (75572.03) ∼10−9

L. Hippocampal volume (UCSD) 3599.87 (383.32) 3116.90 (301.58) ∼10−5

R. Hippocampal volume (UCSD) 3791.06 (422.58) 3159.28 (359.84) ∼10−7

L. Mid temporal volume (UCSD) 2.58 (0.17) 2.45 (0.12) ∼10−3

R. Mid temporal volume (UCSD) 2.6 (0.20) 2.48 (0.21) 0.0454
L. Inf. temporal volume (UCSD) 2.64 (0.15) 2.49 (0.14) ∼10−4

R. Inf. temporal volume (UCSD) 2.60 (0.19) 2.47 (0.25) ∼10−2

L. Fusiform volume (UCSD) 2.39 (0.17) 2.25 (0.16) ∼10−3

R. Fusiform volume (UCSD) 2.36 (0.17) 2.25 (0.18) ∼10−2

L. Entorhinal cortex volume (UCSD) 3.19 (0.30) 2.86 (0.36) ∼10−4

R. Entorhinal cortex volume (UCSD) 3.34 (0.32) 3.02 (0.51) ∼10−4

L. Hippocampal volume (UCSF) 2126.69 (267.67) 1795.54 (208.3) ∼10−5

R. Hippocampal volume (UCSF) 2176.57 (275.65) 1781.65 (252.45) ∼10−7

Comparison of relevant biomarkers in group I CN and group II CN. MMSE is included for reference; all other biomarkers listed are significantly different between groups at at least the
0.05 level.
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Summary

It is important to note that confirmed diagnosis of AD is only
possible post-mortem. Given the clinical nature of the ADNI data set, it
is possible that some AD subjects in the cohort may have another form
of dementia or possibly depression, while some controls may have AD
in the early stages, and have not yet begun showing signs of cognitive
decline. The classification algorithm, however, assumes that every
label in the training data is correct, and therefore tries to correctly
classify every training example. In the presence of incorrectly labeled
examples, however, it is difficult for a method to have a lower
expected error rate than the fraction of mislabeled examples in the
training set. Clearly, if our data set contains mislabeled examples
(Wade et al., 1987; Schofield et al., 1995; Burns et al., 1990), an
automated method may not be able to outperform this limitation. An
interesting question then is, can we detect subjects with signs of
abnormality? Characterizing this set will be useful for not only
improving the accuracy of classification systems evaluated on this
dataset, but may also suggest ways that the classifier can be modified
to automatically handle them. Our analysis above, and evaluations of
classifier's performancewith/without group II have the potential to be
a useful first step in discoveringmislabeled subjects that may not have
been identified by the study's strict quality control protocols.

Conclusions and future directions

We have demonstrated a new algorithm for automated AD
classification of the level of single subjects using either structural or
functional image scans. Our technique directly incorporates spatial
relationships between voxels into the learning framework, and
requires no extra modality-dependent pre- or post-processing. We
have shown extensive evaluations on the ADNI dataset. Since results
from several other existing techniques were reported on different
datasets with different sample sizes, we believe that our results and
software will enable objective comparisons of different methods to
evaluate their advantages and disadvantages in context of this large
and well characterized image data. Such comprehensive evaluations
will likely lead to standardization and development of improved
classification systems for AD diagnosis.
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Appendix

Supplementary material related to the discussion in Analysis of
anomalous cases: comparison of various biomarkers between group I
and group II. AD subjects are treated separately from CN subjects. Only
biomarkers showing significant variation are included here.
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