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Abstract

An emphasis in ongoing Alzheimer’s Disease (AD) research is identifying biomarkers

which best predict future cognitive decline, especially at the earliest stages of disease

progression. Ultimately, it is hoped that these biomarkers can serve as early markers for

diagnosis, but in a more immediate time frame the can be used for selection of subjects

into clinical trials. Recent results suggest that the identification of such discriminative

biomarkers is possible by adapting machine learning methods for this problem: but

studies have primarily used modalities in isolation so far. The sensitivity/specificity

offered by these methods is as yet unsatisfactory for more clinically relevant questions,

especially: which Mild Cognitive Impairment (MCI) patients will convert to AD?

Answering such questions requires new methods that leverage all data sources (e.g.,

imaging modalities, CSF measures) in conjunction. A significant portion of this thesis

is devoted to demonstrating that significant improvements in sensitivity and specificity

for discriminating AD, MCI, and healthy controls at the level of individual subjects

are possible by making use of multiple modalities (together with longitudinal data)

simultaneously. This thesis focuses on showing how data from multiple biomarkers

should be optimally aggregated to best predict future cognitive decline, using specially

developed variants of Multiple Kernel Learning (MKL); how these models can improve

sample size estimates in clinical trials for AD; and perhaps even redefine the central

question under consideration in clinical trials by using customized outcomes for

evaluating new treatment procedures.

This dissertaion presents new algorithms for a) introducing inductive biases into

existing machine learning methods which are designed to fully capture and exploit

the structure of the image data; b) combining various imaging modalities into a

single multi-kernel predictive model via robust learning loss functions, and quadratic

regularizers based on modality-modality interactions; c) using the above frameworks to

derive sensitive custom measures of disease progressiong from medical neuroimaging

data for use in clinical trials. I present extensive empirical evaluations and theoretical

evidence that illustrate how tailor-made machine learning algorithms can transform

neuroimaging analysis and clinical trials.



1

Chapter 1

Introduction

1.1 Motivation and Context

Recent decades have seen a remarkable and accelerating growth in the variety, power,

and availability of medical scanning technologies, allowing unprecedented views

of the inner workings of living tissues and organs. Starting in the 1970s, X-ray

systems have developed into Computed Tomography (CT) systems; Nuclear Magnetic

Resonance (NMR) led to the development of Magnetic Resonance Imaging (MRI);

MRI further branched into functional MR Imaging (fMRI), Diffusion Tensor Imaging

(DTI), Arterial Spin-Labeled perfusion imaging (ASL), and a host of others; Positron

Emission Tomography (PET) uses a variety of tracer compounds to illuminate various

biological processes, such as blood perfusion, glucose metabolization, dopamine

uptake, amyloid protein deposition, etc. In addition to clinical applications, new

avenues of scientific inquiry are opened up as well. The study of neurodegenerative

disorders – Alzheimer’s Disease (AD) in particular – has undergone a renaissance

as an array of imaging modalities can now be used to track physiological changes

and neurological degeneration at increasingly earlier stages, and to discover new risk

factors and eliminate confounding variables. It is hoped that these investigations will

yield sufficiently sensitive markers that interventions may be developed and deployed

before irreversible degeneration sets in.

Yet, having more data is only one half of the equation. It is equally important

that models and algorithms rise to the challenges posed by this wealth of data. When

analyzing a large body of 3D scans in search of differentiative disease patterns, the

sheer volume of data can itself become a challenge in several ways – first, computation

times can become prohibitive, meaning that more efficient models will become more

and more important. Second, as the dimensionality of imaging data grows, issues such

as multiple comparisons and model complexity make results more difficult to interpret.

Third, imaging data has certain inherent structural properties (or, covariance structures)
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owing to the proximity of neighboring voxels, yet, statistical models often assume

that variables are independent, or ignore dependency structures when they are known.

These issues are only compounded by the growing number of modalities, which

introduce even more complex dependencies among covariates. Recently, however,

neuroimaging-driven AD research has turned a new corner as machine learning methods

have been given a more central analysis role. Machine learning methods differ from

traditional statistical methods in that they place more focus on generalizing to future,

unseen data, in addition to explaining existing samples.

By acquiring scans of subjects suffering from a pathological condition of interest,

as well as healthy controls, investigators can examine in detail the effects of pathology

by separating individual variation from group-wise variation. If clinical groups are

properly controlled then they will systematically differ only on the basis of disease,

allowing hypotheses relating to disease processes to be tested. Traditionally this has

been done by way of standard univariate statistical models which test whether e.g.,

means vary between groups relative to their standard deviations.

Dimensionality problems are often controlled by taking a mean over a particular

anatomical Region of Interest (ROI – a pre-defined set of voxels in the brain) which

can obscure a large portion of the signal being sought. More recent investigations

have moved beyond simple ROI analysis by utilizing Statistical Parametric Mapping

(SPM) in which a group-wise statistic is computed separately at every voxel, giving

a map of statistical significance levels. This map can then be interpreted in terms

of known anatomical and functional regions, but at the cost of incurring serious

multiple-comparisons issues. What differentiates the machine learning approach from

these existing models is that rather than treating neuroimaging data as a collection

of separate variables, each of which gives rise to a separate model, machine learning

methods treat only the patients as being separate and independent, meaning that

significance calculations are left as the very last step in evaluating a model, rather

than an intermediate step to be corrected later. Moreover, machine learning methods

explicitly focus on controlling for high dimensionality and model complexity as a

primary point of interest.

In the broadest sense, machine learning is the automated search for models which

better approximate objects of interest as larger and larger bodies of training data can be

acquired. Such “objects of interest” are usually real-valued functions whose values are
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known only for a training sample, but in general they may include pair-wise relations,

distance metrics, trees, graphs, or vector-valued functions; classification (in which we

want to predict only which of two or more groups, or classes, a new example belongs

to), and regression (in which we want to predict an unknown real-valued quantity as a

function of several observable variables), are settings of this type, and are of primary

interest in this work, though future work will explore applications to more generalized

settings.

Using machine learning methods, novel scientific hypotheses can be posed which

go beyond traditional tests of separation-of-means statistics: for instance, we may

want to test whether certain predictions can be made about disease progression at the

individual level, and assign significance levels based on the quality of those predictions

on held-aside data. Or, we may want to look for more subtle variations between

groups by examining the classifier function returned by the algorithm, or by examining

subpopulations in terms of their tendency to be misclassified (also known as novelty

detection) – for which machine learning methods are well suited. Inversely, by posing

neuroscience questions in machine learning settings we can identify capabilities in

need of development, and refine our notions of what it means to learn from imaging

data. Ultimately, insights gained in this process are potentially of significant interest

to the machine learning community at large.

The principal concern of this thesis is to describe modelling and algorithmic

advances based on machine learning methods which are specifically designed to

facilitate understanding of the pathological processes underlying AD (and potentially

other neurodegenerative disorders such as Fronto-Temporal Dementia) how they

progress over time, and how we can make patient-specific prognostications. In

addition, various ways of incorporating these developments into the design of clinical

trials for novel treatments are proposed. The work described here can be divided into

three main sub-themes:

1. Imbuing the learning process with structural biases based on the inherent spatial

structure of neuroimaging data;

2. Integrating multiple data sources into a single classification model, with emphasis

on multiple kernel methods;
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3. Using machine learning methods to drive advances in clinical trial design.

Structural biases for learning

The first theme is to imbue the learning process with systematic and statistically

sound learning biases based on the inherent structure of biomedical imaging data.

That is, rather than shoe-horn a generic learning algorithm which is agnostic to the

special characteristics of medical images, one might leverage knowledge relating to the

acquisition, dimensionality, and spatial characteristics of such data to better address

the clinical question under study. This allows a significant reduction in the search

space of candidate classifiers, without sacrificing classification accuracy. In addition,

it facilitates interpretation of the learned disease pattern. Simply put, if the algorithm

knows something about the data from which it is tasked with learning a disease or other

anatomical pattern, then it can do a better job. Models I have developed to address

these issues are described in Chapter 3.

Multi-modality learning

The second major theme is to integrate multiple data sources into a single classification

model. When multiple scanning modalities are available, each can offer a unique view

or vantage point of brain structure and function. However, naïve methods of combining

data sources will lead to statistical over-fitting issues, so it is necessary to develop

novel algorithms that combine all the available information without losing anything

in the process. I believe that combining kernels, either additively or non-linearly, is

the most promising direction to search. Multi-Kernel Learning (MKL) is the most

commonly used frame-work for learning linear combinations of kernels, and has been

the basis for several novel algorithms. Chapters 4 and 5 will describe this work in

detail. Chapter 6 describes results of several investigations into how machine learning

methods can contribute to the science of AD by examining the performance of MKL

with regard to its ability to combine imaging modalities for better predictions, and

how those multi-modality predictions can be used as a screening measure in clinical

trials to reduce cohort sizes.
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Applications to clinical trial design

In Chapter 7 I describe some of our recent work that uses customized neuroimaging-

derived outcome measures to increase sensitivity to treatment-related effects, and show

that drastic reductions in the required sample sizes are realizable. This line of research

has the potential to significantly increase the statistical sensitivity of clinical trials as

well as reduce the number of patients required in order to demonstrate a drug or other

treatment’s effectiveness at combating AD pathology. The key observation is that the

two steps of reducing high-dimensional data to a univariate measure of atrophy, and

assigning a level of statistical confidence to observed differences in this univariate

measure, can be done jointly, but without incurring statistical penalties.

I have also made preliminary investigations into a novel approach to sample size

and power estimation in a common statistical setting that includes both clinical trials

and neuroimaging studies. If we view a statistical parametric map (e.g., a set of

t-statistics, one at each voxel) as a sample from a low-rank stochastic process, then by

decomposing the permutation matrix into a low-rank product with a sparse residual,

we can analyze the entire phenomenon in terms of a small set of independent random

variables. The aim is to apply these techniques to the independent components of this

decomposition, and derive empirical estimates of Type-I and Type-II error rates without

inducing multiple-testing issues, which are a scourge in high dimensional statistical

parametric mapping studies. The approach I am investigating is to use low-rank

random matrix methods to sub-sample a permutation test matrix, and re-create the

remaining results. These investigations are presented in Chapter 8.

Organization

The progression of topics in this thesis is as follows: I begin with a discussion of relevant

background concepts in Chapter 2. I then discuss learning methods which incorporate

imaging-specific domain knowledge and inductive biases in single-modality settings

in Chapter 3 before moving to a discussion of ways of combining multiple modalities

in Chapter 4. I then consider a broader class of machine learning methods that can

identify and exploit relations and interactions between input streams in Chapter 5. In

Chapter 6 I examine applications of the machine learning approaches I have developed

which may further drive neuroscience questions. In Chapter 7 I propose a novel
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clinical trial design based on a machine learning test, discuss ways of analyzing

it in terms of its predictive power, and present details of simulated clinical trials

which strongly suggest that this method has the potential to boost the sensitivity of

neuroimaging-based clinical trials. In Chapter 8 I describe ongoing work and open

questions. First, I present preliminary results leading towards a novel methodology

for performing experiment-wise Type I error calculations for clinical trials and other

neuroimaging studies. Then, I discuss plans to validate the methods proposed in

Chapter 7 by including them in a live clinical trial currently in the planning stages.

Finally, in Chapter 9 I summarize the contributions of this thesis, and offer some

concluding remarks.
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Chapter 2

Background

Before discussing the major content of my research, I first present relevant background

material to provide context.

2.1 Alzheimer’s Disease

Several types of neurodegenerative dementia tend to occur in late life, of which Late

Onset Alzheimer’s Disease (LOAD)1 is the most common. There are currently over

5.3 million sufferers of AD in the US, and the impact on the US economy is well over

$100 billion annually [Wimo et al., 2006]. There are no known cures, but several

treatments are under development which could potentially slow, or defer the effects of

this disease. As Alzheimer’s-related atrophy can precede loss of cognitive function by

many years, and neural death is irreversible, these efforts require test subjects who are

experiencing early stage AD in order to meaningfully evaluate the effectiveness of such

treatments. The combination of medical imaging technologies and machine learning

algorithms offer the potential to serve this need. Clearly, MRI and other scanning

modalities are vital for detecting structural atrophy directly, while machine learning

algorithms are well suited to extracting meaningful, predictive patterns which can

discriminate between patients and healthy elderly subjects, even when signs of atrophy

are subtle. In this section I will briefly outline what is known about Alzheimer’s

pathology, and how this knowledge impacts learning strategies aiming to predict its

onset and progression.

The human brain can be segregated into regions of Gray Matter (GM), which

is largely composed of neuron cell bodies and dendrites (incoming connections) as

well as glial cells, which facilitate neural metabolic processes; White Matter (WM),

which is composed of bundles of millions of axons, which transmit signals between

1The acronym LOAD is used to distinguish the late-onset variant of AD from familial, or early onset

AD. Throughout this thesis, the term “AD” will be used to denote LOAD exclusively, as LOAD accounts

for over 95% of all cases [alz, 2007].
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disparate brain regions; and Cerebro-Spinal Fluid (CSF) which suspends the brain

and helps absorb shocks. Gray matter tissues atrophy all through adult life. White

matter, however, is known to gradually increase until early middle age, before showing

signs of atrophy later. In late life, this process accelerates slightly, leading in some

cases to deterioration or loss of cognitive function. Alzheimer’s Disease (AD) is a

neurodegenerative process in which GM atrophy (and to a lesser extent WM atrophy),

is greatly accelerated, ultimately leading to complete debilitation.

While root causes of AD are still a matter of active investigation, some proximal

causes are well known. At a histopathological (cellular) level, two distinct pathologies

are present in AD: amyloid plaques, and neurofibrillary tangles. Amyloid plaques are

masses of amyloid proteins which build up at the interfaces between neurons, and

which can interfere with transmissions from axon to dendrite. For reasons which are

not yet fully understood, these plaques are associated with a breakdown of subcellular

structures, which ultimately leads to deterioration and death of the cell. One possible

explanation is that the interference in neuron firing leads to atrophy through underuse,

which is a naturally occurring mechanism in neurons. As neurons begin to deteriorate,

the microtubules which carry electrical impulses begin to disintegrate, dispersing

τ-proteins (microtubule building blocks) into the CSF, which can then be detected

through protein assays. As microtubules disintegrate they lose local structural cohesion,

and form neurofibrillary tangles which remain even after cell death, and are the second

visible marker of AD pathology. If enough cells die in a certain localized region, then

cortical GM will thin noticeably, and in some regions can atrophy away completely.

As these cellular degenerative processes proceed through several stages over many

years, there are various ways of detecting them. Abnormal levels of Amyloid-β (Aβ)

and τ proteins in CSF samples are among the earliest known signs of AD. However,

this is complicated by the fact that many cognitively healthy elderly subjects also have

abnormal levels of these proteins. As it is unknown how many, and which, among

these subjects will progress to AD, it is difficult to make predictions solely on this

basis. Several protective factors are known (e.g., education, APOE ε2 allele) which

allow cognitive function in spite of a heavier pathological burden, which can also

make such a determination difficult. An intermediate stage sign of AD pathology is

depressed glucose metabolism in lateral parietal regions, and to a lesser extent, in

para-hippocampal, and entorhinal cortices. Among these the Default Mode Network,
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(a set of regions believed to be “active” when subjects are not involved in “tasks”

such as those given in functional MRI scans, though they may also be involved in

introspection and meta-cognition,) is strongly implicated, though the link between the

functional role played by these regions and the biochemical processes leading to cell

death is not yet entirely clear. Such reductions in glucose metabolization can precede

detectable macro-scale atrophy, though cellular degeneration may be progressing

undetected. As increasing numbers of neurons succumb to AD-type degenerative

events GM volume can measurably decrease, which can be detected in MR scans. A

challenge in detecting such atrophy is that the AD pattern of atrophy is similar, but not

identical, to normal geriatric GM degeneration. In its final stages, atrophy overwhelms

the cognitive reserves, i.e., spare or redundant gray matter in certain vital regions,

leading to dementia and debilitation.

A defining characteristic of AD is that such cell-death events are not distributed

throughout the brain uniformly at random. Rather, there are distinct stages to the

degeneration; these stages are characterized by the anatomical regions in which plaques

and tangles, as well as associated GM atrophy, are found, as well as the overall severity

of the histopathological burden [Braak and Braak, 1991]. This non-uniformity may be

due to varying functional burdens (use / disuse) of different regions, or to differing

physiological characteristics, or, to some unknown interaction between them. 2

In the earliest stage at which cellular pathologies are detectable, atrophy is seen

in the hippocampus and other basal nuclei, and in medial temporal regions. In later

stages, atrophy spreads to pre-frontal cortical regions. While local atrophy may be very

slight – on the order of 1% to 3% loss of hippocampal volume per year in AD subjects,

and 0.5% per year in healthy older adults – cumulatively, atrophy is more visible in

expanded CSF volumes such as the ventricles (fluid filled structures near the center

of the brain) and sulci (clefts, or crevices between wrinkles in cortical surfaces.) By

late-stage AD (post-onset of clinical dementia) the degeneration in the hippocampus is

often quite striking – in some cases the hippocampus can almost disappear completely,

2For instance, Brodmann’s areas are a set of roughly 50 (the list has undergone some revisions in the

last 100 years,) sharply delineated brain regions where neuronal organization varies visibly; this variation

was the original basis for Brodmann’s segregation of regions. Some of these variations are known to be

tied to functional characteristics of each region, e.g.sensory regions have more incoming connections,

while motor regions have more outgoing, however not all variations can be fully characterized in this

way.
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and the ventricles can grow to occupy a significant cross-section of the brain.

It is important to note that while these pathologies are necessary for diagnosis as

AD, they are not necessarily sufficient; many cognitively healthy older adults show

such pathologies at autopsy. This means that a learning algorithm must do more than

simply detect secondary signs of AD pathology, but rather it must gauge whether such

signs are sufficiently severe that the subject is likely to be cognitively impaired.

Risk factors

Several genetic, health, and lifestyle risk factors are known to influence the probability

of developing AD. First, of all is age – very few subjects under the age of 55 ever

develop (late onset) AD. Second, various hereditary factors are known to be involved

as well. Family history of AD among parents and their siblings is well known to

increase the risk of AD [Johnson et al., 2006]. Recently, two major genetic influences

have also been identified – the gene coding for apolipoprotein E, APOE is considered

to be the primary genetic risk factor for AD, and has three major alleles. Of these

ε2 is somewhat rare, but has a slight protective effect; ε3 is neutral, while ε4 confers

significant risk. TOMM40 (Translocase of Outer Mitochondrial Membrane) is a

repeating sequence on chromosome 19, and is very near to APOE [Roses et al., 2009].

This gene varies by length, ranging from Short (< 20 thymidine bases) to Very Long

(> 30), and while shorter forms are generally associated with healthy status, and longer

forms with increased risk of AD, the interaction with APOE genotype is somewhat

more complicated [Johnson et al., 2011]. Finally, several health and lifestyle factors

can also contribute to the risk of developing AD. Vascular health, low body mass

index (BMI), and low insulin resistance are all known to be associated with lower

risk. Perhaps the most intriguing is that [Querbes et al., 2009, Butler et al., 1996] as

well as other studies have shown that subjects with more education as a group have

greater levels of atrophy, and in some cases can continue to have normal cognitive

functioning in spite of levels of atrophy comparable to that of dementia patients. The

exact mechanism for this is unknown.
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Mild Cognitive Impairment

A milder form of dementia termed Mild Cognitive Impairment (MCI) has been

documented in many cases which, while not meeting the diagnostic requirements

of AD, often progresses to full AD. To be diagnosed as MCI, a subject must have a

memory complaint, but no other serious cognitive dysfunction. Annually about 13%

to 15% of MCI sufferers convert to AD on average, however some remain as stable

MCI without ever converting. Thus MCI is usually, but not always, a precursor to

AD. Because of this, there is particular interest in discriminating which MCI subjects

will progress, and which will not, as any discriminative model which can do so can

potentially highlight factors which differentiate AD from normal aging.

Implications for learning

As AD is very well studied, there is a wealth of domain knowledge pertaining to

its characteristics, and there are several different means of detecting, and tracking

its progress. We can therefore expect that machine learning methods which take

full advantage of these resources are more likely to successfully uncover the disease

patterns of interest. This domain knowledge can be broadly partitioned into several

categories of primary driving influences, which will inform the majority of my research.

• Imaging characteristics. 3-dimensional images are needed to capture char-

acteristics of the entire brain volume, which leads to very high-dimensional

data. That is, while a 100×100 image might be considered thumbnail-sized, a

100×100×100 image has 1,000,000 voxels. Thus, a driving factor in our choice

of learning algorithms is the need to control the dimensionality of the subjects,

and the corresponding model which classifies them. A large part of this job is

handled by image registration, warping, and segmentation techniques which

can separate out the GM regions of interest, discarding the rest. However, this

typically leaves on the order of several hundred thousand voxels.

A second characteristic of interest is that the machine learning algorithm sees

each image not as a 3-D volume, but as a very long vector. Whereas at the time of

acquisition we know which voxels are neighbors to one another, this information

is lost when the images are treated as simple vectors. Since this information is
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present in the data, it should be used to refine the space of classifiers to choose

from.

• Specific pattern of atrophy→ brain regions. AD is characterized by specific

patterns of atrophy, owing to the physiological and functional segregation of the

brain. Thus, if we can learn exactly where AD-specific atrophy occurs, we can

ignore unrelated global atrophy to get a better signal. This is exactly the kind

of task for which machine learning algorithms are designed. The implication

for neuroscientific inquiry is that rather than using voxel-wise independent

statistical maps which measure differences of means, and which are subject

to multiple testing issues, we can train a single machine learning model to

detect the pattern of interest, which may narrow the search for functional and

anatomical correlates of AD.

• Classification tasks. In pursuit of questions related to AD, there are several

classification tasks of interest:

– AD vs. Controls. The most straight-forward way of studying AD is to

try to classify images as being healthy or diseased. The resulting disease

pattern represents late-stage AD.

– MCI vs. Controls and AD. As MCI subjects are a more interesting group

clinically, it is more interesting to study the effects seen only in MCI, and

by implication, in an earlier stage of AD. Conversely we may also be

interested in studying how AD progresses from MCI to full Alzheimer’s

disease. These tasks are more difficult, as the distinguishing signal is

weaker.

– Stable vs. progressing MCI. The most interesting, and the most chal-

lenging, task of all is to try to predict which MCI subjects will remain

stable, and which will progress to AD.

– APOE genotype. As APOE genotype is a major risk factor for AD, it may

be interesting to examine its effect by classifying ε4-allele subjects (higher

risk) subjects from ε2- and ε3-subjects. By comparing a discriminative

map for AD with one for APOE genotype, we may be able to identify

residual factors in AD.
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• Inclusion of multiple modalities and biological measures. As remarked on

above, there are several imaging modalities, as well as CSF protein assays,

genotype, cognitive measures, family history, and other biological measures

which can influence a classifier’s outcome. As is already the case with imaging

data, dimensionality is a major issue, which is only compounded by the volume

of data available. More interestingly, however, is that just as neighboring

voxels are known to be interdependent, we can be certain that some entire

imaging modalities will be related to one another than differently than they are

to biological measures or genotype. Hence, machine learning methods which

can capitalize on this information may be expected to perform those which do

not.

Alzheimer’s Disease Neuroimaging Initiative

Throughout this report, experimental validation of proposed methods has relied on

copious subject data, which has been provided by the Alzheimer’s Disease Neuroimag-

ing Initiative (ADNI). ADNI was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),

the Food and Drug Administration (FDA), private pharmaceutical companies and

non-profit organizations, as a $60 million, 5-year public-private partnership. The

primary goal of ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early AlzheimerâŁ™s disease (AD). Determination

of sensitive and specific markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor their effectiveness,

as well as lessen the time and cost of clinical trials. The Principal Investigator of

this initiative is Michael W. Weiner, M.D., VA Medical Center and University of

California San Francisco. ADNI is the result of efforts of many co-investigators from a

broad range of academic institutions and private corporations, and subjects have been

recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI

was to recruit 800 adults, ages 55 to 90, to participate in the research - approximately

200 cognitively normal older individuals to be followed for 3 years, 400 MCI patients
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to be followed for 3 years, and 200 early AD patients to be followed for 2 years.

Empirical results described in this thesis were performed using ADNI subject data

almost exclusively.

Figure 2.1: Several examples of anatomical variation among ADNI subjects. Left:

original MRI scans. Right: Computed GM concentrations.
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2.2 Medical Imaging Modalities

A large variety of medical imaging technologies are available which can identify

signs of AD at different stages. In this section I will describe the types of relevant

medical scanning technologies, and give an overview of the standard registration

and normalization techniques. Special attention will be given to MR and FDG-PET

imaging modalities, as they are the ones used in validation experiments described

throughout, though I will briefly describe several others which can be readily adapted

to the proposed learning frameworks.

Magnetic Resonance Imaging

Nuclear Magnetic Resonance is a well-studied physical phenomenon. Briefly, the

protons and neutrons of every atom are constantly spinning. This spinning produces

magnetic fields, which cancel each other when the axes of rotation are random. When

placed in a strong enough magnetic field, however, the axes align themselves to

the field. This field is called B0. If other magnetic fields are applied, then laws of

gyroscopic motion and magnetic fields dictate that a proton’s axis of rotation will itself

begin to rotate, or precess, (the common analogy is of a top, which continues to spin

even as its major axis also wobbles). By applying a particular sinusoidally varying

magnetic field, it is possible to encourage atoms to precess at a particular angle. It

happens that a sinusoidally varying magnetic field is essentially a Radio Frequency

(RF) transmission. Precession in the presence of the B0 field produces a measurable

RF signal, as the atoms shed the same RF energy that perturbed them in the first place.

As hydrogen is the most prevalent type of atom in the body, and responds strongly to

such RF perturbations, the frequency of the RF signal is chosen specifically to affect

hydrogen atoms. Hence, to a first approximation, MR signal can be thought of as a

measurement of proton density. For a more detailed treatment of the subject of MR

imaging, see [Prince and Links, 2006].

T1-weighted MRI

Once protons are made to precess by the RF signal, there are two factors which cause

that signal to decay – the time it takes for the protons to revert to being aligned with
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the main magnetic field, which is called the T1 time, and the time in which it takes the

spins of the various atoms to become de-phased with respect to one another, which

also attenuates the RF signal, which is called the T2 time. For reasons having to do

with the density of protons, and the de-phasing effects of different substances, GM

and WM have different T1 and T2 times. By varying the parameters of acquisition

we can induce contrasts in measured signal relating to different T1 and T2 times in

different tissues. As the T1 times of GM and WM differ more than their T2 times, a T1

contrast is better for delineating the boundaries between the two tissue types, allowing

a better segmentation and estimation of their relative volumes. Thus, T1-weighted MRI

is synonymous with structural MRI, as it is used for imaging anatomical structures.

T2-weighted MRI can be thought of as measuring differences in fluid concentration,

which can be useful for diagnosing strokes, cancers and other types of brain injuries,

but is less useful for measuring AD-related atrophy.

Diffusion weighted MRI

If a magnetic field is applied in a certain direction, and canceled a short time later, it

is possible to measure the level of diffusion of water molecules, because for moving

molecules, the two applications will not exactly cancel. Thus, moving water molecules

will cause a measurable attenuation of the signal. If this process is repeated in many

directions, we can measure the directional distribution of diffusion at each location in

the brain. In anatomical terms, diffusion weighted MRI is best adapted for detecting

axon bundles present in the WM, because water can diffuse along the length of axons,

but not through their myelin coating, (myelin is a lipid which protects the axons,

and promotes electrical conductivity). As neurons begin to die, so do their axons.

Thus, it is conceivable that early signs of atrophy may be detected in the axon bundles

emanating from regions most affected by AD pathology. Another possibility is that

the mechanisms causing cell death in AD may also attack the protective myelin sheath.

Functional MRI

Functional MRI (fMRI) is based on the attenuation of MR signal relating to oxygenated

blood. MR acquisition parameters may be set to maximize the sensitivity to this

attenuation. This type of signal is called Blood Oxygenation Level Depletion (BOLD).
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BOLD signal is largely driven by two opposing factors: first, as glucose is metabolized

to produce ATP, oxygen is used up, contributing to BOLD signal. Often, the increase in

metabolism is related to neural activity. However, brain vasculature is highly sensitive

to such depletion, and in as little as two seconds, vessels may dilate so as to allow for

more blood flow. This can actually reduce the BOLD signal. Recent studies have

shown [Xu et al., 2009] that some of the early-stage functional abnormalities in AD

may be detected in resting fMR (i.e., fMR images acquired when the subject is at rest,

and not performing any directed cognitive task).

Positron Emission Tomography

Another modality of imaging relies on radioactive tracers. Some radionuclides are

known to emit an anti-electron, or positron. When this positron encounters an electron,

the two particles annihilate, and produce two gamma rays which are oriented exactly

180◦ apart from one another. A special detector can then detect these two particles,

and reconstruct their point of origin, which can be assembled into a global picture of

where the radiotracer is concentrating. This type of imaging is known as Positron

Emission Tomography, or PET imaging. An advantage of PET imaging is that a tracer

can be tailored to bind to specific biological compounds of interest, giving a very

specific picture of where such compounds are concentrated, without any unrelated

signal from other biological structures or processes. However, PET suffers from a large

impulse-response function, which reduces the effective resolution achievable, because

the positron has to travel some distance – sometimes by as much as a centimeter –

before annihilating. Various tracers are available, which have useful characteristics

for measuring AD-related pathology.

• Fluoro-DeoxyGlucose (FDG) PET

FDG-PET uses a form of glucose in which one O atom is replaced by an 18F

tracer, called Fluoro-deoxy glucose, or FDG. FDG-PET indirectly measures the

level of glucose concentration in various tissues, and thereby the rate of metabolic

and neural activity. This is extraordinarily useful for detecting early drops in

activity in the Posterior Cingulate Cortex (PCC) and lateral parietal lobes. As

these functional declines can precede atrophy, FDG-PET is an extremely useful

marker of AD.
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• Pittsburgh Compound B (PiB) PET

Another type of radiotracer is the Pittsburgh Compound B (PiB) which is able

to bind to amyloid proteins, thus revealing the location and density of amyloid

plaques throughout the brain. However, as PiB is expensive to produce, and has

a very short half-life, and because amyloid plaques are also found in cognitively

healthy older adults, PiB imaging is somewhat less common. The ADNI does

provide some PiB images, but only for a smaller subject cohort.

• O15 Perfusion PET

Perfusion PET uses water molecules in which the O atom has been replaced by a
15O radionuclide. Thus, perfusion imaging can show how well water, typically

in the form of blood, perfuses the brain, and hence measures vascular health, as

well as atrophy.

While ADNI only provides FDG-PET and T1 (structural) MR scans, (and PIB-PET

for a smaller group of subjects) the methods I have developed can be applied to other

imaging modalities and degenerative disorders as well, so long as some aspect of

pathology is measured. However, before using imaging data in a learning algorithm,

we must first extract a feature representation so that standard learning frameworks can

be employed.

Registration and normalization

Human subjects vary widely in the size, and shape, of their various anatomical

features; several examples are shown in Figure 2.1. However, if we wish to provide

a learning algorithm with a set of meaningful features, then point-wise anatomical

correspondences must first be established. In other words, we must be able to find

and delineate regions such as the hippocampus, entorhinal cortex, and lateral parietal

lobules in all subjects in order to compare them. The simplest way to go about this is to

rigidly or affinely warp the brain scans together, however, the greater the extent of the

atrophy present, the greater the abnormality in the shape of the brain. Further, atrophy

in smaller structures such as the hippocampus is sometimes most visible at the edges,

meaning that even slight differences at the global level can result in these regions

being mapped to completely different locations in different subjects. Experimental
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evaluations described in this report which make use of subject brain images rely

on two non-linear registration methods, which are part of a standard neuroimaging

pre-processing pipeline.

Voxel Based Morphometry

Voxel Based Morphometry (VBM) [Ashburner and Friston, 2000] is a method of

non-linearly warping volumetric data to a common template (called a stereotactic

space). A non-linear warp is defined by a deformation field, which is represented as

a piece-wise affine function which maps each voxel in the input image to a location

in the target. This deformation field is chosen so as to minimize residual errors (in a

sum of squares sense), with regularization which encourages spatial smoothness. The

VBM approach assumes that large-scale, global individual variation is captured by

the non-linear deformation (which is discarded) while local anatomical variations are

reflected in differences from the template itself. The template itself is pre-segmented

into GM and WM regions, so warping the volumes also produces a segmentation,

or at an even finer-grained view, a relative map of GM concentration, (not to be

confused with neuron density, as MRI does not have sufficient resolution to distinguish

individual neurons).

Tensor Based Morphometry

An alternative approach is to use the deformation field itself as a measure of relative

(i.e., individual) variations. A numerical indication of relative volume is computed

from the Jacobian determinant of the affine transform for each voxel. The Jacobian

of an affine transformation is a tensor, and hence this method is called Tensor Based

Morphometry (TBM). A single voxel in a TBM map represents the amount of growth

or shrinkage the corresponding voxel in the source image was required to undergo

in order to match the target. A particularly interesting use of TBM is in representing

longitudinal data. When longitudinal data are available, we may be more interested

in the change in volume over time rather than the baseline GM concentration. Thus,

the second time point can be matched to the first to reveal the rate of expansion (of

CSF for instance) or contraction. Then, if the baseline image has been registered to a
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template using VBM, the TBM map can then be registered to the template using the

same flow-field, giving a map of voxel expansion or contraction.

Both VBM and TBM can be followed by a Gaussian smoothing step, which

is necessary for parametric statistical tests which assume normally distributed vari-

ables (convolution results in Central Limit behaviors) but need not be the case for

discriminative learning methods. Once images have been registered, GM voxels

may be selected relatively easily, to provide the learning algorithm with fixed-length

feature vectors. VBM and TBM, as well as related morphometric methods such as

HAMMER and RAVENS [Shen and Davatzikos, 2002, Davatzikos et al., 2001] are

used extensively in scientific studies of neuroimaging data. A notable alternative is

Region of Interest (ROI) analysis, in which a specific brain region is segmented, either

manually or automatically, from which summary statistics are extracted. ROI analysis

has the advantage that no registration is required (which may lose information if the

registration does not exactly match the subject’s anatomical features), but it may lose

information through aggregation into summary statistics, and by ignoring whole-brain

features. I will next discuss recent developments in the neuroscience literature which

form the backdrop for my research.

2.3 Related Work in the AD Literature

Having discussed the characteristics of AD and relevant medical imaging technologies,

I now turn to a discussion of related works, placing this work in an important context.

A recent trend in the neurological sciences community is that a growing body of

literature has been published reporting on applications of machine learning tools to the

problem of developing markers of AD [Davatzikos et al., 2008b, Klöppel et al., 2008,

Vemuri et al., 2008, Duchesne et al., 2008, Arimura et al., 2008, Zhang et al., 2011b].

These efforts have primarily utilized brain images, though some have also used other

available biological and demographic indicators. Machine learning algorithms such

as Support Vector Machines (SVMs), logistic regression, and ADABoost are among

the most often utilized, often with some post-processing.
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Studies comparing AD and control subjects

One of the earliest works in this area by Klöppel et al. [Klöppel et al., 2008] used

linear SVMs to classify AD subjects from controls. In addition, they were also

successful in separating AD cases from other types of dementia (Fronto-Temporal

Lobar Degeneration or FTLD) using whole-brain images, highlighting the potential for

machine learning applications beyond AD. The authors reported above 90% accuracy

on autopsy-confirmed AD patients (vs. controls), and less where post-mortem diagnosis

was unavailable. Independently, Vemuri et al. [Vemuri et al., 2008] showed promising

evaluations on another dataset, obtaining 88 − 90% classification accuracy (also

using linear SVMs). The authors observed that using all image voxels as features

within their framework was counter-productive, as many of these voxel-wise features

had spurious correlations with the disease. To address these difficulties the authors

added demographic and Apolipoprotein E genotype (APOE) data to their model as

features, and adopted significant pre- (and post-) processing on the images. Feature

selection was performed by training a linear SVM, and discarding negative-weight

voxels, and then training a second linear SVM on the remaining voxels as the core

learning algorithm. Having trained the classifier, the authors down-sampled the data to

22× 27× 22 voxels, effectively aggregating many voxels’ outputs into a single voxel

at lower resolution. Then, they discarded voxels with less than 10% tissue densities in

half or more of the images, and finally used an ROI to remove the cerebellum. In order

to compensate for SVMs’ inability to directly consider spatial relationships between

voxels, they pruned the weights from the learned model by only retaining non-zero

weights in a spatially contiguous 3× 3× 3 neighborhood around top-ranked voxels.

In [Fan et al., 2008a,b, Davatzikos et al., 2008a,b], the authors implemented a

classification / pattern recognition technique using structural MR images provided by

the Baltimore Longitudinal Study of Aging (BLSA) dataset [Shock et al., 1984]. The

proposed methodology was to first segment the images into different tissue types, and

then perform a non-linear warp to a common template space using tools developed

by their group. Feature selection was performed using standard statistical measures

of (clinical) group differences, used to train a linear Support Vector Machine (SVM)

[Cortes and Vapnik, 1995]. The reported accuracy was quite encouraging. More

recently, the methods in [Fan et al., 2008b, Misra et al., 2008] have been applied to the
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ADNI dataset, which utilized a large set of MR and FDG-PET images, giving accuracy

measures similar to those reported in [Fan et al., 2008a,b, Davatzikos et al., 2008a,b].

Conversion of MCI to AD

Several recent studies [Schroeter et al., 2009, deToledo Morrell et al., 2004, Dickerson

et al., 2001, Hua et al., 2008] have shown that certain markers are significantly

associated with conversion from MCI to AD. In [deToledo Morrell et al., 2004,

Dickerson et al., 2001], the authors show that traced volumes of the hippocampus and

entorhinal cortex show significant group-level differences between converting and

non-converting MCI subjects. In [Hua et al., 2008] a large number of ADNI subjects

were tracked longitudinally using Tensor-Based Morphometry (TBM). The authors

compared conversion from MCI to AD over 1 year with atrophy in various regions, but

a discussion of the predictive potential was relatively limited (i.e., included p-values

of 0.02 between converters and non-converters). Group-level differences such as these

are a necessary first step in developing markers of AD, and are suggestive of features

which may be useful for predicting onset of AD among MCI subjects in particular.

In [Davatzikos et al., 2009], the authors applied statistical learning techniques to

both ADNI and BLSA subjects [Shock et al., 1984]. A classifier was trained using

ADNI subjects, and applied to MCI and control subjects (in the BLSA cohort) to

provide a SPARE-AD disease marker. This procedure could successfully separate MCI

and control subjects with high confidence (AUC of 0.885), and it was demonstrated that

the MCI group had a larger increase in SPARE-AD scores longitudinally. However,

the main focus in [Davatzikos et al., 2009] was not on predicting which MCI subjects

would progress to AD, but rather on finding a marker for MCI itself. In [Querbes

et al., 2009], cortical thickness measures were used on a large set of ADNI subjects

to characterize disease progression in AD and MCI subjects. Freely available tools

(FreeSurfer) were used to calculate cortical thickness values at points on the surface of

each subject’s brain (after warping to Montreal Neurological Institute (MNI) template

space) and then the thickness measures were agglomerated into 22 Regions of Interest

(ROI), which the authors used as features in a logistic regression framework. Using

age as another feature, a set of AD and control subjects were used to train a logistic

regression classifier for each subject, yielding a Normalized Thickness Index (NTI). It
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was found that this NTI was able to give 85% accuracy in separating AD subjects vs.

controls, and had 73% accuracy (0.76 AUC) in predicting which MCI subjects would

progress to full AD within 3 years.

Clinical trials

One of the motivating goals of the ADNI is to expedite the translation of AD research

into clinically practical methodologies. Notably, much of the support for ADNI is

from major pharmaceuticals. In [Hua et al., 2009] Hua and colleagues analyzed the

statistical power of TBM in the context of measuring annual atrophy rates. More

sensitive markers of atrophy rates can be used to increase the statistical power of

clinical trials of treatments aimed at reducing such atrophy. Using TBM summary

measures as a measure of atrophy, the authors were able to show that a hypothetical

trial would need fewer subjects by over an order of magnitude than the alternative,

which is to use cognitive measures used in AD diagnosis such as the Alzheimer’s

Disease Assessment Scale-Cognitive subscale (ADAS-Cog). Summary measures were

computed as the mean TBM-derived rate of change in a statistical ROI, which is a

set of voxels chosen so as to achieve a desired level of Type I and Type II error. In

[Kohannim et al., 2010] an SVM was trained on AD and control subjects using ROI

volume measures and FDG-PET summary statistics, as well as APOE genotype, BMI

and other demographic markers as features. Predictive scores were then calculated

for AD and MCI subjects who had been held aside. By excluding subjects who were

less likely to decline, they were able to improve the sensitivity of the TBM-derived

outcome measure, yielding even smaller hypothetical cohort sizes. Such an approach

is known as “sample enrichment”.

Summary

The collective body of work described above demonstrates the potential of, and the

level of interest in, applications of machine learning methods as statistical analysis tools

in the study of AD. While several of these studies have proposed slight modifications

to common learning algorithms by adding special pre- or post-processing steps, the

core learning algorithms are left unchanged. My research has shown that even more

gains are possible if the entire learning framework is adapted to take into account data
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characteristics and available domain knowledge pertaining to the discriminative task

being performed. As a significant portion of this domain knowledge can be expressed

in terms of dependencies between features and modalities, a major focus will be on

incorporating known dependency structures in learning frameworks in a way that is

targeted specifically towards developing improved markers of AD. As I will describe

next, kernel methods, which are based on the mathematical theory of Reproducing

Kernel Hilbert Spaces are a convenient and natural way of approaching these issues.

2.4 Kernel Methods

Reproducing Kernel Hilbert Spaces (RKHS) have very well-developed theoretical

underpinnings, and there is a long history of application of RKHS theory in various

fields, including statistics, physics, mathematics and machine learning. As we are

primarily interested in classification tasks, the application of RKHS ideas to Support

Vector Machine (SVM) theory is the most relevant. In this section I give a brief

coverage of RKHS theory, and its application to SVMs. Other kernel methods such as

kernel density estimation and smoothing splines are also presented for comparison.

Reproducing Kernel Hilbert Space theory

A mathematical space is simply a set of points, typically having infinite cardinality.

Several special types of spaces are defined: Banach spaces specify a norm on each

point, ‖x‖; Hilbert spaces also specify an inner product between all pairs of points

〈x, x ′〉. Both types of space must also be closed, i.e., they require that all Cauchy

sequences of points in the space converge to a point in the space. The most prevalent

example of such spaces is the n-dimensional vector space R
n. Note that any Hilbert

space is also a Banach space by setting ‖x‖ = 〈x, x〉.
The Aronszajn-Moore theorem establishes the equivalence between RKHSs and

positive definite functions, making it a fundamental result in the study of both [Aron-

szajn, 1950]. A function R(x, x ′) is positive definite if for any finite sample of points

X, the matrix Rij = R(Xixj), xi, xj ∈ X has all positive eigen-vectors, or equivalently,

all of the eigen-functions of R have positive corresponding eigen-values. According

to the Aronszajn-Moore theorem, each RKHS H must define a positive definite kernel
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function R, while any positive definite kernel function must uniquely define an RKHS.

The “reproducing” part of the name is due to the following property [Wahba, 1990]:

〈Rs,Rt〉 = 〈R(s, ·),R(t, ·)〉 = R(s, t)

That is, by fixing one parameter and taking R over the entire set, we can generate a

representer of evaluation, which must be a point in the RKHS itself. Thus, we can

“reproduce” each point in the space through its kernel, and the inner product of any

pair of points is the same as the inner product of their representers of evaluation. The

importance of this fact cannot be overstated, because it means that if we have access

to the kernel function, then we need not have access to the data points themselves.

Thus, if we want to apply a kernel method to imaging data, we need only define a

positive definite kernel function between pairs of subjects. In practical settings, the

kernel function R is represented as a square symmetric kernel matrix K, (also known

as a Gram matrix) and expresses some notion of similarity between the examples.

The characteristics of RKHSs drive the philosophy behind most kernel methods.

First, every linear function f of the points in the RKHS is itself a point in the RKHS.

This means that f(x) is evaluated by taking 〈f,Rx〉. A second consequence of this is

that every such function f, as a point in the RKHS, has a norm. By choosing a function

with the least possible norm, we have a way or restricting the class of functions being

searched, which generally results in better models.

A second major result is known as the Representer theorem [Kimeldorf and Wahba,

1971, Schölkopf and Smola, 2002], which states that all functions in H which optimize

some (monotonic) loss function can be expressed in terms of linear combinations of the

examples. This can easily be seen by considering that any function of a set of examples

decomposes into a function of those examples in the span of their representers, and a

function of those examples in their orthogonal complement. The second part must be

equal to 0, because it cannot improve the loss function, (but it does contribute to the

norm on f), and the first part can be represented as a linear combination of representers

because it must be a point in the span of the examples, evaluated in terms of inner

products with the representers, f(x) = 〈f,Rx〉 =
∑

i aiR(x, xi).

As noted above, an important consideration when using imaging data is that the

dimensionality of the data should not overwhelm the sample size. The following two
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points allow kernel learning methods to address this issue:

• The effective dimensionality of a sample cannot be more than the number of

points, because they must all lie within their own span. That is, the measurable

portion of the representers of evaluation is restricted to the span of the data. Thus,

this dimensionality can never be more than the number of examples (which is

still undesirable – see second point). More importantly, the rank of the kernel

matrix K is equal to the span of the data points, meaning that a low-rank kernel

matrix can restrict the complexity of a kernel model.

• Well-known results show [Wahba, 1990, Cortes et al., 2010] that if the eigen-

values decay at a certain rate, then even further restrictions on model complexity

are possible.

These two points give two avenues for pursuing better generalization – first, we can

seek low rank matrices, and second, we can try to engineer kernels to have decaying

spectra (eigen-values). Moreover, if linear models are too constraining, or if we know

for certain that they are not appropriate, we can look for a non-linear kernel function,

and so long as it has an appropriate spectrum, there is no sacrifice in model complexity.

The only extra parameters we incur are those of the non-linear kernel function, which

are typically far fewer than for arbitrary non-linear functions.

Commonly used kernel functions

There are far too many kernel functions used in practice to list them all here. Instead,

I will list the ones used in validation experiments described throughout. They are,

Linear, Polynomial, and Gaussian kernels. A linear kernel function is simply the inner

product of two examples in the original data space; for instance, unmodified SVMs

implicitly use a linear kernel. A polynomial kernel function is one in which each entry

of K is squared (or cubed etc.). Such kernels allow for polynomial functions, rather

than simple linear models such as hyperplanes. Finally, Gaussian, or Radial Basis

Function (RBF) kernels are based on the Euclidean distance between examples, by the

formula

exp

(
−‖xi − xj‖

2σ

)
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where σ is a bandwidth parameter and xi and xj may denote examples i and j. Note that

this depends only on the distance between examples, and is thus radially symmetric,

and insensitive to translation. The bandwidth parameter σ has an effect on the rank of

the kernel in that if it is chosen too small, then examples are effectively orthogonal

to each other, leading to a high rank kernel, while if it is chosen too large, then local

structure can be washed out, and the resulting kernel’s rank may be too low to aid

in classification. A common solution to this issue is to choose σ equal to a small

number (i.e., in the range of one to two times the number of features, assuming the

features themselves are normalized to roughly fall in the range of zero to one; this

way, σ approximates the average distance between examples, which is believed to be

the “right” scale in which to represent them. A broader treatment of commonly used

kernel functions and kernel engineering methods is given in [Bishop, 2006].

A final note about normalization: when comparing kernels, it is often preferable for

the geometric distribution of points in corresponding kernel spaces to be comparable.

One way of ensuring this is to first center the examples about the origin, by subtracting

row and column means and then adding back in the global mean, because Kij =

〈x− c, x ′− c〉 = 〈x, x ′〉− 〈c, x ′〉− 〈x, c〉+ 〈c, c〉, where c is the sample mean. Row,

column and global means are represented by the last three terms. Having first centered

the data, normalizing either the trace, or the maximum element of each matrix controls

some measure of the spread of the data points in that space, allowing for a better

comparison. Note that these methods only offer a first approximation of a solution to

this problem. A full treatment should make a more principled definition of what is

being compared, and how to normalize different kernels.

Kernel Support Vector Machines

Support Vector Machines (SVMs) are an extremely widely-used learning model based

on the idea that a better classifier will result from maximizing the margin between

different classes of objects. Thorough treatments of SVM theory are given in [Vapnik,

2000](ch. 5) and [Schölkopf and Smola, 2002, Cortes and Vapnik, 1995]. A key

characteristic of SVMs is that they admit a kernel-based formulation. The SVM dual

problem (5.7) is shown for reference:
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max
α

∑

i

αi −
∑

i,j

αiαjyiyj x
T
i xj

︸︷︷︸
kernel

(2.1)

s.t. 0 6 αi 6 C ∀i
∑

i

yiαi = 0 ∀i

Note that the examples (i.e., AD / MCI cases, or controls) only occur as inner

products 〈xi, xj〉. These inner products can be captured in a singlen×n kernel matrix,

K. If we apply a non-linear function to K which preserves positive (semi-)definiteness,

corresponding to a non-linear transformation of the data, then the learned classifier is

a linear function (i.e., separating hyperplane) in the kernel space H. Such a function

typically maps back to a non-linear decision function in the original data space. In the

SVM literature, the translation from the original data space to H is commonly denoted

as φ(x); when the kernel function R is modified, the kernel space H and translation

function φ(x) are correspondingly modified. In particular, Gaussian kernel-based

SVMs can be thought of as training a Gaussian mixture model as the pattern classifier,

and are therefore related to kernel density estimation of class probabilities, except that

they lack constraints which would force them to give probabilities as outputs.

2.5 Multi-Kernel Methods

In applied kernel inference settings, it often happens that one has access to more than

one kernel. If so, one must either select one kernel, and discard the rest, or, somehow

combine the kernels in some way which preserves the information contained among

them. One of the simplest, and most commonly used, ways of doing so is simply to

add the kernels together in a linear combination. This is equivalent to taking the direct

sum of kernel spaces, and makes the assumption that all available kernel spaces are

orthogonal [Aronszajn, 1950, Wahba, 1990]. To see this, consider Rn, which has an

inner product defined as 〈x, x ′〉 =
∑n

i xix
′
i where i iterates over any orthonormal

basis. Orthogonal subspaces are therefore spanned by disjoint sets of basis elements,

and inner products from each subspace therefore sum to give the inner product of the
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whole. If two subspaces have any overlap, then their sum will be greater than that of

the combined space. In this section I will describe several multi-kernel settings which

are relevant to my research.

Multi-Kernel Learning

Multi-kernel learning (MKL) [Lanckriet et al., 2004, Sonnenburg et al., 2006, Rako-

tomamonjy et al., 2008, Gehler and Nowozin, 2009b, Mukherjee et al., 2010] is a

generalization of SVMs to the multiple kernel case. This is achieved by adding a set

of optimization variables called subkernel weights which are coefficients in a linear

combination of kernels. If combining kernel matrices corresponds to concatenating

feature spaces, then multiplying a kernel matrix by a constant merely scales the axes

of that space. Therefore, we may interpret MKL as choosing a scaling for each RKHS,

such that an SVM trained on their concatenation achieves the greatest margin possible.

MKL maximizes the combined classifier’s margin by minimizing the sum of the

squared ℓ2-norms of weight vectors ‖wm‖22 in each RKHS (indexed bym). This sum

of squared norms represents the squared norm of the classification vector w in the

combined space. In order to preserve convexity of the primal problem, rather than

directly scale the kernels, MKL down-weights the norm penalty on ‖wm‖22 by the

corresponding sub-kernel weightβm [Kloft et al., 2011]. Thus, the regularization term
1
2
‖w‖22 in a one-kernel SVM becomes 1

2

∑M
m=1

‖wm‖2
2

βm
. Notice that as βm →∞, the

penalty on ‖wm‖22 approaches zero. To rule this out, and to control model complexity,

a norm penalty on β ensures that the units in which the margin is measured are

meaningful (as long as the base kernels are normalized).

The MKL primal problem is:

min
w,b,β>0,ξ>0

1

2

M∑

m

‖wm‖22
βm

+ C

n∑

i

ξi + ‖β‖2p (2.2)

s.t. yi

(
M∑

m

〈wm,φm(xi)〉Hm
+ b

)
> 1 − ξi,

This problem is convex, and can be solved via block-wise coordinate descent

[Rakotomamonjy et al., 2008]. Shogun (http://shogun-toolbox.org) is a

http://shogun-toolbox.org
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software package which implements several variants of MKL [Sonnenburg et al.,

2006]. MKL experiments have made use of Shogun. Recently, much attention has

been devoted to generalizing the norm on β to include arbitrary p-norms of the form

‖x‖p =
(∑

i x
p
i

) 1

p where p > 1 [Kloft et al., 2009, 2011, Orabona et al., 2010]. If

p = 1, then the result is a well-known sparsifying effect on β, meaning that many

kernels will be discarded. In cases where many kernels are known or expected to be

uninformative, this is a desirable characteristic, however if this is not the case then

we may wish to consider a less drastic approach. By varying p from 1 to 2, we can

control the degree of sparsity, with p = 2 giving a non-sparse solution. Note that for

p = ∞, the optimal solution has all of the weights being equal, and corresponds to an

unweighted combination of kernels.

Related work

MKL has been a very active area of research, resulting in an array of models, as well

as optimization strategies. The development of MKL methods began with [Lanckriet

et al., 2004], which showed that the problem of learning the right kernel for an input

problem instance could be formulated as a Semi-Definite Program (SDP). Subsequent

papers have focused on designing more efficient optimization methods, which have

enabled its applications to large-scale problem domains. To this end, the model in

[Lanckriet et al., 2004] was shown to be solvable as a Second Order Cone Program

[Bach et al., 2004], a Semi-Infinite Linear Program [Sonnenburg et al., 2006], and via

gradient descent methods in the dual and primal [Rakotomamonjy et al., 2008, Orabona

et al., 2010]. More recently, efforts have focused on generalizing MKL to arbitrary

p-norm regularizers where p > 1 [Orabona et al., 2010, Kloft et al., 2009, 2011] while

maintaining overall efficiency. In [Kloft et al., 2011], the authors briefly mentioned that

more general norms may be possible, but this issue was not further examined. A non-

linear “hyperkernel” method was proposed [Ong et al., 2005] which implicitly maps the

kernels themselves to an implicit RKHS, however this method is computationally very

demanding, (it has 4th order interactions among training examples). The authors of

[Mukherjee et al., 2010] proposed to first select the sub-kernel weights by minimizing

an objective function derived from Normalized Cuts, and subsequently train an SVM

on the combined kernel. In [Gehler and Nowozin, 2008, 2009b], a method was
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proposed for selecting an optimal finite combination from an infinite parameter space

of kernels. This method requires a line-search to be performed in the parameter space

of kernels, and the resultant ‘combined’ kernel was shown to have a margin comparable

to any infinite combination in that same space. Contemporary to these results, [Bach,

2008] showed that if a large number of kernels had a desirable shared structure (e.g.,

followed directed acyclic dependencies), extensions of MKL could still be applied. In

[Gönen and Alpaydin, 2008] an MKL model was proposed which varies the sub-kernel

mixing weights locally throughout the kernel space, by adapting a set of “gating

functions” which control the variation in weights. This method was shown to work

well experimentally, and again in a thorough review paper [Gönen and Alpaydın, 2011].

Recently in [Gehler and Nowozin, 2009a], a set of base classifiers were first trained

using each kernel and were then boosted to produce a strong multi-class classifier. At

this time, MKL methods [Gehler and Nowozin, 2009a, Yang et al., 2009] provide some

of the best known accuracy on image categorization datasets such as Caltech101/256

(see www.robots.ox.ac.uk/~vgg/software/MKL/).

www.robots.ox.ac.uk/~vgg/software/MKL/
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Chapter 3

Adaptation of Learning Methods to Neuroimaging

Problems: Single Modality Methods

As imaging data proliferates and study cohorts continue to grow, automation becomes

essential – there are many stages in the image analysis pipeline, from acquisition,

to modeling, to integration of results. For interesting sample cohort sizes it quickly

becomes prohibitive for these tasks to be entirely manual. Moreover, it is desirable

for these steps to be independent of any operator-dependent bias so as to facilitate

comparison. Fortunately, much progress has been made on all of these fronts, resulting

in a growing body of large-scale neuroscience studies. As mentioned in Section 2.3,

advances have been made by incorporating machine learning methods into this process.

In order for a machine learning algorithm to do significantly more than memorize

the training examples, it must make some assumptions about the structure of future

observations. Well known results from learning statistical theory [Mitchell, 1997,

Vapnik, 2000] show that inclusion of effective priors (introducing bias) to regularize the

classification model is a vital component in any learning framework. Such assumptions

are known as inductive bias. For example, a common inductive bias is to assume that the

function being learned has a certain degree of smoothness, i.e., that examples very near

to one another will have the same target value. Another is the max-margin assumption

that different classes or clusters will be separated by a relatively unpopulated (low

density) region of space. In this chapter I will describe two models which address some

of the challenges in applying machine learning methods to neuroimaging problems

by developing specific inductive biases, expressed as regularization terms which are

targeted towards learning from neuroimaging data. Both of these resulting models are

based on the observation that the structure of imaging data can be represented as a set

of relationships between features, as depicted in Figure 3.1 and these relationships

should also hold among corresponding model parameters.



33

3.1 Motivation

In a neuroimaging setting, the learning task is to utilize training data (where confirmed

or highly likely diagnosis of the patients into diseased or healthy classes is given) to

learn a classifier to be used for disease diagnosis. If the data is in the form of images, the

first step is to encode the image as a feature vector. Notice that an image volume of size

100× 100× 100 in the training set yields a 106-dimensional vectorial representation.

However, available image datasets are in general relatively small (with at most several

hundred images) due to practical difficulties in volunteer recruitment and associated

cost. As a result, the feature space is very sparsely populated, and the classification

model may very easily overfit, leading to poor generalization [Mangasarian and Wild,

2004, Mitchell, 1997]. If some information about the data is given ahead of time (e.g.,

the distribution is Gaussian), we may be able to effectively employ such knowledge

by choosing a parametric model based on this assumption. Another common strategy

to address the high dimensionality is to explicitly utilize dimensionality reduction

tools such as Principal Components Analysis (PCA) [Jolliffe, 2002]. However,

PCA estimates the spatial distribution of examples in a high-dimensional space (under

linearity and Gaussian assumptions) rather than spatial information in the 3D coordinate

system of the images themselves. Moreover, despite the fact that PCA operates in a

high dimensional space, it is limited to the span of the training subjects, and so there

is no way for PCA, or any other dimensionality reduction method, to discover all of

the correlations in the data (which are potentially quadratic in the number of features –

which are already quite numerous) simply by examining the distribution of the data

only within the span of the available subjects. In the following, I will describe methods

of encoding priors relating to the spatial structure of our data directly in the learning

model.

3.2 Spatially Augmented LP Boosting

In [Hinrichs et al., 2009] my colleagues and I proposed a new framework for AD

classification which makes use of Linear Program (LP) Boosting with novel additional

regularization based on spatial “smoothness”. The algorithm, called Spatially Aug-

mented LP Boosting (SA-LPB), formalizes the expectation that since the examples
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Figure 3.1: Spatial relationships between voxels which may be lost when transforming

to a vector representation.

for training the classifier are images, the voxels eventually selected for specifying the

decision boundary should constitute spatially contiguous chunks. In other words, a

classifier composed of “regions” should be preferred over one composed of isolated

voxels. This prior belief turns out to be useful for significantly reducing the space of

possible classifiers and leads to substantial benefits in generalization. In this method,

the requirement of spatial contiguity (of selected discriminating voxels) is incorporated

within the optimization framework directly. Therefore, unlike some of the existing

methods, post-processing of the optimized classifier to ensure spatial smoothness

is not required. An initial attempt at modeling these interactions was proposed in

[Singh et al., 2008] in the context of classifying autism. This model was significantly

extended in [Hinrichs et al., 2009]. My contribution was to develop an efficient

implementation, propose several modifications for classifying Alzheimer’s Disease,

and perform extensive evaluations of the algorithm on MR and FDG-PET images from
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the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, which are detailed

next.

Boosting Approach and Weak Classifiers

The SA-LPB classification method is built from the notion of boosting. Boosting

seeks to “boost” the accuracy of weak (or base) classifiers – the general idea is to

assign each classifier a weight in a way that will improve their aggregate response

[Freund and Schapire, 1995, Mitchell, 1997, Schapire, 1990, Demiriz et al., 2002].

The weak classifiers, when considered individually, may have low predictive power.

However, the underlying premise is that if the weak classifiers’ errors are uncorrelated,

their combination gives a better approximation of the underlying “signal”. Linear

Programming boosting (LP Boosting) is a boosting approach [Demiriz et al., 2002,

Grove and Schuurmans, 1998] where the final classifier is learnt within a linear

optimization framework but with a soft margin bias based on the hinge-loss function.

The model places a 1-norm penalty on the weights, which also has the effect of reducing

many of the weights to zero1. The SA-LPB model builds on the LP Boosting model

by including additional priors. Weak classifiers in the neuroimaging case correspond

to individual voxels (or features), which I describe in detail in this section.

Let us denote the set of images in the training set as I = {I1, I2, · · · , In} with

known class labels y = {y1,y2, · · · ,yn}, yi ∈ {+1,−1}. Without loss of generality,

AD-positive patients (and controls) are denoted as −1 (and +1) respectively, and

I = IAD ∪ ICN where IAD (and ICN) are the image sets of the registered AD (and

control) groups. The set of image volumes in I are spatially normalized to a common

template space, as a first step. Therefore, a voxel located at (x,y, z) in one image

roughly corresponds to the voxel located at (x,y, z) in other images in I.

The proposed method makes no assumptions on a specific imaging modality. For

instance, when utilizing T1-weighted MR scans, the images are segmented into gray

matter (GM), white matter (WM), and cerebrospinal fluid (CSF), and probability

maps of different tissue types are generated using standard techniques [Ashburner and

Friston, 2000, Ashburner, 2007]. Either one of these quantities (voxel intensities) may

1In linear SVMs, the penalty is on the 2-norm of the weights, which places more emphasis on the

width of the margin, in a Euclidean sense.
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then be used to construct weak classifiers. Each weak classifier at a voxel (x,y, z)

tries to correlate variation at that voxel with the likelihood of AD diagnosis. Since

AD is characterized by atrophy in specific brain regions, we should expect some weak

classifiers to be more discriminative than others. The SA-LP Boost algorithm seeks

to automatically select and boost such classifiers. For notational convenience, in the

remainder of this section I will refer to voxels using a single index such as i, rather

than (x,y, z).

Suppose we have a list of the intensities of voxel i of all images in the training set,

I. Many functions of a single variable will give a reasonable classifier, but for boosting

purposes we need only construct one having accuracy greater than random chance,

and the most straight-forward way of doing so is to use the labels on the training data

to determine a best-fit threshold.

The responses of the weak classifiers will populate a matrix,H, of sizem×n, where

m is the number of images and n is the number of classifiers (or voxels). Motivated

by the observation that the weak classifiers are not the most reliable predictors, I

adopted a “soft” thresholding approach, i.e., the response of the weak classifier assigns

a confidence score to the classification for each image rather than explicitly classifying

it in either group. I chose a logistic sigmoid function with a variable ‘steepness’

parameter ρ, and adjust the range to be [−1,+1]. To do so, one first chooses a voxel

specific threshold, τi, so that the response is negative (or positive) if less than (or

greater than) the threshold. The τi value is calculated as the midpoint between the

voxel intensities’ means at voxel i for the IAD and ICN groups. Because a decline in

GM concentration or FDG-PET intensity is a sign of atrophy, a clinically consistent

assumption here is that the control group mean, µCN(i), is greater than the AD group

mean, µAD(i) [Fox and Schott, 2004]. My choice of an adjusted logistic sigmoid

curve is based on the fact that its first derivative closely approximates the Gaussian

distribution, because the value of the sigmoid (before adjustment) corresponds to the

area under the Gaussian density function up to that point. This means that while the

weak classifiers do not output actual probabilities, the level of confidence is related to

the probability of class membership.
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Let Hij be the output of a weak classifier i (a certain voxel or feature) on image j.

Hij =
2

1 + exp (τi − ρ · Ij(i))
− 1

where ρ is the “steepness” parameter, Ij(i) is the GMP at voxel i in image Ij ∈ I,
and the threshold is given as τi = (µCN(i) − µAD(i))/2. The observed steepness

as a function of ρ is shown in Figure 3.2. Having described the weak LP Boosting

approach (and particular modifications necessary to adapt it to imaging data), I can

now turn to the added improvements to the model itself.

Figure 3.2: Weak classifier outputs as a function of various ρ values.

Spatial Constraints

As discussed at the opening of this chapter, a characteristic of the problem is that the

feature vectors are representations of image data. This results in a certain dependency

between the feature vector coordinates, and also the weak classifiers, (see Figure 3.1).

This property of the data can be leveraged to introduce a bias (or prior) in the

classification which has an advantage of constraining the complexity (expressiveness

or degree of freedom) of possible classifiers, encouraging better generalization.

The classifier consists of a set of weights on weak classifier outputs to define
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a separating hyperplane. SA-LPB enforces spatial regularity by requiring that the

weights assigned to neighboring weak classifiers should be similar. Such a spatial

regularizer also has the benefit that it avoids selecting individual, spatially isolated

voxels. Rather, it prefers spatially localized ‘regions’ – a desirable characteristic since

isolated voxels are seldom clinically relevant; instead, markers of AD derived from

patient imaging must be spatially localized.

Classification model

The SA-LPB optimization model is given as

min
w,ξi,tjk

wT p̃+ C
∑

i

ξi +D
∑

j∼k

tjk (3.1)

s.t. yiw
THi + ξi > 1 ∀ i

wj −wk − tjk 6 0 ∀ j ∼ k
wk −wj − tjk 6 0 ∀ j ∼ k.

As in SVMs, the vector w defines a classifying hyperplane, chosen to minimize hinge

loss, with 1-norm regularization, which has the effect of selecting a sparse set of

the most discriminative voxels. This allows for an easier clinical interpretation as

the output consists of only a few highly discriminative (highly weighted) localized

regions, and serves a feature selection purpose [Fung and Mangasarian, 2004] in many

applications. The vector, p̃, represents the training set error rate of every weak classifier

(the first term in the objective). This results in a weighted 1-norm regularization. This

way, by adjusting the penalty on each weight wj relative to its training set error rate,

we allow weak classifiers with greater accuracy to be given slightly greater weight.

The auxiliary variables, tjk, represent the absolute difference between weights on

neighboring voxels j and k (indicated as i ∼ j). These variables are similarly penalized,

which leads the optimizer to choose a separating hyperplane whose weights correspond

to a set of spatially coherent voxels. Note that if t = |w| then t > w and t > −w

must both hold simultaneously. Thus, tjk = |wj −wk|. The parameter C controls the

amount of emphasis placed on training set accuracy relative to model regularization.
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The emphasis on spatial regularity is similarly controlled byD. In Model (3.1) above,

we observed that in practice D > 10C is a reasonable choice to sufficiently enforce

the neighborhood constraints.

The linear program in (3.1) can be optimally solved efficiently in polynomial

time using standard solvers. Once the solution is obtained, the weights w can be

interpreted as the coefficients of a separating hyperplane in the feature space. We use

this hyperplane directly as our classifier, and no additional post-processing is required.

During experimental evaluations I observed that despite the 1-norm penalty, a

feature selection step is still necessary. This is mainly for computational reasons,

as well as to mitigate the possibility of over-fitting. In these experiments I used a

very simple t-test on each voxel (using only training examples) and selected the top

2000–3000 most significant voxels, corresponding to roughly 1% of those available.

However, more sophisticated methods can be utilized if desired and will likely further

improve the empirical performance of the system. As a result of this feature selection

step, I observed that some voxels selected had no neighbors that were also selected,

meaning those voxels were not subject to spatial regularization, and the model therefore

placed extra weight on them. Pruning such voxels resolved the issue.

Experiments and Results

I validated the SA-LPB algorithm using ADNI data, and present an analysis of its

performance characteristics here. Classification experiments were performed using

leave-two-out cross-validation. I chose this form of cross-validation because it requires

fewer folds, while still behaving similarly to leave-one-out; the size of the training

set in each fold is not much different from leave-one-out, but the number of folds is

halved. In this section I will first cover results on experiments using T1-weighted MR

images, before moving to evaluations with FDG-PET image data in Section 3.2.

MR image data

In the first set of experiments I used only gray matter probability maps (GMPs, derived

from VBM registration). The cross-validated classification accuracy of the model using

GMPs was 82%, and the sensitivity (and specificity) was 85% (and 80%). In order to

verify that the neighbor constraints are indeed having the desired effect I re-ran the
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experiments withD = 0, which effectively reduces the model to standard LP Boosting.

In addition to causing a deterioration in accuracy, the number of non-zero voxel weights

returned by the algorithm dropped by about a factor of 100, demonstrating the effect

that the augmentation has on the algorithm. The results are summarized in Table 3.1,

and suggest that the proposed technique works well for the AD classification task

using MR image data.

Classifier outputs (i.e., confidence levels) are shown in Figure 3.3. In Figure 3.3(a)

we see that the classifier output on AD cases is concentrated between 0 (closest to

the classification boundary) and −3 (farthest from the classification boundary), but

the model incorrectly classifies some cases (which account for the misclassifications

in the accuracy reported in Table 3.1 below). Classification confidence can also be

used to generate Receiver Operating Characteristic (ROC) curves, in which the True

Positive Rate (TPR) (sensitivity) is plotted as a function of the False Positive Rate

(FPR), (1 − specificity). Here, “positive” refers to AD subjects. The points in this

plot are generated by setting different thresholds at which the classifier predicts that

the subject has AD. That is, the confidence of every subject is used as a threshold,

and all subjects with confidence higher than that threshold are classified as AD, and a

TPR/FPR point is calculated from this, resulting in the curve shown in Figure 4(b).

The area under the curve (AUC) of 0.8789 suggests a good predictive accuracy.

Data set Accuracy Sensitivity Specificity Area under ROC

GMP 82% 85% 80% 0.8789

FDG-PET 80% 78% 78% 0.8781

Table 3.1: Results of classification experiments on ADNI image data. One set of

experiments were conducted with Gray Matter Probabilities (GMP) derived from

T1-weighted MR images as input. The other set of experiments were conducted with

FDG-PET images.

An important component of our experiments was to evaluate the relative importance

of various brain regions in terms of specifying a good classifier, and whether these

regions are consistent with clinically accepted distribution of AD-specific pathology.
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(a) (b)

Figure 3.3: (a) Classifier’s output for test images on the MR population. (b) ROC

curves on the MR population.

Figure 3.4: Brain regions selected when using GMPs derived from MR scans as input.

Figure 3.4 shows our results for the entire MR population. We can see that the selected

voxels (or weak classifiers) are concentrated in the hippocampus and parahippocampal

gyri, but that there are also some voxels in the medial temporal lobe bilaterally, and

scattered in other regions. We find these results encouraging because the selected

regions are all known to be affected in AD patients [Braak and Braak, 1991].
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FDG-PET image data

I also applied the SA-LPB algorithm to the FDG-PET scans from the ADNI dataset.

In all, there were 149 subjects in the MR population who also had FDG-PET scans.

Hereafter I refer to this group as the FDG-PET population. SA-LPB obtained 80%

classification accuracy on the FDG-PET population. The specificity was 78% and

the sensitivity was 78% while the area under the ROC curve was 0.8781 as shown in

Table 3.1. With the spatial constraints removed by setting the D parameter to 0, the

number of non-zero weights dropped significantly as it did for GMP data; with the

spatial constraints the algorithm typically chose between 150 and 500 non-zero voxels

on FDG-PET data. Removing the spatial augmentation did not have a significant

effect on accuracy. Because FDG-PET data is highly smooth to begin with, we do not

expect as significant a gain in generalization performance by using spatial constraints.

Because the level of accuracy was not significantly different, we do not present the

results of these experiments.

Figure 3.5(a) shows the SA-LPB’s output on the FDG-PET population. Similar to

the MR population, most of the AD subjects are concentrated between −1 and −2

(and similarly the control subjects are concentrated between 1 and 2), while some

subjects were misclassified. Again, the area under the ROC curve in Figure 3.5(b) is

an indication of the accuracy of this method. Note that while most of the examples are

clustered around their respective classes, some of the controls show the beginnings

of decline, even to the point of resembling AD subjects. It is possible that some of

these controls are showing early signs of AD-like symptoms prior to clinical dementia,

however, one must also note that a group of AD subjects appears to be healthy (and

another group is distinctly in the middle), which suggests that there are either some

image processing artifacts, or that there is a small group of AD subjects having

abnormal atrophy patterns not detected by SA-LPB. Section 6.2 further elaborates on

these issues.

The brain regions selected by SA-LPB in the experiments utilizing FDG-PET

scans also showed relevant brain regions. From Figure 3.6 we can see that the posterior

cingulate cortex and bilateral parietal lobules are well represented, as well as the left

inferior temporal lobe. These regions are known to have well established associations

with AD-related neurophysiological changes, and no spurious regions were selected.
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(a) (b)

Figure 3.5: (a) Classifier’s output for test images on the FDG-PET population. (b)

ROC curves on the FDG-PET population.

Figure 3.6: Brain regions selected when using FDG-PET scans as input. Lighter

colors indicate greater weight.

These results illustrate that the SA-LPB algorithm is able to reliably determine clinically

relevant regions in several different scanning modalities.

As a final observation about the SA-LPB model, note that the penalty on dissimi-

larity between neighboring weights is also a 1-norm penalty, with resulting sparsity

behavior. Sparsity in this domain corresponds to many tjk variables being equal to
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0, which is the case when neighboring voxels have exactly equal weights. Thus, in

many situations, the optimal classifier consists of a set of contiguous sets of voxels, all

having uniform weights. While the spatial smoothness-inducing side-constraints do

combat overly sparsifying tendencies of the 1-norm regularizer, there is nevertheless a

noticeable “shrinking bias” similar to that described in the graph-cuts based segmenta-

tion literature [Kolmogorov and Boykov, 2005, Vicente et al., 2008]2. These issues

were a part of the motivation behind Q-SVM, described in the next section.

3.3 Q-SVM

SA-LPB improves upon LP-Boosting by incorporating side-constraints which require

that neighboring voxels should have similar weights, and that any divergence from

this ideal must be due to sampling artifacts, and should be discouraged. The way

this belief is encoded, however, is in terms of a 1-norm penalty on differences only

between direct neighbors. This encourages a kind of sparsity behavior which is

somewhat drastic, leading to “flat” regions having exactly the same value, which

may be overly constricting. Further, note that this is a penalty on the surface of

transition between classifier regions and non-classifier regions, which means that it

is occasionally necessary to carefully tune the C and D parameters in order to get

reasonable regions in the output classifier. This also means that two new constraints

must be added to the LP for each pair of voxels, which can lead to some difficulties

with scalability – for more than 10,000 to 20,000 voxels, the associated running time

created difficulties.

Perhaps a preferable approach might consider pair-wise feature relationships in

terms of a covariance structure, which can then be regularized as a quadratic function

wTQw, where Q−1 encodes the covariance between features. (In order to address

scalability, note that this covariance structure can be encoded as a sparse matrix.) As a

motivating example, consider handwritten digit recognition. (See experiments below.)

When examples correspond to images, features may correspond to pixels – there is a

natural correlational structure inherent in the data, as neighboring pixels are expected

2We can think of SA-LPB as simultaneously solving a classification task and a segmentation task,

in that we would like to examine the optimized classifier in order to extract relevant discriminative

“foreground” regions.
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to be highly correlated. By encoding this relation in Q, we can bias the classifier to

choose a smoothly varying pattern of pixels, which is more likely to correspond to the

true separation between digit classes.

This has several advantages. First, the strength of the connection between voxels

can be specified as well, which can provide an enhanced range of priors to impose on

the model. Second, as a sparse matrix, Q can encode a larger number of interactions in

a way that scales much better than adding constraints to an LP. Third, there is less of a

concern about discarding so many voxels as in SA-LPB under the sparsity-inducing

1-norm regularization on w. Instead, the sparsity domain is in the eigenvectors of Q –

sparsity in this case is driven more by the decaying eigenvalues of Q−1. That is, the

eigenvalues of Q are just the inverses of those of Q−1, meaning that a few eigenvalues

will be penalized much less than the rest.

The Q-SVM model is given as,

min
w,ξ>0,b

wTQw + C
∑

i

ξi (3.2)

s.t. yi
(
wTxi + b

)
> 1 − ξi (3.3)

Note that Q-SVM generalizes the regular SVM (by setting Q = I). Q-SVM im-

proves over SA-LPB by eliminating the overly sparsity-inducing behavior of SA-LPB’s

neighbor constraints; it provides this capability by encoding a non-sparsifying regular-

izer, not on the differences of the weights, but on their products. That is, rather than

penalizing differences between neighboring voxel weights, Q-SVM can encourage

weights to be similar by rewarding a high product between neighboring weights (by

placing a negative entry in Qi,j) while still penalizing their individual squared weights

(since Qi,i must be positive and since Q must be diagonally dominant). For instance,

if we were to calculate Q as a Gaussian kernel between the (x,y, z) coordinates of

each voxel, and take a graph Laplacian, then there will be a higher reward for voxels

that are close to one another having more similar weight, than for voxels that are far

apart, but without the sparsity inducing behaviors of SA-LPB. The comparison is

highlighted in experiments with Q-SVM on ADNI data, described below.
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The Q-SVM model subsumes several other models that have been proposed in the

machine learning literature recently. The model of [Xiang et al., 2009] is similar in

concept to (3.2) except that their formulation is an adaptation of ADABoost (for fMRI

voxels), while Q-SVM is a direct extension of the SVM model. A recently proposed

model for natural language processing [Bergsma et al., 2010] is also a special case

of (3.2), in which we set Q = I
M×M − ppT , where pi = 1

M , ∀i, (or some other

distribution if it can be specified through domain knowledge). One can interpret this

model as adding a 1-norm reward on top of the 2-norm regularizer, which has the

effect of making the weights more uniform. The authors of [Cuingnet et al., 2010]

proposed a regularization scheme in which the classifier w is transformed according

to w→ e
1

2
Lw, where L is a graph Laplacian (or Laplace-Beltrami operator) based on

distances between voxel-wise features, and exponentiation is applied element-wise. We

can see that the norm on w becomes wT (LTL)w which is a case of Q-SVM. As noted,

it is almost always beneficial to regularize a model so as to better reflect the correlations

present in the data, especially when this allows us to bring in extra information that

goes beyond what we can infer from the data (i.e., out-of-band information).

Classification experiments

As an illustrative example, consider hand-written digit recognition from the MNIST

digits dataset [LeCun et al., 1998]. When examples correspond to images, and features

correspond to pixels, there is a natural correlational structure inherent in the data,

as neighboring pixels are expected to be highly correlated. Ordinarily, the relation

between neighboring pixels is lost when converting images to feature vectors – however,

by encoding this relation in Q, we can bias the SVM classifier to choose a smoothly

varying pattern of pixels, which is more likely to correspond to the true separation

between digit classes. Three such Q-matrices are shown in the top row of Figure

3.7. The first is the covariance function between pixels, which can be thought of as

an indication for a given pair of pixels of how likely they are to both be included in

a given character. This is similar to a spatial smoothness prior, except that it also

encodes directionality. The second is a Gaussian kernel between 2D pixel coordinates,

and the third is their element-wise product (which is also p.s.d.). I then trained a

Q-SVM classifier to distinguish between ‘3’ and ‘8’ digits. The resulting weight
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.7: Top Row: Three Q-matrices for pixel-wise features in the MNIST dataset.

(Each is 784 × 784.) (a): pixel-wise intensity covariances over the entire MNIST

data set; (b): Gaussian kernel between pixel coordinates; (c): element-wise product

of (a) and (b). Middle Row: (d – f) Pseudo-Inverses of the above Q-matrices (a –

c) were used as Q-SVM regularizers, and the resulting weight vectors are depicted

here as 28× 28 images. Bottom Row: (g) Weight vector trained by a standard SVM.

Color scale in all images goes from −2× 10−3 −−2× 10−3. All Q-matrices were

normalized to have trace equal to the number of rows, to facilitate comparison with

the Identity matrix (i.e., standard SVM).
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(a) (b)

(c) (d)

Figure 3.8: Comparison of spatial smoothness of the weights chosen by Q-SVM and

SVM with computed gray matter (GM) density maps. Left (a-b): classifier weights

given by a standard SVM; Right (c-d): classifier weights given by Q-SVM .

vectors are shown in the second row of Figure 3.7. For comparison, the weight vector

chosen by a standard SVM is shown in the far right column. It is clear from the figure

that the corresponding regularizers differ, and they lead to different classifiers.

To demonstrate the influence on the learned classifier in a neuroimaging context,

I performed classification experiments with the Laplacian of the inverse distance

between voxels as a Q matrix, and voxel-wise GM density (VBM) as features. Using

10-fold cross-validation with 10 realizations, Q-SVM ’s accuracy was 0.819, compared

to the regular SVM’s accuracy of 0.792. These accuracies are significantly different at
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the α = 0.0005 level under a paired t-test. In Figure 3.8 a comparison is shown of

weights trained by a regular SVM (a–b), and those trained by a spatially regularized

Q-SVM (c–d). Note the greater spatial smoothness and lower influence given to

isolated “pockets”. Refinement of ideas relating to Q-SVM ultimately led to the

Q-MKL model, discussed in Chapter 5.
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Chapter 4

Adaptation of Learning Methods to Neuroimaging

Problems: Multi-modality Methods

As mentioned in Section 2.3, several recent papers have demonstrated that discrimina-

tion of AD subjects from controls is possible with MR or PET images using machine

learning methods such as SVM and boosting. These algorithms learn the classifier

using one type of image data, yet AD is not well characterized by one imaging modality

alone, and analysis is typically performed using several image types, each measuring a

different type of structural/functional characteristic. In this chapter I explore AD clas-

sification using multiple modalities simultaneously. The difficulty with this approach

is that any issues with dimensionality are compounded by the number of imaging

modalities introduced, meaning that extra means of controlling model complexity are

required. To tackle this problem, we utilize and adapt a recently developed class of

machine learning tools called Multi-Kernel learning (MKL). Essentially, each imaging

modality spawns one (or more) kernels and we simultaneously solve for the kernel

weights and a maximum margin classifier. In the immediately following section I will

discuss investigations into the utility of MKL for boosting discriminative power from

multiple imaging modalities, as well as other sources of information such as genotype,

CSF protein assays or demographics, before moving to a discussion of how outlier

robustness can improve classification accuracy in MKL.

4.1 Examination of p-norms

When applying MKL to AD classification, one has the option of choosing between

several norm regularizers on the subkernel weight vector β. The 1-norm is the sparsest,

i.e., it gives solutions in which most of the subkernel weights drop to 0, effectively

discarding those kernels, while the 2-norm is non-sparse, meaning that all kernels will

be included in the final model, though some may have very small weights. For norms

between 1 and 2, the solution is of intermediate sparsity. By choosing a norm, we are
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essentially making a guess as to what percentage of the kernels are essentially “noise”,

and should be discarded. The question then is, are there any “useless” kernels that

should be discarded? On the one hand, all kernels are derived from imaging data, and

should in theory contain useful information, but on the other hand there is redundancy

due to overlap between feature sets and using different kernel functions with the same

data. Results are shown in Table 4.1. Briefly, norms greater than 1.5 performed about

equally, and were superior to the 1-norm, suggesting that too much sparsity is not

always a good thing.

For these experiments, 48 AD subjects and 66 controls were chosen who had

both T1-weighted MR scans and Fluoro-Deoxy-Glucose PET (FDG-PET) scans at

two time-points two years apart. Standard diffeomorphic methods (SPM, www.fil.

ion.ucl.ac.uk/spm/) were used to register scans to a common template and

calculate Gray Matter (GM) densities at each voxel in the MR scans. We also used

Tensor-Based Morphometry (TBM) to calculate maps of longitudinal voxel-wise

expansion or contraction over a two year period. Feature selection was performed

separately in each set of images by sorting voxels by t-statistic (calculated using

training data) and choosing the highest 2000, 5000, 10000,…,250000 voxels in 8

stages. I used linear, quadratic, and Gaussian kernels: a total of 24 kernels per set,

(GM density maps, TBM maps, baseline FDG-PET, FDG-PET at 2-year follow up)

for a total of 96 kernels. Note that the same experimental setup (including subjects

and kernels) was used in work described in Chapter 5, and in Section 6.3.

MKL norm used Accuracy Sensitivity Specificity Area under ROC

1.0 0.914 0.867 0.949 0.977

1.25 0.916 0.865 0.954 0.980

1.5 0.921 0.874 0.956 0.982

1.75 0.923 0.872 0.961 0.982

2.0 0.922 0.870 0.959 0.981

SVM 0.882 0.844 0.910 0.970

Table 4.1: Comparison of different MKL norms in the presence of uninformative

kernels, and an SVM trained on a concatenation of all features for comparison.

www.fil.ion.ucl.ac.uk/spm/
www.fil.ion.ucl.ac.uk/spm/
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4.2 Robustness to Outliers

In this work, my colleagues and I studied the problem of AD classification using multi-

modal image data, as above. To make the MKL model robust, I developed strategies

to suppress the influence of a small subset of outliers on the classifier, on a per-kernel

basis, giving a variant on MKL which I call Robust MKL. Though the primary model

is not convex, I developed an alternative minimization-based algorithm for Robust

MKL. To evaluate Robust MKL’s efficacy, I performed multi-modal classification

experiments on images from the ADNI project, with promising results. In this section

I will motivate the robustness modification, discuss the related optimization issues,

and present experimental results.

Outlier Ablation

As discussed above, MKL finds an optimal regularized linear combination of kernels

concurrently with the optimal classifier. In addition to solving for the combination of

kernels, however, it may be desirable to identify and suppress the influence of one or

more mislabeled subjects (examples) may have on the classifier. This is important

in AD classification because of: (1) Co-morbidity: In some cases, AD is coincident

with other neurodegenerative diseases such as Lewy bodies or FTLD, and because

subjects may have varying degrees of cognitive reserve due to protective effects such

as education [Querbes et al., 2009]; and (2) while the image data may suggest signs of

pathology characteristic of AD, these usually precede cognitive decline. As a result,

a subject may be cognitively normal (and labeled as control) in spite of early-stage

AD pathology or because the subject has greater cognitive reserve. To ensure that the

algorithm is robust for this problem and other applications, we would like to identify

such outliers within the model. Note that this does not mean that the classifier will

be able to identify such subjects in the future – rather, this robustness will allow the

classifier to focus on the common cases, without attempting to correctly classify outlier

subjects. This way, we can expect unseen (test-set) outlier subjects will appear even

more strikingly as outliers, making it easier to recognize them. In order to do this, one

option within the SVM setting is to replace the regular loss function with the “robust”

hinge loss function which differs only in that it is capped at 1:
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robust-hinge(w, x,y) = min(1, (1 − ywTx)+), (4.1)

where yi ∈ {+1,−1} are the class labels. This means that once an example falls on

the wrong side of the classifier there is no additional increase in penalty. To address

the non-convexity of Equation (4.1), Xu et al. [2006] replaced the usual hinge loss

function with the η−hinge loss function, which uses a discount variable ηi for each

example. That is,

η-hinge(w, x,y) = η(1 − ywTx)+ + (1 − η) (4.2)

0 6 η 6 1

where (·)+ truncates negative values to 0. The result in [Xu et al., 2006] shows that

η-hinge loss has the same optimum and value as robust-hinge loss. Our proposed

model makes use of such a parameter to serve as both an outlier indicator and also to

adjust the influence of this example on the classifier in the MKL setting. Robust MKL

is formulated as,

min
η

min
w,ξ

∑
k ‖wk‖2 + C

∑
i ξi −D

∑
i,k ηi,k (4.3)

s.t. yi(
∑

k ηi,kwk
Tφk(xi)) > 1 − ξi ∀i

0 6 ηi,k 6 1 ∀i,k
ξi > 0 ∀i.

Here, wk is the set of weights for the kernel k, ξi is the slack for example i (similar to

SVMs), and ηi,k is the discount on example i’s influence on training classification in

kernel k (described in detail below).

The role of η in Model 4.3 can be understood by examining its effect on the loss

function: ηi,k introduces a discount for xi’s contribution to the classifier only in kernel

k. This means that an example which is badly characterized in some kernels can still

be used effectively in other kernels where it is more accurately characterized. In this
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way, the proposed model performs automated outlier identification and suppression

in the MKL setting. This is balanced by the positive reward for making η as large

as possible (objective term −D
∑

i,k ηi,k). Note that this term can be equivalently

expressed as +D‖1 − η‖1: a 1-norm penalty on 1 − η. The corresponding sparsity

behavior ensures that for most (i,k), ηi,k = 1, meaning that the least number of

discounts possible are given out through η. This is important because if we allow the

algorithm to discard any example that contributes to the loss function, there can be no

guarantee on learning or generalizability. Setting D large enough will ensure that this

is the case. Also note that η has cardinalityM×N, whereM is the number of base

kernels, and N is the number of examples – this means that in order to fully escape

the loss function, the algorithm would incur a penalty ofM×N, where the hinge loss

would only be on the order of N times the average margin violation.

Alternative Minimization

While (4.3) accurately expresses our problem, efficiently optimizing the objective

function is difficult because it is non-convex. To address this problem, we “relax”

this formulation by performing a block-wise coordinate descent, treating the discount

coefficients η fixed at each iteration, and solving the corresponding SVM problem.

The value is iteratively updated according to the following expression:

ηi,k =

(
yi(α ◦ y)TKk(xi, ·)

)
−∣∣∣

∑
j

(
yj(α ◦ y)Kk(xj, ·)

)
−

∣∣∣
+ 1 (4.4)

The numerator represents the degree of loss incurred by examples that are actually

misclassified in kernel k, over and above the hinge-loss, and the denominator represents

a normalization over all examples within a single kernel. This is necessary because

different kernels have different error variances, which must be accounted for (since

we are combining kernels). Adding 1 converts the fraction of incorrectness to a

fraction of remaining certainty that kernel k correctly characterizes example i. Having

calculated η via Equation (4.4), we construct the kernel matrix K such that K(xi, xj) =
∑

k ηj,kKk(xi, xj), and train an SVM on this kernel. This process repeats until

convergence.
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Note that when manipulating kernel matrices it is essential that positive semi-

definiteness be preserved, or the alternative formulation will not be any more solvable

than the original Model (4.3). Fortunately, setting ηi,k is equivalent to scaling down

an entire row-column pair (recall that kernel matrices are symmetric) which may not

preserve positive definiteness (as it can lead to 0 elements on the main diagonal) but it

does preserve positive semi-definiteness.

Experimental Results

As in other works, I evaluated Robust MKL’s performance on image scans from the

ADNI dataset. In these experiments, I used MR and FDG-PET scans of 159 AD

patients (77 AD, 82 controls) from this dataset. These experiments focused on two

main questions: does outlier ablation have a noticeable effect on the learned kernel, and,

does it result in appreciable gains in predictive accuracy? To address the first question,

I analyzed the variation in the kernel matrices as a response to outlier identification

and suppression. Second, I evaluated the efficacy of the Robust MKL framework (with

outlier detection) as a classification system, with respect to its accuracy using ROC

curves.

Evaluation of Outlier Detection

In this section I evaluate the usefulness of outlier detection in the classification setting.

Recall that an ideal input to any maximum margin classifier is a dataset where each

class is separated from the other by a large margin. The relationship between distance

metrics and kernel functions can be understood via the following identity:

d(xi, xj)
2 =〈xi − xj, xi − xj〉
=〈xi, xi〉− 2〈xi, xj〉+ 〈xj, xj〉
=Kii + Kjj − 2Kij

(Note that the diagonal dominance property of positive semi-definite matrices is

necessary for a real, i.e., non-imaginary, distance metric.) The term (α ◦ y)TK(α ◦ y)

in the SVM dual problem represents a minimization of off-diagonal kernel entries
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corresponding to support vectors of the same class, and a maximization of off-diagonal

entries for support vectors of opposing classes. While counter intuitive at first, this

can be understood by recalling that the SVM algorithm chooses the examples that are

most difficult to classify to be the support vectors. Following this line of reasoning

then, if there are some outlier subjects that fall deep within the opposite class, they will

be picked up as outliers, however, they may overwhelm the more important support

vectors which are the ones on the actual margin. Robust MKL seeks to compensate

for this behavior, and place more weight on examples nearer to the margin. This effect

can be seen by visually inspecting the resulting kernel matrices, giving a qualitative

evaluation of Robust MKL’s performance.

If we order the subjects so that they are grouped by class, then the kernel matrix

can be divided into four contiguous regions: similarities between AD subjects(A),

between control subjects(C), and between the AD and control subjects (B and BT .)

[
A B

BT C

]

Each support vector will appear as a “band” which is relatively stronger in B and

BT than in A or C. Thus, outliers will appear as a few extremely strong bands, while

the support vectors will be a bit more muted. The effect of outlier removal should

reduce the bands corresponding to outliers in the training kernel, i.e., the kernel of

training subjects with outlier ablation. More importantly, however, we can also look

at the kernel of the test subjects, in which the outliers cannot be identified and ablated

(because their labels are not known). In the test kernel (i.e., kernel function between

examples in their training role, and examples in their testing role,) the training outliers

(horizontal bands) should be ablated, and the test outliers (vertical bands) should be

even more extreme because the classifier does not put any emphasis on reducing their

errors.

Figure 4.1 shows the kernels produced by Robust MKL. Figure 4.1 (a) and (c)

display the uncorrected train and test kernel matrices created simply by summing-up

the set of individual kernel matrices. Figure 4.1 (b) and (d) show the corresponding

outlier-ablated train and test kernels. In 4.1(a), the outliers from both classes are

highly visible, as indicated by the red ellipsoid. This effect is significantly attenuated

with outlier detection in Figure 4.1(b), allowing a few other support vectors to appear.
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Figure 4.1: (a) Sum of base kernel matrices on training examples. (b) Robust MKL

kernel matrix between training examples. Note that the two classes are clearly visible,

and the vertical and horizontal lines corresponding to outliers are attenuated. (c) Sum

of base kernel matrices on test examples. (d) Robust MKL kernel matrix between

test examples. Notice that while there are vertical lines corresponding to outlier test

examples, the horizontal lines remain largely attenuated.

Also note the “cleaner” separation between the two classes. Next, observe the effect

of outlier ablation on unseen test subjects in Figure 4.1 (c) and (d). For this, the

test kernel was constructed with the training examples as rows and test examples as

columns. In the uncorrected case in Figure 4.1(c), the vertical lines correspond to

unseen outlier subjects, whereas the horizontal lines are attenuated, indicating that in

presence of training data, the non-outlier subjects have sharper contrast (causing an

improved confidence in classification). Finally, the test kernel (after outlier detection)

shown in Figure 4.1(d) shows a stronger within-class signal, and does not attempt to

correctly classify the outliers, thereby discounting their effect on the decision boundary

as desired (recall hinge loss from Equation (4.1)). It is important to note that the

“cleaner” separation seen in the training kernel is carried through to the test subjects,

and does not simply represent an overfitting of the data by removing the more difficult

examples.
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Figure 4.2: ROC curves for the single modal and multimodal classification using

Robust MKL

Method Accuracy Sensitivity Specificity AUC
Robust MKL

MR
75.27% 63.06% 81.86% 0.8248

Robust MKL

FDG
79.36% 78.61% 78.94% 0.839

Robust MKL

(multimodal)
81.00% 78.52% 81.76% 0.885

Table 4.2: Accuracy results for the single modal and multimodal classification using

Robust MKL

ROC curves and accuracy results

Next, I evaluated the classification accuracy of Robust MKL for single modality

classification, using MR and FDG scans individually as well as both these modalities in

a combined setting. I used a set of eight kernels each (linear and Gaussian with varying

values of σ) for MR and FDG PET: 16 in all. Feature selection was performed using

a simple voxel-wise t-test, and thresholding based on the p-values. I used 10-fold

cross-validation with 25 realizations (i.e., separate cross-validation runs), and report
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the average accuracy, sensitivity, and specificity. Results are summarized in Table 4.2

and Figure 4.2. As expected, we can clearly see that Robust MKL with MR and FDG

PET data outperforms the accuracy obtained using only one imaging modality (even

when we use multiple kernels with each image type). The area under the curve (AUC)

is 0.885 suggesting that it is an effective method for AD classification.

Interpretation of discriminative brain regions

I evaluated the relative importance of various brain regions selected by the algorithm,

and whether these regions are consistent with clinically accepted distributions of AD

pathology. When using linear kernels, it is possible to recover weights corresponding

to the original (voxel-wise) features. This way, the classifier weights correspond

to individual voxels, and therefore can be interpreted as distributions of weights on

corresponding brain regions. Figure 4.3 shows the calculated weights for Gray Matter

Probability (GMP) and FDG-PET images. For GMP, we see the hippocampus and

hippocampal gyri are featured prominently, along with middle temporal regions. For

FDG-PET, the posterior cingulate cortex and parietal lobules bilaterally are featured

prominently. These results validate the Robust MKL method since the selected regions

are all known to be affected in AD patients [Jack Jr. et al., 2000, Minoshima et al.,

1997].
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Figure 4.3: (Top) Classifier weights for gray-matter probability images shown overlaid

on a template. (Bottom) Classifier weights for FDG-PET images shown overlaid on a

template. The images (left) show the discriminative regions as a mosaic. The images

(right) are provided for 3D localization.
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Chapter 5

Exploiting Modality-modality Interactions

In this chapter I discuss an extension to the MKL framework which incorporates

knowledge of the interactions between various modalities available to a learning

algorithm. More generally, it can also be beneficial to regularize the interactions

between kernels, either in a domain-driven (i.e., using “out-of-band” information,) or

in a data-driven sense, i.e., using only empirical measures of interaction. In MKL,

model complexity is controlled using various norm regularizations on the kernel

combination coefficients, or sub-kernel weights. However, existing methods neither

regularize nor exploit potentially useful information pertaining to how kernels in the

input set interact; that is, higher-order kernel-pair relationships that can be easily

obtained via unsupervised (similarity, geodesics), supervised (correlation in errors), or

domain knowledge driven mechanisms (e.g., which features were used to construct the

kernel?). In this chapter I will show that by substituting the norm regularizer with an

arbitrary quadratic function determined by the square, symmetric matrix Q, one can

impose a desired covariance structure on sub-kernel weight selection, and use this as an

inductive bias when learning the concept. This formulation significantly generalizes

the widely used 1- and 2-norm MKL objectives. I will discuss ramifications in terms

of learning bounds (i.e., Rademacher complexity), and explore the model’s utility for

exploiting aggregate information from several distinct imaging modalities through AD

vs. control classification experiments on ADNI data, as well as on several benchmark

data sets. Experimental results show that the new model outperforms the state of the

art (p-values≪ 10−3) in the AD classification task.

5.1 Q-MKL

Kernel learning methods (such as Support Vector Machines) are conceptually simple,

strongly rooted in statistical learning theory, and can often be formulated as a convex

optimization problem. As a result, SVMs have come to dominate the landscape of
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supervised learning applications in bioinformatics, computer vision, neuroimaging,

and many other domains. A standard SVM-based ‘learning system’ can generally be

thought of as a composition of two modules [Guyon and Elisseeff, 2003, Gehler and

Nowozin, 2009b, Zhang et al., 2011a]:

1. feature pre-processing;

2. a core (linear) learning algorithm.

The design of a kernel encompases the usual notions of feature preprocessing and

may involve using different sets of extracted features, dimensionality reduction tools

and methods, or parameterizations of the kernel functions. Each of these alternatives

produces a distinct kernel matrix. (Or a distinct kernel function if using a method

which only instantiates the kernels on-the-fly.) While much research has focused on

efficient methods for the latter (e.g., support vector learning) step, specific choices

of feature pre-processing are frequently a dominant factor in the system’s overall

performance as well, and may involve significant user effort.

Multi-kernel learning [Lanckriet et al., 2004, Sonnenburg et al., 2006, Rakotoma-

monjy et al., 2008] transfers a significant part of this burden from the user to the

algorithm. Rather than selecting a single kernel, MKL offers the flexibility of specify-

ing a large set of kernels corresponding to the many options (i.e., kernels) available, and

additively combining them to construct an optimized, data-driven Reproducing Kernel

Hilbert Space (RKHS) – while simultaneously finding a max-margin classifier. MKL

has turned out to be very successful in many applications: on several important Vision

problems (such as image categorization), some of best known results on community

benchmarks come from MKL methods [Gehler and Nowozin, 2009a, Yang et al.,

2009]. In the context of our primary motivating application, the current state of the art

in multi-modality neuroimaging-based Alzheimer’s Disease (AD) prediction [Klöppel

et al., 2008, Vemuri et al., 2008] is achieved by multi-kernel methods [Zhang et al.,

2011a], where each imaging modality spawns a kernel, or set of kernels.

In allowing the user to specify an arbitrary number of base kernels for combination,

MKL provides more expressive power, but this comes with the responsibility to regu-

larize the kernel mixing coefficients so that the classifier generalizes well. While the

importance of this regularization cannot be overstated, it is also a fact that commonly
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used ℓp norm regularizers operate on kernels separately, without explicitly acknowl-

edging dependencies and interactions among them. To see how such dependencies

can arise in practice, consider our neuroimaging learning problem of interest: the task

of learning to predict the onset of AD. A set of base kernels K1, . . . ,KM are derived

from several different medical imaging modalities (MRI; PET), image processing

methods (morphometric; anatomical modelling), and kernel functions (linear; RBF).

Some features may be shared between kernels, or kernel functions may use similar

parameters. As a result we expect the kernels’ behaviors to exhibit some correlational,

or other cluster structure according to how they were constructed. (See Figure 5.1

(a) and related text, for a concrete discussion of these behaviors in our problem of

interest.) We will denote this relationship as Q ∈ R
M×M. Next, I provide a technical

summary of Q-MKL, before moving to a presentation of the experimental evaluations.

From MKL to Q-MKL

Refer to Chapter 2 for a more complete coverage of existing MKL methods. Here I

briefly review the standard MKL model of Kloft et al. [2011].

MKL Models

Adding kernels corresponds to taking a direct sum of Reproducing Kernel Hilbert

spaces (RKHS), and scaling a kernel by a constant c scales the axes of it’s RKHS by
√
c. In the MKL setting, the SVM margin regularizer 1

2
‖w‖2 becomes a weighted sum

1
2

∑M
m=1

‖wm‖2

Hm

βm
over contributions from RKHS’s H1, . . . ,HM, where the vector

of mixing coefficients, β scales each respective RKHS [Kloft et al., 2011]. A norm

penalty on β ensures that the units in which the margin is measured are meaningful

(provided the base kernels are normalized). The MKL primal problem is given as

min
w,b,β>0,ξ>0

1

2

M∑

m

‖wm‖2Hm

βm
+ C

n∑

i

ξi + ‖β‖2p (5.1)

s.t. yi

(
M∑

m

〈wm,φm(xi)〉Hm
+ b

)
> 1 − ξi,
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where φm(x) is the (potentially unknown) transformation from the original data space

to themth RKHS, Hm. As in SVMs, we turn to the dual problem to see the role of

kernels:

max
06α6C

αT1 −
1

2
‖G‖q, G ∈ R

M (5.2)

Gm = (α ◦ y)TKm(α ◦ y),

where ◦ denotes element-wise multiplication, and the dual q-norm follows the identity
1
p+

1
q = 1. Note that the primal norm penalty ‖β‖2p becomes a dual-norm on the vector

G. At optimality, wm = βm(α ◦ y)Tφm(X), so the termGm = (α ◦ y)TKm(α ◦ y) =
‖wm‖2

Hm

β2
m

is the vector of scaled classifier norms. This shows that the dual norm is tied to how

MKL measures the margin in each RKHS.

The Q-MKL model

The key characteristic of Q-MKL is that the standard ℓp-norm penalty on β and

the corresponding dual-norm penalty on classifier magnitudes in Equation (5.2) is

substituted with a more general class of positive semi-definite penalty functions,

expressed as βTQβ. We first present the formalization and then provide a discussion

to justify the design. The primal model is given as:

min
w,b,β>0,ξ>0

1

2

M∑

m

||wm||22
βm

+ C

n∑

i

ξi + β
TQβ (5.3)

subject to yi

(
M∑

m

〈wm,φm(xi)〉Hm
+ b

)
> 1 − ξi.

It is easy to see that if Q is 1n×n, we obtain the standard (squared) 1-norm MKL as

a special case. On the other hand, setting Q to I
n×n (identity), Q-MKL reduces to

2-norm MKL.
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5.2 The Case for Q-MKL

Extending the MKL regularizer to arbitrary quadratics Q � 0 significantly expands

the richness of the MKL framework; yet we can show that for reasonable choices of Q,

this actually decreases MKL’s learning-theoretic complexity. In the following I present

three motivating intuitions which provide some insight as to why it is a good idea to

use this type of regularization, and provide some simple schemes for constructing a Q

matrix. Subsequently, I present a more formal argument analyzing the Rademacher

complexity of Q-MKL.

(Intuition 1) Spectral Clustering and Laplacian. Consider Q to define the graph

Laplacian of a similarity function on the base kernels, i.e., which captures dependencies

among kernels as edge weights in a graph with kernels as nodes. The choice of the

similarity measure is mostly unrestricted (see Table 5.1 for some examples) because

taking the graph Laplacian ensures that the regularizer will be convex (graph Laplacians

are diagonally dominant). Using the Laplacian as Q, we can expect that there will

be a few small eigen-values, and their eigen-vectors will correspond to clusters of

kernels. The small eigen-values mean that β, and hence the learned kernel K∗, will be

biased towards spectrally-derived clusters of kernels, offering a regularization based

on higher order interactions between base kernels.

(Intuition 2) Error covariances. Consider a case in which we are boosting weak

learners, each trained from a single base kernel, as in [Gehler and Nowozin, 2009a].

Boosting theory requires that (in the optimal case) the weak learners’ errors will be

uncorrelated so that when combined, their errors will cancel [Rudin et al., 2004].

However, this is often violated in practice, and also in the multi-modality AD clas-

sification problem described above. By incorporating an estimate of the degree of

correlation between the base kernels’ contribution to the total error, we can instead

boost orthogonal components from this correlational structure, which better satisfies

the independence assumption.

(Intuition 3) SVM parameter correlations. Joachims et al. [2001] derived a theo-

retical generalization error bound on kernel combinations that depends on the degree
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of redundancy between support vectors in SVMs trained on base kernels individually.

Using this type of correlational structure, we can derive a Q function between kernels

to automatically select a combination of kernels that will maximize this bound. This

type of Q function can be shown to have lower Rademacher complexity (see below)

while simultaneously decreasing the error bound from [Joachims et al., 2001], which

does not directly depend on Rademacher complexity.

The common thread among these intuitions is that there is something towards

which, or away from which, we would like to bias the kernel mixing weights, β.

We should expect that in most cases the eigen-basis that determines this bias will

be apparent from the particular characteristics of the problem, but it is nevertheless

possible that a boosting-like behavior can be encouraged by estimating various types

of interactions between kernels from the training data, and regularizing based on these

correlations. The hope is that if we bias β away from the major eigen-functions,

this will counteract the tendency of β to align with any regularities in the data that

are incidental to the classification task, at the expense of slightly increasing the

optimization complexity. Another intriguing possibility is that by leveraging the

differences between the supervised and unsupervised interactions, we may be able

to derive a better estimate of the true error covariances, without the confounding

influence of data artifacts or normalization issues. However, there is a more formal

analysis, detailed next, which shows that an appropriately chosen Q matrix gives a

lower Rademacher complexity model class.

Virtual Kernels, Rademacher Complexity and Renyi Entropy

If we decompose Q into its component eigen-vectors, we can see that each eigen-vector

defines a linear combination of kernels. This observation allows us to analyze Q-MKL

in terms of these objects, which I will refer to as virtual kernels. I first show that

as Q−1’s eigen-values decay, so do the traces of the virtual kernels. Assuming Q−1

has a bounded, non-uniform spectrum, this property can then be used to analyze (and

bound) Q-MKL’s Rademacher complexity. I then offer a few observations on how

Q−1’s Renyi entropy [Renyi, 1961] relates to these learning theoretic bounds.
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Virtual Kernels

In the following assume that Q ≻ 0 and has eigen-decomposition Q = VΛV ,

with V = {v1, · · · , vM}. First, observe that because Q’s eigen-vectors provide an

orthonormal basis of RM, β ∈ R
M can be expressed as a linear combination in this

basis with γ as its coefficients: β =
∑

i γivi = Vγ. Substituting in βTQβ we have

βTQβ = (γTVT )VΛVT (Vγ)

= γT (VTV)Λ(VTV)γ

= γTΛγ =
∑

i

γ2
iλi (5.4)

This simple observation offers an alternate view of what Q-MKL is actually optimizing.

Each eigen-vector vi of Q can be used to define a linear combination of kernels, which

I will refer to as virtual kernel K̃i =
∑

m vi(m)Km. Note that if K̃i � 0, ∀ i, then

they each define a valid RKHS. This can be ensured by choosing Q in a specific way,

if desired. This leads to the following result:

Lemma 5.1. If K̃i � 0,∀i, then Q-MKL is equivalent to 2-norm MKL using virtual

kernels instead of base kernels.

Proof. Let µi = γi
√
λi. Then βTQβ = ‖µ‖22, as shown in Equation (5.4), and:

K∗ =
∑

m

βmKm

=

M∑

m

M∑

i

γivi(m)Km

=

M∑

i

µiλ
− 1

2

M∑

m

vi(m)Km

=

M∑

i

µiK̃i,

where K̃i = λ
− 1

2

∑M
m vi(m)Km is the ith virtual kernel. The learned kernel K∗ is a

weighted combination of virtual kernels, and the coefficients are regularized under a
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squared 2-norm.

Rademacher Complexity in MKL

With this result in hand, we can now evaluate the Rademacher complexity of Q-MKL

by using a recent result for p-norm MKL. We first state a theorem from [Cortes et al.,

2010], which relates the Rademacher complexity of 2-norm MKL to the traces of its

base kernels.

Theorem 5.2. [Cortes et al., 2010] The empirical Rademacher complexity on a sample

set S of size n, withM base kernels is given as follows (with η0 = 23
22

),

RS(HM
p) 6

√
η0q‖u‖q
n

(5.5)

where u = [tr(K1), · · · , tr(KM)]
T

and 1
p + 1

q = 1.

The bound in Equation (5.5) shows that the Rademacher complexityRS(·) depends

on ‖u‖q, which is a norm on the traces of the base kernels. Assuming the base kernels

are normalized to have unit trace, the bound for 2-norm MKL, (in which p = q = 2,)

is governed by ‖u‖2 =
√
M. However, in Q-MKL the virtual kernels’ traces are not

equal, and are in fact given by tr(K̃i) =
1Tvi√

λi
. With this expression for the traces of

the virtual kernels, we can now prove that the bound given in Equation (5.5) is strictly

decreased as long as the eigen-values ψi of Q−1 are in the range (0, 1]. (Adding 1 to

the diagonal of Q is sufficient to guarantee this).

Theorem 5.3. If Q−1 6= I
M×M and K̃i � 0 ∀i, then the bound on Rademacher

complexity given in Equation (5.5) is strictly lower for Q-MKL than for 2-norm MKL.

Proof. By Lemma 5.1, we have that the bound in Equation (5.5) will decrease if ‖u‖2,

the norm on the virtual kernel traces, decreases. As shown above, the virtual kernel

traces are given as tr(K̃i) =
√
ψi1

Tvi, meaning that:
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‖u‖22 =

N∑

i

ψi(1
Tvi)

2

=

N∑

i

ψi1
Tviv

T
i 1

=1TQ−11.

Clearly, this sum is maximal forψi = 1, ∀i, which is true if and only if Q−1 = I
M×M.

This means that when Q 6= I
M×M, the bound in (5.5) is strictly lower.

Lemma 5.1 requires that each virtual kernel K̃i � 0. This is so that a positive

combination of virtual kernels will be guaranteed to define a valid RKHS, which is

necessary to ensure the equivalence between Q-MKL and 2-norm MKL on virtual

kernels. This in turn allows us to apply the result from [Cortes et al., 2010]. We can

ensure this is the case by choosing Q as follows. Note that there may be other ways of

guaranteeing this condition; the procedure below is given as a demonstration that such

cases do exist.

We will construct Q by constructing its eigen-vectors directly, after which we may

choose the eigen-values arbitrarily so as to be non-uniform. Let V be the matrix of

eigen-vectors as columns, such that Q = VTΛV , whereΛ is an arbitrary, non-uniform,

diagonal matrix. We begin by setting V = I
M×M. Next, we arbitrarily choose a pair

of base kernels K1 and K2, and find the minimum c ∈ R such that K1 + cK2 � 0 and

K2 + cK1 � 0. We then put c in V(1, 2), and −c in V(2, 1), and renormalize the first

2 columns of V . This way, the two updated columns of V are normalized, orthogonal,

and define p.s.d. virtual kernels. Let this updated V be denoted as V1,2. If desired, we

may construct Vi,j for all other pairs of kernels Ki and Kj in a similar fashion, and

combine the resulting orthonormal matrices.

Note that while this procedure does indeed guarantee that the virtual kernels

are p.s.d., it is rather restrictive. In practice, such a Q matrix is not likely to differ

substantially from the identity matrix. We therefore provide the following result,

which frees us from this restriction and has more practical significance.
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Theorem 5.4. Q-MKL is equivalent to the following model:

min
w,b,µ,ξ>0

1

2

M∑

m

‖wm‖2Vm

µm
+ C

n∑

i

ξi + ‖µ‖22 (5.6)

s.t. yi

(
M∑

m

〈wm,φm(xi)〉Hm
+ b

)
> 1 − ξi,

Q− 1

2µ > 0

where φm() is the feature transform mapping data space to themth virtual kernel,

denoted as Vm.

Proof. The result follows from the observation that the two problems are equivalent

up to a change of variables.

While the virtual kernels themselves may be indefinite, recall that µ = Q
1

2β,

and so the constraint Q− 1

2µ > 0 is equivalent to β > 0, which guarantees that the

combined kernel will be p.s.d. This formulation is slightly different than the 2-norm

MKL formulation, however it does not alter the theoretical guarantee of [Cortes et al.,

2010], providing a stronger result.

Renyi Entropy

Theorem 5.3 points to an intuitive explanation of where the benefit comes from as well,

if we analyze the Renyi entropy [Renyi, 1961] of Q−1. Renyi entropy significantly

generalizes the usual notion of Shannon entropy, [Jenssen, 2010, Girolami, 2002,

Erdogmus and Principe, 2002]. Renyi entropy has applications in statistics, statistical

mechanics, [Lenzi et al., 2000], and many other fields, and has recently been proposed

as an alternative to PCA [Jenssen, 2010]. The quadratic Renyi entropy of a probability

measure is given as:

H(p) = − log

∫

p2(x)dx.

Now, if we use a kernel function (i.e., Q−1) and a finite sample (i.e., base kernels) as a

kernel density estimator (c.f. [Ong et al., 2005],) then with some normalization we can

derive an estimate of the underlying probability p̂, which is a distribution over base
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kernels. We can then interpret its Renyi entropy as a complexity measure on the space of

combined kernels. Equation (5.2) in [Girolami, 2002] relates the virtual kernel traces to

the Renyi entropy estimator of Q−1 as
∫
p̂2(x)dx = 1

N2 1TQ−11,1 which leads to a nice

connection to Theorem 5.3. This view informs us that setting Q−1 = I
M×M, (i.e., 2-

norm MKL), has maximal Renyi entropy because it is maximally uninformative; adding

structure to Q−1 concentrates p̂, reducing both its Renyi entropy, and Rademacher

complexity together.

This series of results suggests an entirely new approach to analyzing the Rademacher

complexity of MKL methods. The proof of Theorem 5.3 relies on decreasing a norm

on the virtual kernel traces, which we now see directly relates to the Renyi entropy

of Q−1, as well as with decreasing the Rademacher complexity of the search space

of combined kernels. It is even possible that by directly analyzing Renyi entropy in

a multi-kernel setting, this conjecture may be useful in deriving analogous bounds

ine.g., Indefinite Kernel Learning [Kowalski et al., 2009], because the virtual kernels

are indefinite in general.

Function Q(i, j) = Arguments Uses

Covariance
〈Ki,Kj〉

‖Ki‖‖Kj‖ K1,...,M Unsupervised covariance

(matrix cosine)

Eigen-space

alignment

1
N

∑N
k |vTikvjk| K1,...,M Mean cosine of the firstN

eigen-vectors

Histogram inter-

section

‖min(Ki,Kj)‖1 K1,...,M Interpret kernels as his-

tograms; min(·, ·) applied

entry-wise.

Training covari-

ance

err(Ki, y)T err(Kj, y)T K1,...,M, y Covariance of training er-

rors

α covariance αT
i αj K1,...,M, y Covariance of SVM α pa-

rameters

Table 5.1: Q-functions, their arguments, and their uses.

1Note that this involves a Gaussian assumption, but [Erdogmus and Principe, 2002] provides

extensions to non-Gauss kernels.
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Designing Q-functions

In some settings, including multi-modality AD classification, domain knowledge of

how the kernels were constructed is sufficient to fully populate the Q matrix. However,

when this is not the case we require a method for inferring the proper Q matrix

empirically from the data. The design of Q depends on the type of interaction structure

(and the corresponding bias) we wish to impose – recall that the value of Q-MKL is

that it replaces the task of designing the kernel with designing a similarity matrix

between kernels. (c.f. hyperkernels in [Ong et al., 2005], which are similar in concept,

but very different in form and especially in implementation-level details, requiring a

Semi-Definite Program to be solved, or a problem which has a number of parameters

that is quartic with respect to the number of examples.)

The ideas relating to the Laplacian above are simple yet effective, and the user can

always revert to 1- and 2-norm MKL with an uninformative Q. Just as with kernel

design in SVMs, many possibilities are available for Q.

Consider the behavior of Q matrices. Viewed in terms of individual entries, positive

off-diagonal entries will penalize putting weight on both of the kernels, while negative

entries encourage doing so. At a macro-level, each eigen-vector of Q has an associated

cost – it’s corresponding eigen-value. Thus, the eigen-decomposition of Q gives an

indication of the bias imbued by a particular Q-matrix: β is more likely to resemble

the least eigen-vectors, inversely proportional to their eigen-values – this provides the

spectral clustering perspective. Thus, we could in principle construct a Q-matrix by

choosing the eigen-vectors directly, however it is easier to take the graph Laplacian

of an arbitrary similarity matrix which we would like β to resemble. This has the

benefit that the similarity matrix need not be positive definite, as the Laplacian of

any graph is guaranteed to be positive semi-definite. Alternatively, recall that current

multi-kernel methods seek to maximize the margin in the combined RKHS, however

overly focusing on the margin can lead to an increase in error variance (i.e., taken over

training sets as the random variable) [Shivaswamy and Jebara, 2010]. This suggests

choosing Q to control this variance directly. A simple way of doing so is to use the

covariances of the training errors of kernels, which clusters the kernels in terms of

their training error. Similarly, for unsupervised similarity measures, there are many

options. A brief, but by no means exhaustive, list of Q matrices is shown in Table 5.1.
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Relative Margin

Before describing Q-MKL ’s optimization strategy, I discuss an interesting extension to

the Q-MKL model. Several interesting extensions to the SVM and MKL frameworks

have been proposed that focus on relative margin methods [Shivaswamy and Jebara,

2010, Gai et al., 2010] which maximize the margin relative to the spread of the data.

An intuitive justification for this approach is that if the spread of the data is large

relative to the margin, then there is an implied uncertainty in the classifier’s future

output, and it is more likely that unseen examples will fall on the wrong side of the

margin owing to this uncertainty. In particular Q-MKL can be easily modified to

incorporate the Relative Margin Machine (RMM) model [Shivaswamy and Jebara,

2010] by replacing Module 1 as in Equation (5.7) with the RMM objective. Our

alternating optimization approach (described next) is not affected by this addition;

however, the additional constraints would mean that SMO-based strategies would not

be applicable.

Optimization

In order to employ Q-MKL in practical settings, a core engine to optimize Equation

(5.3) must first be developed. Most MKL implementations make use of an alternating

minimization strategy which first minimizes the objective in terms of the SVM

parameters, and then with respect to the sub-kernel weights, β. Since the MKL

problem is convex, this method leads to global convergence [Rakotomamonjy et al.,

2008, Kloft et al., 2011] and minor modifications to standard SVM implementations

are sufficient. Q-MKL generalizes the norm regularizer on β to arbitrary positive

semi-definite quadratic functions, so the feasible set is the same as for MKL, while

the objective is generalized to a larger class of convex functions. This directly gives:

Property 1. The Q-MKL model in Equation (5.3) is convex.

The optimization strategy I developed for Q-MKL broadly follows this strategy.

But as will become clear shortly, interaction between the sub-kernel weights makes

the optimization of β more involved than [Sonnenburg et al., 2006, Kloft et al., 2011],

and requires new solution mechanisms.
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One may consider this process as a composition of two modules: one which solves

for SVM dual parameters (α,b) with fixed β, and the other for solving for βwith fixed

SVM parameters. In each iteration we alternate between the following two problems:

(Module 1) (Module 2)

max
06α6C

αT1 − αTYKYα

s.t. αTy = 0 (5.7)

min
β>0

∑

m

‖wm‖2
βm

s.t. βTQβ 6 1 (5.8)

Module 1 in Equation (5.7) reduces to an instance of SVM; however, Module 2 in

Equation (5.8) is a quadratically constrained problem in a unusual form. Notice that

(5.8) appears difficult because the optimization variables appear in the denominator.

Further, the objective is a sum of ratios – fortunately, however, the numerators are

constant, so the problem is not an instance of fractional programming, which is NP-

Hard in general[]. Secondly, the inequality is expressed as a quadratic constraint. This

makes (5.8) a challenging problem to solve with standard QP solvers. My solution is

based on the observation that an optimal solution will be a stationary point. We can

write the gradient in terms of Lagrange multiplier δ:

‖wm‖2
β2
m

− δ(Qβ)m = 0, ∀m ∈ {1, · · · ,M}. (5.9)

We now need only to eliminate δ so that the non-linear system will be limited to

quadratic terms in β, allowing us to use a non-linear system solver. Let

W = Diag(‖w1‖2H1
, . . . , ‖wM‖2HM

)

and

β−2 = (β−2
1 , . . . ,β−2

M ).

We can then write Wβ−2 = δ(Qβ). Now, solving for β (on the right-hand side) gives

β =
1

δ
Q−1Wβ−2 (5.10)

Because Q � 0, at optimality the constraint βTQβ 6 1 must be active, that is, the



75

constraint must be at equality. So, we can plug in the above identity to solve for δ,

1 =

(
1

δ
Q−1Wβ−2

)T

Q

(
1

δ
Q−1Wβ−2

)
(5.11)

δ2 = Wβ−2Q−1QQ−1Wβ−2 (5.12)

We directly obtain

δ =

√
(Wβ−2)TQ−1(Wβ−2) (5.13)

= ‖Wβ−2‖Q−1 , (5.14)

where the Lagrange multiplier δ effectively normalizes Wβ−2 according to Q−1,

meaning that the relative magnitude of ‖wm‖2β−2 must be equal to the normalized

covariance of β with βm. Module 1 is easy to solve with any SVM method. Any

nonlinear root solver (e.g., GNU Scientific Library) is sufficient to find the value

for β (Module 2). Putting these parts together, we have the following algorithm for

optimizing Q-MKL:

Algorithm 1. Q-MKL

Input: Kernels {K1, · · · ,KM}; Q � 0 ∈ R
M×M; labels y ∈ {±1}N.

Outputs: α, b, β

β(0) = 1
M ; t = 0 (iterations)

while not optimal do

K(t) ←
∑

m β
(t)
m Km

α(t),b(t) ← SVM(K(t),C,y) ( Module 1, Equation (5.7))

Wmm = α(t)TK
(t)
m α(t)(β

(t)
m )2

β(t+1) ← arg min (Problem(5.8)) ( Module 2, Equation (5.8))

t = t+ 1

end while

It can be shown that Q-MKL can be solved optimally by noting that Module 2

can be precisely optimized at each step, and in practice, on the order of a few tens of

iterations are all that is required.

Finally, a remark on normalizing the scale of β: If Q has any eigen-values λi ≈ 0,

then β is effectively unregularized along the direction of the corresponding eigen-
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vectors vi, which has the effect of allowing the scale of β to grow quite large. If so,

then this property will scale the kernel matrices in such a way that theC parameter may

lose its interpretation. That is, the C parameter reflects a trade-off between regularizer

and loss. However, under standard regularizers the regularizer also controls the units

in which the loss is measured, meaning that the two are not completely unconnected.

Therefore, if the regularizer does not control the units in which the loss is measured,

then this role falls to the loss function itself, at which point the C parameter’s meaning

is altered. Since β is constrained to be nonnegative, eigen-vectors must be nonnegative

as well in order to be fully unconstrained – which is guaranteed to be the case when Q

is a graph Laplacian.

There are two separate approaches to combatting this problem: one is to set

Q = Q+ I
M×M, which effectively adds a ‖β‖22 regularizer term. It also happens that

this will guarantee that the eigen-values of Q are greater than one, and hence the eigen-

values of Q−1 are all less than one, which is required for the theoretical guarantees

of Section 5.2. Alternatively, one could add ε1M×M to Q to directly penalize the

least eigen-vector when Q is a graph Laplacian. These two cases correspond to adding

an additional 1- or 2-norm regularizer on top of the Q-norm. A second approach is

to scale β to unit 1- or 2-norm at each iteration, which affects only the scale of the

combined kernel. This can be thought of as mixing penalty-based and constraint-based

regularizers because this is the behavior of a projected-gradient method for constrained

optimization. In practice, this approach did not affect convergence.

Successive approach using Newton’s method. Note that, in practice, widely avail-

able methods for root-finding are sufficient. However, I also implemented a successive

method based on Newton’s method [Nocedal and Wright, 1999] which may be more

appropriate for certain applications. Notice that in general, while the number of kernels

may be large, it is unlikely that the size of Q (quadratic in the number of kernels)

will dominate the total size of all the kernels, which are quadratic in the number of

examples. If so (as in a majority of computer vision and neuroimaging problems), it

may be advantageous to employ second-order methods to solve Equation (5.8) for β in

terms of w. Newton’s method iterates with the following update: β← (β−H−1g)
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where the Hessian H and gradient g are

H =

[
Q + 2 Diag

(‖w‖2m
β3

)]

g =

(
Qβ−

‖w‖2m
β2
m

)

In order to compute these functions we need only the ‖wm‖22 term for each sub-

kernel, which is given as ‖wm‖2Hm
= 1

2
β2
m

(
(α ◦ y)TKm(α ◦ y)

)
. Again, standard

SVM implementations can be used. This mechanism comes with a pitfall: there is

no guarantee that β > 0 at the optimum, in which case we must substitute βm ←
0, ∀βm < 0, essentially projecting β back into the nonnegative orthant (here, gradient

and Hessian terms must also be set to zero where the corresponding β = 0 to rule out

infinite values). Nonetheless, this method works well experimentally, and Algorithm 1

generally converges in about 10 iterations.

5.3 Experiments

I performed extensive experiments to validate the Q-MKL model, examine the effect

its regularization scheme has on β, and to assess its advantages in the context of AD

classification. In the first set of experiments I evaluate Q-MKL ’s performance on

benchmark UCI datasets [Frank and Asuncion, 2010]. I include these experiments in

order to show that the proposed regularization scheme does not worsen its performance

relative to existing MKL models, and in some cases the data-driven regularizer may

even improve performance. Note that while there are some interesting theoretical

guarantees which show that Q-MKL employs a stronger regularizer, this does not by

itself ensure greater accuracy. Rather, it is the ability to program into Q properties of

the data which are known beforehand or through domain knowledge which allow us

to generate a stronger regularizer for the same amount of training set error. This is an

important validation because if one supposes that the purpose of regularization is to

push the model away from sampling artifacts in the data, then a data-driven regularizer

might defeat this purpose. The UCI results show that this is not the case, and in fact

there can, in some cases, be a benefit to using a purely data-driven regularizer.



78

In the main experiments, I demonstrate in the concrete setting of neuroimaging

analysis how domain knowledge can be adapted to improve the algorithm’s performance.

My focus on a practical application is intended as a demonstration of how domain

knowledge can be seamlessly incorporated into a learning model, giving significant

gains in accuracy.

UCI datasets

I begin with an evaluation of several Q-MKL regularizers on standard UCI repository

datasets [Frank and Asuncion, 2010]. In order to facilitate comparison, I followed

the methods of the SimpleMKL experiments [Rakotomamonjy et al., 2008]. Briefly,

I used the same five repositories, (Liver, Pima Diabetes, Ionosphere, WPBC Breast

Cancer, and Sonar), whitened each feature by mean centering and normalizing to unit

standard deviation, and normalized kernels to unit trace. The C parameter was set to

100. For kernels I used polynomials of degree one through three, and Gaussians with

ten different bandwidths: {1, 2.5, 5} ∗ 10−1,0,1, and 100. I used 4-fold cross validation

with 20 iterations to approximate the 70% training sets used in [Rakotomamonjy

et al., 2008]. For each data set, I repeated the entire process with several different

Q-functions: (Pseudo-) Inverse and Graph-Laplacian of matrix covariance, training

error covariance, and covariance of training-set SVM parameters α. For comparison,

I also used Identity (2-norm MKL) and 1M×M (1-norm MKL). Accuracy, sensitivity,

specificity and area under ROC curve are shown in Table 5.3.

Several trends can be seen from these results: First, 1-norm MKL significantly

underperforms the other methods in two of the data sets (Liver, Pima), while slightly

over-performing on one of them (Sonar). The greater variance of 1-norm MKL’s

predictive performance is likely attributable to the sparsity it encourages at the kernel

level. Next, note that on Pima, Ionosphere, and Breast Cancer 2-norm MKL is

comparable to the two Q-functions used (on Sonar Train-Error covariance slightly un-

derperforms the other two) while on Liver the two Q-functions significantly outperform

2-norm MKL. From this, we can conclude that, in general, Q-MKL does not induce

as significantly varying of a risk as 1-norm does, while performing competitively (or

more favorably) than 2-norm MKL. It is interesting to note that the UCI datasets are

essentially unimodal; there is no a priori information that tells us how the kernels are
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related. However, if we do have extra information of this kind, then Q-MKL provides

a direct way of using it, as I describe next.

Multi-modality AD prediction

Next, I performed multi-modality AD prediction experiments using all available

kernels. Recall that several different types of imaging modalities are available, each

of which highlights a different aspect of disease pathology; MR provides structural

information, while FDG-PET assesses hypo-metabolism. Further, in practice we may

use several image processing pipelines. Yet, due to the inherent similarities in how the

various kernels are derived, there are clear cluster structures / behaviors among the

kernels, which we would like to exploit using Q-MKL .

The experimental setup is the same as in [Hinrichs et al., 2011], and is described

in Section 4.1. For Q-matrices, I used the Laplacian of covariance between single-

kernel α parameters (recall the motivation from Joachims et al. [2001] in Section

5.2) plus a block-diagonal representing clusters of kernels derived from the same

imaging modalities. This Q matrix was designed to balance between biasing towards

(1) clustering β according to unsupervised similarity (i.e., sample covariances), and

between kernels derived from the same modality on the one hand, and (2) inducing

sparsity in clusters of kernels having highly correlated errors.

I used 10-fold cross-validation with 30 realizations, for a total of 300 folds.

Accuracy, sensitivity, specificity and area under ROC curves were averaged over

all folds. For comparison I also examined 1-, 1.5-, and 2-norm MKL. Results are

shown in Table 5.2; The first observation we can make is that Q-MKL had the highest

performance overall, reducing the error rate from 12.5% to 11.2%. The Null hypothesis

stating that the differences are not significant can be rejected for α = 0.001. We can

interpret p-norm MKL methods such that their primary benefit is that they effectively

filter out uninformative kernels, leaving behind the most informative ones. In this set

of experiments, however, the kernels used in these experiments were all derived from

neuroimaging data, and were thus highly reliable. Q-MKL’s performance suggests

that it is better able to combine kernels in a way that boosts the power of the combined

classifier.
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Regularizer Acc. Sens. Spec.

‖β‖1-MKL 0.864 0.771 0.931

‖β‖1.5-MKL 0.875 0.790 0.936

‖β‖2-MKL 0.875 0.789 0.938

Correlation 0.874 0.785 0.939

Eigen-space 0.875 0.786 0.937

Histogram 0.874 0.788 0.934

Lap.(diag) 0.884 0.785 0.955

Lap.(Cov)

+ diag 0.874 0.785 0.939

Covα 0.884 0.780 0.942

Lap.(Covα) 0.884 0.785 0.955

Lap.(Covα) + diag 0.888 0.786 0.956

Table 5.2: Comparison of Q-MKL & MKL. Bold numerals indicate methods which

did not differ from the best at the 0.01 level using a paired t-test. Lap. = “Laplacian”;

diag = “Block-diagonal”.

Anatomical analysis

As in other experiments, the equivalent brain regions (computed by training with

linear kernels only) are shown in Figure 5.5. Warm colors have positive weight,

meaning that intensity in these regions is indicative of health, while cool colors are

indicative of pathology. In the FDG-PET images (a-b), we see the posterior cingulate

and lateral parietal lobules bilaterally, which are known to be hypometabolic in AD. In

the MR-derived images, we see the hippocampus and surrounding gyri bilaterally, and

Cerebro-Spinal-Fluid (CSF) voxels are associated with AD, i.e., signs of increased

CSF are associated with AD.

Virtual kernel analysis

As blocks of kernels derived from the same imaging modalities are expected to be

highly correlated, we next turn to an analysis of the covariance structures found in the

data empirically as a concrete demonstration of the type of patterns towards which

the Q-MKL regularizer is biasing β. Recall that the eigen-vectors of a Q matrix

can show which covariance patterns are encouraged or discouraged, in proportion to
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Covariance Q (before graph Laplacian) used in AD experiments (a); the

contribution from the three least eigen-vectors (b-d); and the outer product of β from

Q-MKL (e). Note the block structure in (a) relating to the imaging modalities and

kernel functions. TBM-based kernels have a strong block structure in (b). Quadratic

kernels show a surprising covariance pattern among different modalities in (d). This

pattern for quadratic kernels is missing in (e), showing the implicit group sparsity

structure imposed by Q-MKL.

their eigen-values. In the following, we compare the least 3 eigenvalues from several

empirical Q matrices in the ADNI data.

Covariance Q

The Q-matrix (before graph Laplacian) and the three least eigen-vectors (after) are

shown as outer products in Figure 5.1. In Figure 5.1(a), a strong block-structure is

visible among the four imaging modalities as expected, though more subtle patterns

are also visible. The significant interaction between the two blocks (lower right) is

due to the common FDG-PET processing pipeline. Within each of the four blocks,

there are three smaller blocks corresponding to each kernel type (linear, quadratic,

Gaussian). Note that there is significant interaction between the two blocks in the
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lower right. These kernels were derived from FDG-PET scans at two timepoints, using

the same image processing pipeline, as opposed to the two MR-derived modalities

which used different image analysis methods, which explains the greater degree of

covariance between the blocks. Next, we note that the second block from the top

left, composed of the TBM-derived kernels, is more “solid”, which is reflected in the

second eigen-vector, in Figure 5.1(c) – i.e., Q-MKL has detected that there is little

variation among the various TBM-derived kernels, and automatically merged them

into a single cluster. Similarly, in Figure 5.1(d), we see a surprising cluster structure

among the quadratic kernels (excluding TBM). The optimal weights β are shown as

an outer product in Figure 5.1(e). Note that the pattern of quadratic kernels in Figure

5.1(d) is largely absent from β because those kernels were removed as a group. In

all eigen-vectors we can see a strong 8× 8 pattern corresponding to the groups of 8

kernels that differ only in terms of the level of feature selection, which is desired.

Histogram Q

Next, for comparison we present the histogram Q (Table 1, entry 3). Note that patterns

remarkably similar those of the covariance Q appear in the least two eigen-vectors, but

the third shows a strong connection between the linear and Gaussian VBM kernels,

and a slight negative correlation with the linear and Gaussian FDG-PET kernels.

Eigen-space alignment Q

Next we present the eigen-space alignment Q (see Table 5.1, entry 2). See Figure 5.3.

Note that some patterns are similar to the covariance and histogram intersection Q

matrices, some are different – note that both VBM- and TBM-derived kernels show a

block structure, while the interaction between quadratic kernels is even more prominent.

An interesting trend is that the fewer the number of features shared between kernels,

(or the more in some cases) the less alignment there is between their eigen-spaces,

regardless of the kernel function used; see especially Figure 5.3(b,c,d).

Training error covariance

Lastly, we present a similar analysis of the Q-function derived from training error

covariance. See Figure 5.4. As with the unsupervised Q-functions, there are several



83

(a) (b) (c)

(d) (e) (f)

Figure 5.2: (a) Histogram Q matrix. (b–f) Least 5 eigen-vectors, represented as outer

products.

block-structures corresponding to similarities in the construction of the kernels, e.g.,

among VBM, TBM, quadratic, and linear and Gaussian kernels. This is expected,

because where features are correlated we can expect there to be some error correlation

as well. Notice, however, that in Figure 5.4(a) there are some interesting differences.

Particularly, some of the FDG-PET quadratic kernels are more strikingly anti-correlated

with the rest of the kernels, and within the quadratic kernels there appear to be some

sub-clusters as well. (See Figure 5.4(a,b,e).) Moreover, overlapping features seem to

be less of a dominant factor – note the “flatter” appearance of the blocks, with less of

a “gradient” moving from upper-left to lower-right within the blocks. (c.f. Figures

5.1, 5.3.) An intriguing possibility is that by leveraging the differences between the

supervised and unsupervised interactions, we may be able to derive a better estimate

of the true error covariances, without the confounding influence of data artifacts or

normalization issues.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: (a) Eigen-space alignment Q matrix. (b-f) Least 5 eigen-vectors, repre-

sented as outer products.

5.4 Conclusions

MKL is an elegant method for aggregating multiple data views, and is being extensively

adopted for a variety of problems in machine learning, computer vision, bioinformatics,

and neuroimaging. Q-MKL extends this framework to account for and exploit higher-

order interactions between kernels – derived from supervised, unsupervised, or domain-

knowledge driven – as shown in Figure 5.1. Note that Q-MKL is not only concerned

with selecting or discarding groups of kernels, but also with choosing the right weighted

combination of kernels. This flexibility can impart greater control over how the model

utilizes cluster structure among kernels, and effectively encourage cancellation of

errors wherever possible. I have presented a convex optimization model to efficiently

solve the resultant model, and presented experiments on the challenging problem of

identifying Alzheimer’s disease based on multi modal brain imaging data (obtaining

statistically significant improvements), as well as on benchmark datasets. In the next

chapter I will describe advances in Alzheimer’s Disease research made possible by
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: (a) Training error covariance Q matrix. (b–f) Least 5 eigen-vectors,

represented as outer products.

MKL and other learning algorithms.
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(a) (b)

(c) (d)

Figure 5.5: Relevance maps in each modality: FDG-PET at baseline (a); FDG-PET at

2-year follow up (b); Tensor-based Morphology (TBM) (c); and Gray Matter density

maps (d). In the FDG-PET-based modalities (a-b) we can see the posterior cingulate

cortex and precuneus; in the MR-based modalities (c-d) we can see parahippocampal

structures and CSF.
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Liver

Regularizer Accuracy Sensitivity Specificity Area under ROC

Inv(Cov) 0.717± 0.04 0.530± 0.09 0.852 ±0.05 0.760± 0.01

Lap(Cov) 0.722± 0.04 0.530± 0.08 0.860 ±0.05 0.761± 0.01

Inv(Err) 0.716± 0.04 0.530± 0.07 0.851 ±0.05 0.760± 0.01

Lap(Err) 0.719± 0.04 0.529± 0.08 0.859 ±0.04 0.765± 0.01

I
M×M 0.701 ±0.05 0.518± 0.10 0.835 ±0.06 0.750 ±0.02

1M×M 0.644 ±0.07 0.271 ±0.25 0.913± 0.09 0.717 ±0.05

Err 0.682 ±0.04 0.477 ±0.08 0.833 ±0.06 0.731 ±0.02
Pima

Regularizer Accuracy Sensitivity Specificity Area under ROC

Inv(Cov) 0.761 ±0.03 0.871 ±0.03 0.559 ±0.06 0.821 ±0.01

Lap(Cov) 0.767± 0.03 0.878 ±0.03 0.562 ±0.06 0.822 ±0.01

Inv(Err) 0.764± 0.03 0.873 ±0.03 0.564± 0.06 0.822 ±0.00

Lap(Err) 0.763 ±0.03 0.877 ±0.03 0.554 ±0.06 0.823 ±0.00

I
M×M 0.766± 0.02 0.866 ±0.03 0.582± 0.06 0.821 ±0.00

1M×M 0.651 ±0.03 0.998± 0.02 0.007 ±0.06 0.993± 0.03

Err 0.771± 0.02 0.890 ±0.03 0.551 ±0.05 0.829 ±0.00
Ionosphere

Regularizer Accuracy Sensitivity Specificity Area under ROC

Inv(Cov) 0.939 ±0.03 0.866 ±0.06 0.980± 0.02 0.980± 0.01

Lap(Cov) 0.927 ±0.06 0.829 ±0.18 0.982± 0.02 0.973 ±0.02

Inv(Err) 0.940 ±0.02 0.869 ±0.06 0.980± 0.02 0.981 ±0.00

Lap(Err) 0.934 ±0.05 0.845 ±0.15 0.982± 0.02 0.976± 0.02

I
M×M 0.948± 0.03 0.887± 0.07 0.982± 0.02 0.982± 0.00

1M×M 0.940± 0.07 0.866± 0.18 0.983± 0.02 0.974± 0.02

Err 0.950± 0.02 0.897± 0.05 0.981± 0.02 0.982± 0.00
WPBC

Regularizer Accuracy Sensitivity Specificity Area under ROC

Inv(Cov) 0.759± 0.05 0.025± 0.05 0.989 ±0.02 0.625 ±0.03

Lap(Cov) 0.762± 0.06 0.025± 0.05 0.992 ±0.02 0.616 ±0.03

Inv(Err) 0.763± 0.04 0.028± 0.05 0.992 ±0.02 0.616 ±0.03

Lap(Err) 0.755± 0.06 0.027± 0.05 0.984 ±0.03 0.605 ±0.03

I
M×M 0.756± 0.06 0.033± 0.06 0.982 ±0.03 0.614 ±0.03

1M×M 0.762± 0.05 0.000 ±0.00 0.999± 0.00 0.957± 0.09

Err 0.764± 0.05 0.006 ±0.02 1.000± 0.00 0.534 ±0.04
Sonar

Regularizer Accuracy Sensitivity Specificity Area under ROC

Inv(Cov) 0.834 ±0.05 0.789 ±0.10 0.878 ±0.08 0.917 ±0.01

Lap(Cov) 0.816 ±0.06 0.764 ±0.16 0.863 ±0.07 0.896 ±0.04

Inv(Err) 0.783 ±0.08 0.670 ±0.18 0.899 ±0.13 0.888 ±0.03

Lap(Err) 0.817 ±0.06 0.765 ±0.13 0.869 ±0.07 0.901 ±0.04

I
M×M 0.836 ±0.06 0.805± 0.10 0.868 ±0.08 0.923 ±0.01

1M×M 0.858± 0.05 0.817± 0.08 0.898 ±0.07 0.947± 0.01

Err 0.756 ±0.08 0.523 ±0.19 0.973± 0.06 0.881 ±0.03

Table 5.3: Performance measures for several Q functions on UCI datasets. Bold

numerals indicate measures which are not significantly different from the maximum

under a paired t-test. Lap = Laplacian; Inv = Inverse; Cov = Matrix covariance (Table

5.1, row 1); Err = Training error covariance.
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Chapter 6

Machine Learning Approaches to Scientific

Investigation of Alzheimer’s Disease

By acquiring scans of cohorts of subjects undergoing a pathological condition of

interest as well as healthy controls, scientists can examine in detail the effects of

pathology by separating individual variation from group-wise variation. This way,

if the groups are properly controlled then they will systematically differ only on

the basis of disease, allowing hypotheses relating to disease processes to be tested.

Traditionally this has been done by way of standard univariate models which can test

whether means vary between groups relative to measures of their variances. More

recent investigations have begun to move beyond the simple case by utilizing Statistical

Parametric Mapping (SPM), in which a group statistic is computed at every voxel

which can then be interpreted in terms of known anatomical and functional regions.

6.1 Predictive Multi-modality Markers of

Neurodegeneration

Once classification with high accuracy has been demonstrated, the next task, and

the more challenging one, is to predict which MCI subjects will progress to AD, and

which ones will remain stable as MCI subjects. The methodology I adopted to explore

the applicability of this approach is to first train a multi-modality classifier on AD and

control subjects using MKL, and then compute the outputs of that classifier on MCI

subjects. The output of this classifier is then called a Multi-Modality Disease Marker

(MMDM). I then conducted a series of statistical analyses showing that while the

accuracy of MMDMs in discriminating progressing MCI subjects from non-progressing

is not as good as in the AD vs. control case, my results are nevertheless competitive

with the state of the art. MMDMs based on baseline only (left) and longitudinal (right)
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(a) (b)

(c) (d)

Figure 6.1: MMDMs applied to the MCI population. Subjects which remained stable

are shown in blue; subjects which progressed to AD are shown in red; subjects which

reverted to normal cognitive status are shown in green. In each figure, a line giving

maximal leave-one-out accuracy is shown. Note that in some cases, the best accuracy

can be achieved by simply labeling all subjects as the majority class. In some cases,

MMDM scores were truncated to ±2 so as to preserve the relative scales. On the

left (a,c) are shown MMDMs based on information available at baseline. Note the

homogeneity of the groups, leading to poor separability. Imaging-based MMDMs are

shown at the top (a), while MMDMs based on NPSEs are shown below (c). On the

right (b,d) are shown MMDMs based on all modalities available at 24 months. Note

the improved separability between the progressing (red) and stable (blue) MCI subjects.

Note that the imaging-based marker above (b) shows slightly greater separation of the

2 groups.
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imaging data are shown in Figure 6.1. MMDMs based on neuropsychological scores

are shown below for comparison. Note that while cognitive tests constitute a form

of ground-truth (or at least, they are highly confounded with AD diagnosis, which is

based on similar cognitive tests,) in the predictive setting of classifying progressing

MCI subjects from non-progressing, they are less useful than imaging-based markers.

Demonstrating this is an important goal of the ADNI.

6.2 Discovery of Anomalous Subjects

In the course of performing classification experiments it became apparent that most of

the errors were coming from a small set of about 10% – 12% of the subjects, including

both AD subjects and controls. We termed the group of anomalous subjects Group

II, and the remainder, (i.e., inliers,) as Group I. Note that these anomalous subjects

included both AD cases and controls. (This became the motivation for developing

outlier-robust methods described in Section 4.2.) Group-wise analyses showed some

startling differences between all four groups: Group I AD / controls, and Group II AD

/ controls. For instance, Group II AD subjects had greater average total brain volume

than the Group I control subjects. This is a truly startling result, considering that every

AD subject in Group II scored below the dementia threshold on the MMSE and other

diagnostic neuropsychiatric tests, yet, as a group, they showed more gray matter on

average than even the healthy controls. Certain neuropsychological measures also

correlated well with Group I/II status, which strongly suggests that AD diagnosis in

vivo, while being highly reliable, is nevertheless imperfect. Clearly, in a small, but

nevertheless significant fraction of subjects, there are important confounding factors

which have an impact on analyses based on gray matter alone, and future studies may

make use of this observation.

The rationale for conducting this analysis is that it is well known that AD-related

neurodegenerative pathology is heterogeneous Thompson et al. [2001]. In addition,

while the ADNI dataset is based on the most rigorous quality control protocol possible

barring access to gold standard diagnostics such as biopsy or post-mortem analysis,

there is some expectation that subjects will be misclassified. This may be because of the

difficulty in distinguishing AD from other types of dementia such as Fronto-Temporal

Dementia (FTD) or Lewy bodies Klöppel et al. [2008]. Further confounding the
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situation is the possibility of comorbidity of AD with other neurodegenerative and

neurovascular diseases such as stroke or multi-infarcts.

Identification of outlying participants.

The criterion I used in order to find this group was based on the extent to which the

gray matter levels in disease-specific regions seemed to contradict the label given

each subject, i.e., AD or CN. In order to do this, I selected the 2000 most significant

voxels in terms of p-values derived from a t-test, and examined the weak classifier

predictive outputs on those voxels. (See Chapter 3 for a detailed description of the

weak classifier methodology.) These outputs are shown in Figure 6.2 (a). Each column

corresponds to a single example, and each row to a single weak classifier. The columns,

i.e. subjects, are ordered from those having the most false negatives at the left, to

those having the most false positives at the right. The color indicates the degree of

incorrectness, with blue indicating false negative, green correct response, and red false

positive response, respectively. We can clearly see that there are two “bars” at either

end, consisting of subjects which are given the wrong label by nearly the entire set

of weak classifiers. Subjects for which more than 65% of the weak classifiers gave

incorrect outputs were placed in group II (Note that this closely matched the “bars” in

Figure 6.2 (a)). This gave 10 controls, and 13 AD subjects. Figure 6.2 (b) shows the

percentage of weak classifiers giving incorrect outputs on each subject. The labeling

of anomalous subjects in this manner is not simply an artifact of the weak classifiers,

but reveals a systemic pattern of deviation from the mean in each group. Evidence

from hippocampus volume measures yields a similar labeling. (Hippocampus volume

measures were computed by other groups, and were provided along with the ADNI

data.) That is, the set of subjects more than one standard deviation away from the

group mean, (of hippocampal volume), is almost identical to the set of examples placed

in group II as above.

Characteristics of group II controls. I found that in several respects the group II

controls were very similar to group I AD subjects.

• The first observation was that the group II controls had significantly less total

brain volume, even relative to group I AD subjects: 8.8× 105 (group II CN)
1 compared to 1.02 × 106 (group I CN) and 9.48 × 105 (group I AD) with

1Units are mm3.
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(a) (b)

Figure 6.2: (a) Weak classifier outputs for the 183 members of the MR population,

ordered by the number of weak classifiers giving incorrect outputs. Each column

corresponds to an individual subject, and each row corresponds to one of the 2000

selected voxels; columns are ordered by the number of weak classifiers giving incorrect

outputs. Color indicates type and degree of incorrectness; blue corresponds to false

negative, red to false positive, and green indicates correct response. Note the relatively

sharp boundaries between the red and blue bands at either end – these are the members

of group II. (b) Percent of weak classifiers giving incorrect responses for the same

subjects.

p-values < 10−9.

• All regions (where manual tracing-derived volume measures are provided in

the ADNI dataset) were significantly smaller in group II controls compared to

group I controls (p-values < 10−3). Regional volumes for group II controls

were closer to the respective measures from group I AD subjects.

• The ventricles in group II controls were not significantly smaller than controls

in group I, which indicates that the above variations cannot be attributed to

smaller brain sizes alone (and suggests possible atrophy).

• The hippocampal volume measures showed even larger variations in controls

between groups I and II.

• VBM analysis between group II controls and group I AD subjects gave no

discriminating regions and only isolated voxels.
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Biomarker (AD subjects) Group I Group II Z-test p-value

Mini-Mental State Exam

(MMSE)

21.5 (3.04) 22.94 (2.84) 0.08

Tau-protein 111.94 (51.77) 151.88 (88.34) 0.0147

Logical Memory - Immedi-

ate Recall

3.13 (2.18) 4.91 (3.338) ∼ 10−3

Logical Memory - Delayed

Recall

0.48 (0.8) 3.13 (2.54) ∼ 10−16

Boston Naming - Sponta-

neous Correct Responses

19.69 (6.95) 25.49 (4.70) ∼ 10−3

Audio Visual 1.1 (1.08) 1.99 (2.15) 0.0374

Brain volume (UCSD) 948005.03 (84947.07) 1025001.3 (79868.99) ∼ 10−3

L. Hippocampal volume

(UCSD)

2706.69 (382.98) 3446.61 (573.23) ∼ 10−10

R. Hippocampal volume

(UCSD)

2813.38 (432.2) 3713.32 (368.21) ∼ 10−12

L. Entorhinal cortex volume

(UCSD)

2.44 (0.46) 3.03 (0.36) ∼ 10−5

R. Entorhinal cortex volume

(UCSD)

2.50 (0.46) 3.18 (0.42) ∼ 10−7

L. Hippocampal volume

(UCSF)

1518.45 (246.11) 1996.95 (426.44) ∼ 10−10

R. Hippocampal volume

(UCSF)

1498.39 (334.53) 2163.35 (341.04) ∼ 10−14

Table 6.1: Comparison of relevant biomarkers in group IAD and group IIAD. MMSE

is included for reference; all other biomarkers listed are significantly different between

groups at at least the 0.05 level.

• VBM analysis also revealed a significant gray matter density deterioration

(p-values < 10−6) in the hippocampus and parahippocampal gyri for group II

controls, when compared to controls in group I.

Characteristics of group II AD subjects.

AD subjects in group II similarly resembled group I controls.

• The mean total brain volume of group II AD subjects was almost identical to

that of group I controls (≈ 1.02 × 106 in both groups). By comparison, the

mean total brain volume of group I AD subjects was 9.48× 105.
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Biomarker (CN subjects) Group I Group II Z-test p-value

Mini-Mental State Exam

(MMSE)

28.98 (0.8) 29.19 (0.69) 0.33

Ventricles volume (UCSD) 38788.18 (23264.37) 40085.85 (13514.94) 0.84

Brain volume (UCSD) 1023746.53 (86217.87) 880452.33 (75572.03) ∼ 10−9

L. Hippocampal volume

(UCSD)

3599.87 (383.32) 3116.90 (301.58) ∼ 10−5

R. Hippocampal volume

(UCSD)

3791.06 (422.58) 3159.28 (359.84) ∼ 10−7

L. Mid temporal volume

(UCSD)

2.58 (0.17) 2.45 (0.12) ∼ 10−3

R. Mid temporal volume

(UCSD)

2.6 (0.20) 2.48 (0.21) 0.0454

L. Inf. temporal volume

(UCSD)

2.64 (0.15) 2.49 (0.14) ∼ 10−4

R. Inf. temporal volume

(UCSD)

2.60 (0.19) 2.47 (0.25) ∼ 10−2

L. Fusiform volume (UCSD) 2.39 (0.17) 2.25 (0.16) ∼ 10−3

R. Fusiform volume

(UCSD)

2.36 (0.17) 2.25 (0.18) ∼ 10−2

L. Entorhinal cortex volume

(UCSD)

3.19 (0.30) 2.86 (0.36) ∼ 10−4

R. Entorhinal cortex volume

(UCSD)

3.34 (0.32) 3.02 (0.51) ∼ 10−4

L. Hippocampal volume

(UCSF)

2126.69 (267.67) 1795.54 (208.3) ∼ 10−5

R. Hippocampal volume

(UCSF)

2176.57 (275.65) 1781.65 (252.45) ∼ 10−7

Table 6.2: Comparison of relevant biomarkers in group I CN and group II CN. MMSE

is included for reference; all other biomarkers listed are significantly different between

groups at at least the 0.05 level.

• In the hippocampus and entorhinal cortex the mean volume among group II

AD subjects was nearly the same as that of group I controls: 7159.93 (UCSD)

in group II AD subjects versus 7390.93 (UCSD) in group I controls for the

hippocampus. By comparison, the same measures were 5520.07 (UCSD)

in group I AD subjects. The mean entorhinal cortex volumes had a similar

proportion.
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• VBM analysis showed greater gray matter densities in the hippocampus for

group II AD subjects compared to group I AD and hypertrophy in the thalamus

relative to group I controls.

Cognitive status. While the image based biomarkers showed significant variations

between groups I and II, the associated cognitive status and neuropsychological scores

(e.g., MMSE) were relatively consistent. This is not surprising because cognitive

status, especially the MMSE score, is used in clinical diagnosis. However, Group II

AD subjects did show relatively small, but nevertheless significant group differences

in tests measuring logical memory – both immediate and delayed recall, number of

spontaneous correct responses given on the Boston Naming Test, and audio visual

tests. In all of these, group II AD subjects scored higher indicating slightly healthier

cognitive status (consistent with lower observed atrophy in the preceding discussion).

Of these, the delayed recall was the most significantly different (p-value ≈ 0). There

was no significant difference between the performance of group I and group II controls

on any measure of cognitive status. Summaries of volume measures significantly

differing between both groups I and II are presented in Tables 6.1 and 6.2.

Summary. It is important to note that confirmed diagnosis of AD is only possible

post-mortem. Given the clinical nature of the ADNI data set, it is possible that some

AD subjects in the cohort may have another form of dementia, or possibly depression,

while some controls may have AD in the early stages, and have not yet begun showing

signs of cognitive decline. The classification algorithm, however, assumes that every

label in the training data is correct, and therefore tries to correctly classify every training

example. In the presence of incorrectly labeled examples, however, it is difficult for a

method to have a lower expected error rate than the fraction of mislabeled examples in

the training set. Clearly, if our data set contains mislabeled examples [Wade et al., 1987,

Schofield et al., 1995, Burns et al., 1990], an automated method may not be able to to

outperform this limitation. I therefore developed the outlier-robust version of MKL

presented in Chapter 4 in response to this issue. Looking to the future, characterizing

this set will be useful for not only improving the accuracy of classification systems

evaluated on this dataset, but may also suggest ways that the classifier can be modified

to automatically handle them. The analysis above, and evaluations of classifier’s

performance with/without including group II have the potential to be a useful first step
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in discovering mislabeled subjects that may not have been identified by the study’s

strict quality control protocols.

Outliers detected by MKL methodology

Figure 6.3: Voxel weights assigned by the MKL classifier (using only linear kernels)

for FDG-PET baseline images. Top: Voxel weights with all subjects. Bottom: Voxel

weights when the outlier subjects were removed. Note there are significant negative

(blue) weights in heteromodal, frontal, parietal regions and temporal lobes on the

top, but that these regions largely disappear when the outlier subjects are removed

(bottom), giving weight patterns more consistent with the AD literature.
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Figure 6.4: Voxel weights assigned by the MKL classifier (using only linear kernels)

for FDG-PET images at 24 months. Top: Voxel weights with all subjects. Bottom:

Voxel weights when the outlier subjects were removed. Note there are significant

negative (blue) weights in heteromodal, frontal, parietal regions and temporal lobes on

the top, but that these regions largely disappear when the outlier subjects are removed

(bottom), giving weight patterns more consistent with the AD literature.

In [Hinrichs et al., 2011] I also performed an examination of the brain regions

used in the MKL classifier. Note that this requires using linear kernels only, because

non-linear kernels do not have an exact representation as a set of voxel (or feature)

weights. On examination of these brain regions, several regions which should be

associated with health, (i.e., positive weights should be given to these regions, meaning

that more gray matter or FDG-PET signal is indicative of a healthy subject,) were in

fact being given negative weights. This indicates that there was, with high probability,

there was a small set of AD cases who appeared healthy in these regions, but who were



98

Figure 6.5: Voxel weights assigned by the MKL classifier (using only linear kernels)

for GM density images at baseline. Top: Voxel weights with all subjects. Bottom:

Voxel weights when the outlier subjects were removed. We again see perplexing

negative weights in and around the hippocampus and surrounding regions which

disappear when the outlier subjects are removed.

causing the algorithm to associate health in these regions with AD status. Likewise,

a set of control subjects showing hypometabolism in those regions would have a

similar effect. By selecting a small group of AD subjects who showed the greatest

FDG-PET intensity in these regions which were given negative weights and retraining

the classifier, I was able to suppress these artifacts, and generate more reasonable

regions. The analysis of FDG-PET images yielded 5 outlier subjects, while analysis of

GM density images yielded a further 4 subjects. Side-by-side comparisons are shown

in Figures 6.3 through 6.6.

Starting with Figure 6.3, which shows the pattern of voxel weights for baseline

FDG-PET images, we can see blue (negative) weights being assigned to heteromodal,
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Figure 6.6: Voxel weights assigned by the MKL classifier (using only linear kernels)

for TBM images. Top: Voxel weights with all subjects. Bottom: Voxel weights

when the outlier subjects were removed. Comparing top with bottom, there is also an

overall reduction of negative weights in gray matter regions as well as a concentration

of negative weights to areas surrounding the ventricles, and CSF bordering the

hippocampus and surrounding regions, when the outliers are removed.

frontal, parietal regions and temporal lobes, which is largely in conflict with the existing

AD neuroimaging literature, as higher FDG-PET signal in these regions should be

indicative of healthy status. As expected, when the outlier subjects were removed

the selected regions assumed a more conventional pattern for AD, as shown in the

bottom. A similar effect was observed in the FDG-PET images taken at 24 months,

as shown in Figure 6.4. It should be noted as well that in FDG-PET images, there

should in general be no strongly negative weights, as there is no known association

with hypermetabolism in any brain region, and AD. Continuing to Figure 6.5, we again

see troubling blue (negative) weights in and around the hippocampus – observe in
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particular the second and third coronal slices from the right in the upper row, in both the

top and bottom figures. On the bottom set of coronal slices, we see exactly the pattern

of hippocampal health/atrophy which we should expect, especially in the second

coronal slice from the right in the top row. Yet, in the top figure, there is a mix of red

and blue weights which again defies intuition – there are no known hypertrophic effects

of AD on gray matter, especially not in the vicinity of the hippocampus. Moreover, the

pattern of weights in the top part of the figure does not resemble known AD patterns.

Finally, in Figure 6.6, we see similar effects in the vicinity of the hippocampus in

voxels which contain primarily gray matter. As TBM is a measure both of expansion

and contraction, we should expect to see blue (negative) weights at the boundary

between gray matter tissues and CSF, because atrophy in the hippocampus manifests

as a retreat in the GM/CSF boundary. Thus, CSF voxels at that boundary will be

seen to expand the most dramatically. Note also that in the bottom image in Figure

6.6, the pattern consists largely of smooth, contiguous regions of both positive and

negative weights, which largely match the expected pattern of AD atrophy. Yet, in

the top image, (that in which outliers were included,) the pattern is more varied, and

(interpreting subjectively,) has a much stronger high spatial frequency component.

This phenomenon can also be seen in Figure 6.5. We can interpret this pattern as the

result of the algorithm searching futilely for a function which separates classes of

objects which are inherently more difficult to separate, (because of the inclusion of

outliers,) and is forced to rely more on sampling artifacts and extraneous signal.

Clearly, this is a post-hoc analysis, and so we must exercise caution in interpreting

these results – given that the outliers were selected on the basis of whether they agree

with predefined notions of how the classifier should look, then of course the classifier

will be as expected when we remove them. Nevertheless, there are several remarks

which can be made about these results. First, note the dramatic effect on the classifier’s

pattern that a few subjects can have. This is because a discriminative classification

model does not attempt to model the distribution from which examples are drawn,

but instead looks only to find a function which separates them. Also, Support Vector-

based algorithms, (of which MKL is an example,) construct the separating hyperplane

normal as a sparse combination of only difficult to classify examples, which adds to

the sensitivity to outliers. Second, note that while the selection is made on the basis of

features disagreeing with the target labels, in all four Figures the resulting classifier
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after removing the outlier subjects is much more spatially smooth, which we have

already shown to be an indicator of a genuine neurological effect, and not merely a

sampling artifact.

These investigations formed a sidebar of the larger investigations of AD classifica-

tion mechanisms, but they nevertheless highlight a way in which machine learning

methods can potentially aid in scientific discovery, by identifying sub-populations in

need of closer examination.

6.3 Clinical Trial Enrichment

As mentioned in section 2.3, a major goal of the ADNI is to encourage translational

uses of AD research, particularly advances involving neuroimaging based markers.

One possible avenue of inquiry, and a topic of much recent interest [Kohannim et al.,

2010, Hua et al., 2009, 2010], is in reducing the sample sizes required for clinical

trials of proposed treatments for AD. In this section I will discuss two avenues for

approaching this problem: Multi-modality eligibility criteria based on MKL, and,

custom outcome measures based on discriminative SVM models. These methods are

appropriate for use in traditional clinical trial models, and serve as an enhancement, or

extension. In Chapter 7 I discuss an entirely novel approach to clinical trial design,

and statistical power analyses.

As methods of discriminating subjects who already have AD from controls have

become more accurate, more recent efforts focus on the more difficult problem of

discriminating MCI subjects from controls [Davatzikos et al., 2009, Querbes et al.,

2009] and the hardest of all tasks – discriminating which MCI subjects will progress

to AD [Hinrichs et al., 2011, Zhang et al., 2011a] and the patients that will remain

stable (i.e., they do not have pre-dementia of the Alzheimer’s type). As described

in Section 6.1, multi-modality learning methods such as MKL can provide highly

predictive markers of which subjects will progress to AD. This issue is particularly

relevant because the inclusion in clinical trials of a large subgroup of subjects who are

non-converters, leads to significant heterogeneity. It is a serious problem in clinical

trials which seek to assess the effects of a treatment on a homogeneous cohort, so as

to to maximize the chance of detecting a statistically significant variation in how the

placebo and treatment groups respond to the treatment.
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In this work I considered two ways in which these predictive markers can increase

sensitivity of clinical trials – thereby reducing the number of subjects required to

detect a desired effect size. Key strategies are sample enrichment and custom outcome

measures. First, consider the presence of a large number of MCI subjects who will

not progress to AD (only 10–15% of MCI subjects convert annually). Even if the

treatment under study is effective, it will have little or no measurable effect on subjects

who do not suffer from the disease. For example, Visser et al. [Visser et al., 2005]

suspected that a number of AD trials that could not identify significant effects of the

treatment may have failed due to inclusion of non-AD MCI patients. In the absence of

sensitive measures of change at milder degrees of impairment to identify such patients,

a trial may potentially require a very large cohort to account for the variability, which

may not always be feasible. Here, I present evidence that by excluding subjects whose

predictive markers are not indicative of future decline, we can enrich the sample

population – such an enriched cohort reduces the masking effect of non-progressing

subjects. Second, consider the difficulty of using cognitive markers as an outcome

measure – to test whether a treatment is effective, a common practice is to measure

changes over time in various neuropsychological status measures such as the Mini-

Mental State Exam (MMSE) [Petersen et al., 2005]. Unfortunately, such measures are

subject to a large amount of inter- and intra-subject variation, and can change slowly

over time. Thus, the use of such markers can result in large study cohorts, while recent

results [Kohannim et al., 2010, Hua et al., 2009] have shown that with imaging-based

outcome measures cohort sizes can be greatly reduced – by up to a factor of 8 [Hua

et al., 2009]. Experimental results suggest it may be possible to move beyond these

studies by using a predictive marker based on Multi Kernel Learning (MKL) methods

rather than summary statistics of atrophy over entire Regions of Interest (ROIs).

Power calculation

The first step in designing a clinical trial is to determine an outcome measure most

likely to vary as a function of the administered treatment. The second question is, the

number of subjects (sample size) we need to recruit to observe (e.g.at 80% power)

the induced variations in the outcome measure. This calculation is transparent to the

actual treatment under study, and is fully determined by the variance and effect size
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(difference in signal between placebo / treatment groups).

By performing a two-sample t-test on outcome measures taken from the two

trial groups, we are comparing the separation of two sample means in terms of a

Gaussian-distributed variable which represents the null hypothesis. Let δ be the

difference between outcome means in the two populations, and σ2 be the pooled

variance of the outcome measure. The test statistic t is the ratio of the effect size δ to

sample variance σ, δ
σ
√

2n
. For a desired Type I error rate of α, and Type II error rate

of β, the requisite sample size can be calculated as:

n =
2σ2(t1−α/2,n−1 + t1−β,n−1)

2

(δλ)2
, (6.1)

where λ denotes the desired percentage of reduction in outcome measure [Hua et al.,

2009]. Thus, if we desire a 25% reduction in atrophy (if atrophy is used as the outcome

measure), then we set λ = 0.25.

Experimental Design

Summary

Experiments to assess the efficacy of the enrichment procedure above were conducted

on an extensive dataset of different image types, cerebrospinal fluid measures, and

cognitive scores acquired as part of ADNI. The goal was to calculate sample sizes

required in a hypothetical placebo-controlled parallel clinical trial to observe a certain

reduction in rate of atrophy (outcome measure) at a given power. To highlight potential

gains, we provide power calculations both with and without the new inclusion criteria.

Note that these calculations depend only on the mean and variance of the outcome

measure (among the selected cohort).

Dataset and pre-processing

The data and preprocessing steps used in this work are the same as in [Hinrichs et al.,

2011], and are described in 4.1. Voxel-Based Morphometry (VBM) and Tensor-Based

Morphometry (TBM) processing pipelines were applied to MR data to extract baseline

Gray Matter density and Jacobian Determinant maps. FDG-PET scans from baseline
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and at 24 months were also included, for a total of four groups of images – which

provided the kernels used in our MKL model (for the MKL-IC measure). TBM maps

were used to compute outcome measures of interest (atrophy).

AD and control subjects were used for training the classifier, (i.e., learning the

disease pattern), and for feature selection (i.e., for selecting Regions of Interest (ROI)).

We then computed the classifier’s output which provided the desired MKL Inclusion

Criterion (MKL-IC). We rejected the 75% of subjects whose MKL-IC was least

indicative of an AD-like pattern of atrophy, and preserved the remainder. This choice

reflects a trade-off between boosting the power of a study, without requiring too many

subjects to be screened only to be subsequently rejected.

Why TBM-derived outcome measures?

TBM has been shown to have excellent characteristics as an outcome measure [Hua

et al., 2009, Kohannim et al., 2010] because by quantifying deformation between

successive time points, it serves as a surrogate for atrophy. Since this is precisely the

measure we expect to show variations in AD (as a result of the treatment), calculating

sample sizes using TBM on our enriched sample is a reasonable assessment of its

utility. For our evaluations, we computed t-statistics from each voxel using the AD

and control population only, and then thresholded the voxels at p < 0.05. A natural

question is whether TBM can be used both for learning the MKL-IC (albeit from AD

and controls) and as an outcome measure for the MCI group. Making this choice is

similar to the common practice of using hippocampal volume measures as covariates

and atrophy as an outcome measure [Schott et al., 2010]. However, if desired (and in

the interest of being more conservative), one may prefer not to use such measures in

both MKL-IC and in outcome measures. We will discuss both results in the following

section.

Custom TBM measure

As in [Kohannim et al., 2010, Hua et al., 2009], we used mean TBM values in the

chosen ROI, and explored the question of whether a weighted average over a ROI can

also produce an informative outcome measure. We trained an SVM classifier using

these voxels as features; (we first converted raw TBM determinants to annual rates of
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Figure 6.7: Sample cohort sizes as a function of number of TBM voxels (x-axis), and

number of MCI subjects (y-axis).

change, and then negated voxels with negative mean change so that the SVM weights

came out all positive). As a post-processing step, we normalized the SVM weights to

sum to 1, as is the case when using a mean TBM value over an ROI. This outcome

measure is designed to be as sensitive as possible not only to global gray matter loss,

but specifically to atrophy relative to a discriminative disease pattern. We provide

a brief intuition on the role of the number of voxels used, as well as the trade-off

between screening out subjects for greater enrichment, versus controlling the number

of subjects at screening.

Exploratory analysis

In addition to estimating required sample sizes for fixed parameter values (25%

exclusion, TBM voxels with p < 0.05 used in computing the outcome measures), we

also computed a map of sample cohort sizes for a range of voxel selection thresholds and

number of subjects included (and excluded). (See Figure 6.7). This was exploratory in

nature, and allows us to examine qualitatively (for this particular dataset), the choices

available. Note the decreasing trend as the inclusion criteria become more strict (i.e.,
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Outcome

measure
Mean TBM Custom-

SVM

ADAS-

Cog
MMSE

Schott

et al.

[2010]

Inclusion

Criterion

MKL-IC

TBM

MKL-IC

No TBM

MKL-IC

Baseline

MKL-IC

Baseline
– – –

Power

0.80 71 90 166 88 1,023 1,557 122

0.85 80 103 190 100 1,170 1,781 –

0.90 94 121 222 117 1,369 2,084 –

Table 6.3: Estimated sample cohort sizes for single modal and multimodal inclusion

criteria. Non-TBM derived MKL-IC are shown in column 1. TBM / NO TBM refers

to whether TBM-derived kernels were used in computing the MKL-IC. “Baseline”

MKL-IC was derived only from data available at Month 0. Custom SVM is an

SVM-derived outcome measure (weighted average over ROI). Alzheimer’s Disease

Assessment Scale-cognitive subscale (ADAS-Cog), mini-mental state examination

(MMSE), and sum-of-boxes Clinical Dementia Rating (CDR-SB) outcomes are shown

for comparison.

excluding more stable MCI subjects), highlighting the value of sample enrichment for

improving detection of effects on atrophy.

Results and Discussion

Table 6.3 presents the main results of these evaluations. The primary concern is the

number of subjects needed (per arm of a clinical trial) to detect a 25% reduction in

atrophy as a result of treatment. Using more traditional clinical and cognitive single

measures, as listed in the rightmost three columns, would require anywhere from 600

to over 2000 subjects per arm to detect the desired treatment effect (with power from

80% to 90%, type I error rate of 0.05). On the other hand, by using enriched samples

and imaging-based outcomes, dramatic reductions are achievable. Even without using

any longitudinal inclusion criteria, we can reduce sample sizes by a factor of 5 to

10. We also see that modest improvements can result from using an SVM-derived

weighted statistical ROI, suggesting that even higher gains in sensitivity and power

are possible with further development. If one uses longitudinal data, excluding TBM

measures, still further improvements are possible. These results compared favorably
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to recently reported findings [Schott et al., 2010, Hua et al., 2009, Kohannim et al.,

2010] – note that this study uses only MCI participants, which are a more challenging

group because atrophy effects are smaller, and variances are greater.
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Chapter 7

Linear Outcome Measures in Clinical Trials

Following the evolution from previous chapters, I have described how machine learning

methods can be adapted to better capitalize on spatial regularity and multiple modalities

in neuroimaging analysis, with a particular view towards making predictions about

the disease course of individual patients. The next step is to apply these predictions

in designing clinical trials. Clinical trials are the most logical path towards making

these developments translational for several reasons. First, there is no known cure,

and the few treatments that are currently available are only effective at delaying the

onset of AD for a short period. Thus, there is little benefit to having greater certainty

about a patient’s long term prognosis without a way of turning that information

into more effective treatment options. Second, and perhaps more importantly, many

pharmaceuticals and other treatments (e.g., cognitive training, or targeted exercise

programs,) are under development, yet, without the right statistical tools it may be very

difficult to separate genuinely effective treatments from those which are not. Recall

that while late-stage AD has a devastating and unmistakable impact on patients, in its

early stages it is frustratingly difficult to make a certain prognosis. Tests of outward

neuropsychological decline are limited in their effectiveness by the large degree of

inter-subject variability, but also by a large intra-subject variability as well – i.e., it

is quite conceivable that a particular subject may perform at one level on a test on

one day, and yet, for a variety of reasons, perform at another level on another day.

Together, these forms of variability mean that it is often difficult to detect significant

alterations in cognitive functioning with high confidence.

Neuroimaging offers a way of managing and mitigating these effects – though

scanners do add a small amount of their own noise and variability to the data, tech-

nological development can reduce this burden; yet, there is very little intra-subject

variability in neural tissues, (at least macroscopically,) except on decadal time-spans.

Meanwhile, there is a large degree of inter-subject variability, but again this variability

can be suppressed with the proper registration and normalization methods, ideally
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preserving variation due to the disease itself. As mentioned in the previous chapter,

several studies Kohannim et al. [2010], Hua et al. [2009] have recently shown that

TBM and other measures of neural atrophy suffer far less from the kinds of variability

described here.

In this Chapter I give an introduction to a novel clinical trial methodology, discuss

ways of assigning significance levels to its results, and present detailed simulations

which strongly suggest that it may be more effective than existing methodologies.

This methodology is motivated by the observation that parametric univariate tests,

such as the t-test used in most clinical trial methodologies, while optimal for detecting

differences between groups in one dimension, do not make the best use of high

dimensional data. That is, if the outcome measure is taken as the sum or mean of a

sufficiently large number of independent covariates, (as is the case when we take the

mean voxel intensity over a Region of Interest (ROI) to be the outcome measure,)

then it is guaranteed to closely approximate a Gaussian distribution, in which the

t-test is indeed the optimal measure of significance. However, aggregating voxels by

taking a mean can actually obscure signal as much as enhance it. Consider that many

linear learning models are designed to choose, with extreme care, a linear combination

of weights which best amplifies a target signal hidden among a large number of

covariates. The success and wide adoption of linear learning methods is indicative

of just how much a difference can be made by the right choice of weights in such

situations. As high-throughput data acquisition and processing technologies become

more and more commonplace, this issue is likely to become a limiting factor in the

sensitivity and statistical power of clinical trials. Yet, as I will show, the real issue

is not so much the high dimensionality of this data, as it is the complex correlations

and dependencies between covariates. Simulations presented below demonstrate that

so long as covariates are (conditionally) independent, then the problem is effectively

trivial, and solved: a simple t-test on the average is optimal. When, on the other

hand, there are strong dependencies between covariates, the situation is very different.

The principal insight that I intend to develop in this Chapter is that linear learning

methods, especially the Support Vector Machine (SVM) model, are far better suited

to this statistical task – and that there is are significant gains potentially waiting to

be accrued in the sensitivity and power of clinical trial designs using neuroimaging

data as primary end-points. Monte-Carlo simulation results presented below strongly
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suggest that the proposed method has the potential to improve statistical sensitivity

over naïve methods in neuroimaging trials, and the same train of reasoning applies to

other settings as well.

In order to better account account for such highly correlated data, my proposed

framework rephrases the question in terms of classifiability. That is, we can rephrase

the question by asking whether there exists a linear classifier which can discriminate

between participants who received the treatment, and those who did not. The key

difference is that we include the issue of how to aggregate the data down to one

dimension in the overall question of assessing the significance of observed differences,

rather than first assuming a particular strategy, and only then assessing significance.

We can then use the cross-validated accuracy of such a classifier as the test statistic,

and calculate p-values by comparing the learned model’s cross-validated accuracy

against the Null hypothesis, i.e., the Binomial distribution with a 50% probability.

Observing that a linear combination of Gaussian random variables is itself guaranteed

to be Gaussian, then, if we can make the assumption that each covariate is individually

Gaussian distributed, then we can be certain that the linear classifier’s output will also

be Gaussian. In such situations, it would then be ideal to use a t-test on the classifier’s

output to assess significance. However, in the absence of such an assumption, then the

Binomial test may be preferable.

The t-test on unweighted averages, and SVM methodologies can be viewed as

occupying opposite ends of a continuum. At one end, when voxels (or covariates,

more generally,) are completely independent, then a t-test on an unweighted is indeed

optimal for detecting differences in mean voxel intensities. At the other end of this

continuum is the case where voxels are highly, (but not completely,) correlated. This

means that the samples are effectively drawn from a approximately low-dimensional

subspace, in which case the SVM is more effective. (Having highly correlated data

essentially means that the covariance matrix has a few large eigen-values, and the rest

quickly decay to near-negligible values. See Figures 7.2 and 7.3.) A simple diagram

illustrating the intuition behind this phenomenon is given in Figure 7.1.

In the following, I first discuss statistical concepts employed in standard clinical

trial methodologies so as to fully detail my motivation, before moving to a discussion

of statistical power calculations for the proposed method. Subsequently, I report

on Monte Carlo simulations which clearly demonstrate the need for methods which
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are tailored to high-dimensional, highly-correlated data, such as neuroimaging, and

potentially micro-array, GWAS, or other high-dimensional high-correlation data.

Figure 7.1: Two cases which illustrate, in a low-dimensional setting, the relative

strengths of each method.

7.1 Outcome Measures, and Related Statistical Concepts

First, I define an outcome measure, and related concepts of statistical power, with

particular emphasis on the neuroimaging setting. Suppose we are given a sample cohort

of trial and placebo participants, which we denote as Xtreatment and Xplacebo ∈ X,

where X is the space from which sample subjects are drawn, with some probability

distribution P(X). An outcome measure τ is a mapping τ : X→ R, which implies that

P(X)will specify a distribution inR as well. This crucial observation allows us to frame

the question of treatment effectiveness in terms of the distribution of τ(Xtreatment)

as compared to that of τ(Xplacebo). That is, we are primarily interested in knowing

whether the distributions P(τ(Xtreatment)) and P(τ(Xplacebo)) differ. Testing

whether this is the case can be done by calculating sample statistics of τ(X), such as

t =
|µtrial − µplacebo|

σZ

where σ is a pooled estimate of the standard deviation of τ(X) using both sample

groups, µtrial and µplacebo are the sample means of the trial and placebo groups

τ(Xtreatment) and τ(Xplacebo), and Z is a normalization constant. By comparing t
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to a threshold δ according to a reference distribution we can test whether the means of

the two groups significantly differ. Even more importantly, we can assign levels of

confidence to the outcome of this comparison. That is, if the underlying distribution

of trial subjects is such that |µtrial − µplacebo| = 0 then there exists some α such

that t < δ with probability 1 − α; likewise, if |µtrial − µplacebo| 6= 0 then there

exists some β such that t > δ with probability 1 − β, which is the statistical power,

or, the ability of this methodology to detect a real difference between sample groups

Xtreatment and Xplacebo as measured by the outcome measure τ(X) and sample

statistic t.

Traditionally, the t-statistic is interpreted as a measure of likelihood that two

sample distributions have different means, as measured by the ratio of separation of

means to average deviation; more broadly, we can interpret t as an inverse measure

of the overlap between these two distributions. That is, large t-statistics imply that

there is little overlap in the distribution functions under consideration. In the case

of parametric, isotropic, unimodal distributions such as the Gaussian, it is sufficient

to consider the displacements of means to determine whether distribution functions

differ significantly, but for high dimensional, non-parametric distributions, we may

wish to approach the question of distribution overlap more directly, in a more general

sense which does not rely on Gaussian behaviors to induce separability. Note that it

is common to assume that voxel intensities are Gaussian distributed, and that entire

images can be thought of as coming from a multivariate Gaussian distribution.

Linear classification is where we attempt to fit a discriminating hyperplane between

two groups of points in a (potentially high dimensional) space. While high dimension-

ality is not generally conducive to high accuracy in linear classifiers (the VC dimension

of linear classifiers is proportional to the number of independent dimensions,) the high

degree of correlation among voxels counteracts this effect by effectively reducing the

dimensionality of the space. This makes linear classifiers well suited to neuroimaging

classification tasks. A hyperplane is defined by its normal w and offset b, and the

corresponding decision function is defined as sign(wTx+ b). In order to adapt this

methodology to the problem of choosing an outcome measure, we can simply let

τ(x) = sign(wTx+ b), where w and b are chosen without observing x. The sample

statistic then becomes t∗ = 1
N

∑
i yiτ(xi), where there are N subjects overall, and

yi = 1 for all trial subjects, and yi = −1 for all placebo subjects. In other words, t∗
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is the cross-validated empirical risk (test-set accuracy) of a linear classifier with trial

group as the predicted labels. Note that by writing

t∗ =
1

Ntrial

∑

i:yi=1

τ(xi) −
1

Nplacebo

∑

i:yi=−1

τ(xi)

we can see the role of t∗ as a difference of means of two binomials, with the variances

defined according to the error probabilities. (Under the Null hypothesis, with equal

sized cohorts, the error probability is 0.5.) As a result of the process by which it is

selected, (i.e., the training step,) the outcome measure τ is chosen so that the overlap

between the distributions of τ(Xtreatment) and τ(Xplacebo) is minimized, leading

to a higher t∗, but only in the event that the groups are indeed separable. What remains

is to assign confidence levels α and β for a given threshold δ, which I discuss next.

7.2 A Motivating Example

In order to better motivate the remainder of this chapter, I first present a Monte-Carlo

simulation which demonstrates the effect had by a dense, (i.e., approximately low-rank)

covariance matrix, as opposed to an isotropic (i.e., diagonal, and high-rank) one. In

particular, this first set of experiments examined whether or not this is sufficient to cause

the univariate t-test on the unweighted mean voxel intensity to become underpowered

relative to the SVM in a multivariate Gaussian setting. As we will see, this is indeed the

case. In this experiment I used MCI participant data to compute the sample covariance

matrix, ΣMCI, from 1000 TBM voxels. See Figure 7.2 for the covariance matrix, and

Figure 7.3 for its eigen-values. These voxels were selected by computing voxel-wise

t-statistics between AD and CN groups, and choosing the lowest 1000. I modeled

the simulated disease effect as the voxel-wise difference in means between the AD

and CN groups, denoted as δdisease. To simulate the untreated disease, I added

δdisease to the voxel-wise mean of the MCI group, µMCI, to give µplacebo. Note

that this is intended to exaggerate the disease effect somewhat, so as to more clearly

establish the comparison between methodologies. Further simulations presented below

will use a more subdued – and more realistic model of the disease effect likely to

be experienced by MCI subjects. To model a putative treatment which reduces this

disease effect by 25%, I added 0.75δdisease to µMCI to give µtreatment. The
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means µtreatment and µplacebo differ by an amount that corresponds roughly to a

25% reduction in disease-related atrophy, as opposed to total atrophy, which includes

age-related atrophy as well; using the total atrophy, rather than the disease specific

atrophy, to model the disease would overestimate the sensitivity of both methods. This

observation will hold true for later simulations as well. Using ΣMCI, µtreatment,

and µplacebo I drew 100 samples from two multivariate Gaussian distributions,

Xtreatment ∼ N(µtreatment,ΣMCI), and Xplacebo ∼ N(µplacebo,ΣMCI). I

then used these samples to compare methodologies as in a real trial with a pre-selected

“statistical ROI”. Then, I repeated the entire process using an identity matrix instead of

ΣMCI, corresponding to the case where all covariates are uncorrelated.

To calculate the SVM methodology’s test statistic, (i.e., the cross-validated average

accuracy), I used a 10-fold cross-validation procedure, i.e., holding aside 10% of

examples – one fold – for testing, and training an SVM on the remainder. Accuracy

was averaged over all 10 folds to give the final test statistic. I then calculated p-values

according to a Binomial distribution, which is the Null distribution for this test. For

comparison, I performed a univariate t-test on each fold using only the training subjects,

and averaged the p-values over all 10 folds. In summary, each method had up to

ninety training subjects which were used to select parameters, and test statistics were

averaged over ten randomized samples (without replacement) of the entire sample

population.

To evaluate each method in terms of its performance as a function of the number

of subjects used in a hypothetical trial, I repeated the above process with an increasing

subset of the training sample for each fold. That is, I first used only two virtual

subjects per arm in each fold, and then four, and so on, up to ninety subjects per fold.

Note that the SVM’s accuracy, i.e., the fraction of correctly labeled test subjects, is

evaluated using all two hundred subjects through cross-validation, while the t-test is

only performed on the training cohort, which can be quite small. To account for this, I

used Ntr times the test-set accuracy, rounding down to the nearest whole number, as

the parameter determining the number of “coin flips” when calculating the binomial

p-value, where Ntr is the size of the training cohort. That is, I used all 200 virtual

subjects to derive a low-variance estimate of the classifier’s accuracy for each training

set size, and then interpolated that accuracy to the size of the training set used in order to

calculate a p-value. Thus, using the larger test set to estimate accuracy does not make
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the SVM-based methodology more powerful relative to the univariate t-test method;

in fact, using Ntr as the number of “coin-flips” when the accuracy values have been

averaged over a larger number of trials is somewhat disadvantageous; consider that

getting 55 heads out of 100 coin flips is far less significant than getting 550 heads out

of 1000. However, this was not an issue, as the SVM-based methodology performed

quite well in these simulations.

Results

First, observe that the covariance structure among voxels is fairly dense, and the

main diagonal is almost imperceptible, as shown in Figure 7.2. As we might expect,

the eigen-values decay rapidly, as shown in Figure 7.3. This provides an important

validation of a critical underlying assumption: that voxel-wise covariates are not just

correlated, they are extremely correlated. Note that the first eigen-value alone (9.16)

accounts for 65% of the mass of the entire spectrum (14.13). It is worth pointing out

that this is largely a result of the way that these voxels were selected – they represent a

relatively small sampling of the entire set of voxels in the brain, and they are selected

for their relevance to AD, which will contribute significantly to their overall correlation.

However, this is precisely the property which we would like to enhance in a clinical

trial or Neuroimaging study.

The results comparing the proposed methodology with the univariate t-test for the

case where I used ΣMCI are shown in Figure 7.4. The results for the case in which I

used a diagonal covariance matrix are shown in Figure 7.5. In the first experiment using

ΣMCI, shown in Figure 7.4, the univariate t-test utterly failed to detect a significant

difference; p-values are centered about 0.5, no matter how many samples were used.

In contrast, the SVM methodology achieved significance at the≈ 10−4 level with only

twenty eight training samples per arm. Test-set accuracy quickly rose to 75%, and

reached 88.5% when using the entire training set of ninety subjects per arm, giving

a significance level of . In the second case, in which I used a diagonal covariance

matrix, (i.e.., treating all covariates as completely independent,) the results were

exactly the opposite. (Figure 7.5.) Test-set accuracy barely reached 60%, and was

only consistently significant at the 5% level for seventy subjects per arm or above. In

contrast, the t-test was able to show significant differences at the α < 10−6 level for



116

Figure 7.2: The MCI cohort sample covariance of the 1000 voxels selected. Note that

the matrix is not diagonal, meaning that the voxel intensities are highly correlated.

as few as ten subjects, and decreased exponentially as more subjects were added.

This marked difference in outcomes between the methods can be understood in

terms of their relative strengths and weaknesses. The SVM method is more effective

in lower dimensional spaces, both theoretically and in practice, for several reasons.

For one, having more training examples than input dimensions means that the instance

space is better sampled than when the reverse is true. Another way of looking at the

issue is that when the kernel space is high dimensional, each example can be thought of

as having its own dedicated dimension outside of the span of the other examples – i.e.,

the kernel is highly diagonal. This is a problem because the SVM is forced to use self

similarity to classify each example and providing a large margin becomes trivially easy,

yet, removing the diagonal would make the problem non-convex. Further, it is well

known that VC dimension and Rademacher complexity grow with the dimensionality
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Figure 7.3: Eigen-values of the MCI cohort sample covariance matrix. Note the rapid

decrease in magnitudes, and that the first single eigen-value alone accounts for nearly

half of the variance of the entire distribution.

Figure 7.4: Experimental results with simulated Multivariate Gaussian data, using

ΣMCI. Cross-validated accuracy, correspondingp-values, and averaged t-testp-values

as a function of the number of training samples per arm.
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of the input space, and as these measures of complexity increase, the generalizability

of the learned pattern classifier and its training accuracy and margin becomes more

and more in doubt. Essentially, the SVM is looking for a very specific pattern, and in

high dimensional, isotropically distributed data, it has too many potential options for

it to confidently extract the right one.

Figure 7.5: Experimental results with simulated Multivariate Gaussian data using

Σ = I. Cross-validated accuracy, corresponding p-values, and averaged t-test p-values

as a function of the number of training samples per arm.

The univariate t-test, however, represents the opposite end of the spectrum. Con-

sider that the mean of a large number of independent random variables has a distribution

function which is equal to the convolution of the individual covariate distribution

functions. The Central Limit theorem dictates that this distribution will not only be

Gaussian for a large number of covariates, but more importantly, as the number of ran-

dom variables increases, the distribution of their mean becomes narrower and narrower,

provided the individual covariate distributions are unimodal and monotonically de-

creasing about the mean. In other words, where the SVM looks for as specific a pattern

as it can, taking the mean over all of the covariates makes no specific assumption at all,
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and the SVM’s tendency to search for specific patterns makes it vulnerable to minute

variations. On the other hand, in a low dimensional setting where the principal axes of

variation (i.e., Principal Components) differ markedly in terms of their contributions

to the overall covariance, (i.e., when the eigenvalues of the covariance matrix decay

rapidly as in Figure 7.3,) then unless the optimal separation boundary is in the span

of the first few eigen-functions, then the univariate mean method will fail to detect

it. In contrast, the SVM’s margin seeking behavior can be understood as pushing the

discriminating boundary outside of the largest eigen-functions, and into the lesser

eigen-fuctions, depending on how much each eigen-function contributes to the margin.

(See Figure 7.1.)

As a final comment on the form of linear classifier, note that the SVM is not the

only linearly discriminating method available to us. For instance, Fisher’s Linear

Discriminant Analysis (LDA) is the optimal method of discriminating between two

Gaussian distributions having different covariances, and would work equally well

in this setting – in these experiments, which are Gaussian by design, this is almost

certainly the case. However, when distributions are not Gaussian, it is not as clear

that LDA is always preferable. One of the strengths of the SVM is that it makes

no assumption on the distribution of the data, i.e.it is a discriminative model, rather

than a generative one. It is often assumed – and reasonably so – in the context of

neuroimaging analysis that the observed data come from a Gaussian distribution,

however neither is this always guaranteed to be the case. In fact, as will be discussed

in the subsequent and final chapter, the use of permutation testing for estimating the

Experiment-Wise error rate is largely driven by the desire to avoid making a Gaussian

assumption. Regardless of the method of discriminating algorithm, or the assumptions

it brings with it, however, the central purpose of this Chapter is to establish that

there is a significant gain in information to be accrued by using cross-validated linear

discriminant functions, trained on treatment vs. placebo labels, as a clinical trial

end-point. Additional Monte-Carlo trial simulations described in the next Section

serve to further this aim.
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7.3 Power Calculations

Before we can accept the outcome of a trial, we must establish bounds on the probability

that the trial’s conclusion is incorrect. These calculations are different for the two

cases involved, which I will discuss separately.

Type I error

The probability that t∗ > δ when no real difference exists can be estimated using the

Binomial distribution, (or permutation testing). That is, under the Null hypothesis

that there is no detectable difference between groups, the output of a linear classifier

will be Bernoulli distributed with p = 0.5, (or some other value if the treatment and

placebo classes are not balanced,) and cross-validated accuracy will necessarily be

Binomial distributed. Thus, we can simply calculate α as,

α =

N∑

k

(
N

k

)
0.5k(0.5)N−k,

whereN is the number of subjects in the trial, and k is the number correctly classified

by the algorithm. Note that this calculation assumes that there is absolutely nothing

that a linear classifier can use to distinguish between arms of the study, so both arms

must be well matched according to age, education, APOE type, and any other factor

which may affect brain morphology.

Type II error

The calculation of β, the Type II error, is somewhat more involved. This is because

one cannot estimate β without making some assumption on the type of differences to

be detected. For instance, by using non-linear kernel functions to represent the data in

an alternate RKHS, we can detect a wider variety of group differences, which linear

classifiers may not be able to detect. However, as we cannot inspect the points in an

arbitrary RKHS, or characterize their distribution in terms of observable variables, we

lose the ability to calculate β. Thus, we will limit ourselves to using linear classifiers

on TBM imaging data.
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Type II error is the probability that t∗ < δ given that H0 is false, but this is a

function of the true classification risk 1 − δ∗, which we do not know. The true risk

is analogous to the notion of effect size in a two-sample t-test methodology, i.e., we

have to assume a given level of separability in order to calculate the probability that t∗

will exceed this level on test data. Our solution to this problem is that we will begin

with the usual notion of “effect size”, and translate it into a learning-theoretic bound

on the true risk. The standard used by most ADNI studies is that there should be an

80% percent chance of detecting a 25% reduction in atrophy. We therefore require a

way of translating the notion of a “25% reduction in atrophy” into a risk bound. To do

so, we must generalize this notion slightly – note in particular that a treatment may

have an effect on specific regions, as opposed to globally reducing the (AD-related)

atrophy. For some voxels, the trial and placebo groups will have different distributions,

so, provided the treatment is indeed effective, the two groups should have different

means. While individual voxels may not have significant differences, (for a given

sample), but in linear combination we can boost these differences.

The difficulty remains, however, that when we abandon the assumption that the

primary end-point will have a parametric form, giving a closed-form solution for Type

II error calculations, we are faced with a non-parametric setting in which there is no

such corresponding expression. Yet, for a non-parametric problem, we can instead

look for a non-parametric solution. As mentioned above, the point of focus is what

a “25% reduction in atrophy” really means. The non-parametric way to answer this

question is to train a linear classifier using AD and control subjects, (or stable and

converting MCI subjects,) and treat the learned disease pattern as a model of the

disease. Note that the SVM does not model the individual class distributions, however

Fisher’s LDA or Naïve Bayes do. Thus, the projection of a point onto the disease

classifier’s output space is a measure of atrophy, and a 25% reduction in AD-related

atrophy would be a 25% reduction in the shift from the control distribution to the AD

distribution in that output space. Subsequently, we need only to relate the Type II

error rate to N, the number of participants in the study. Recall that the significance

level is determined by the cross-validated error as a function of training examples. In

order to find the number of subjects required in order to attain a desired significance

level, we can plot learning curves on a simulated trial using the pattern trained on AD

and control subjects as the disease model. This way, the desired significance level
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will correspond to a particular point on the plot, and we can then read off the required

number of trial participants needed in order to give the desired β level.

7.4 Monte Carlo Evaluations

Any analysis of this methodology would not be complete without showing that it can

be effective in realistic scenarios. Theoretical calculations discussed above may be

sufficient, but numerical simulations based on human participant data can demonstrate

that this approach has merit in a real setting. In this section I describe a novel method

of simulating clinical trials using ADNI neuroimaging data, as well as the results of

those simulations. This methodology in some ways relaxes the Gaussian assumption

of the previous section, in that rather than drawing virtual subjects as random samples

from a multivariate Gaussian distribution, it proposes to use existing subjects, and

model the disease trajectory as an affine translation of one distribution onto another. In

this set of simulations, I used MCI participants who progressed to Alzheimer’s Disease

within 24 months to develop a model of the disease course, both in terms of the shift

in voxel-wise means, and the change in their covariance pattern. Using this model,

I then repeatedly simulated randomized clinical trials and compared the univariate

t-test against my method. I discuss the details and results of these experiments next.

Direct Simulation trials

In this set of experiments, my aim is to simulate a real clinical trial as faithfully as

possible, using only the scans that are available in the ADNI cohort. Observe that

in AD, both the mean voxel intensity, and the pattern of covariances can vary as the

disease progresses. Changes in the covariance may be caused by selective patterns of

atrophy; that is, some voxels may become decorrelated with their neighbors in the

presence of a systematic pattern of atrophy. In order to simulate this effect, I treated

the two groups as having different covariance patterns, and the disease course as an

affine warp from one distribution to the other. In this simulation, each subject follows

a unique disease trajectory from the healthy group to the diseased group. I then model

a 25% reduction in disease-related atrophy as a 25% shortening of this trajectory. This

way, instead of drawing samples from multivariate Gaussian distributions, I used the
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actual ADNI MCI participant data, and simulated only the disease pattern. Recall

that if one were to treat all atrophy as being disease related then a “25% reduction”

will significantly overestimate the effect of a treatment, giving unrealistic sample size,

and power estimates. Secondly, instead of using AD and control subjects to estimate

the effects of disease, I used stable MCI subjects, (those whose diagnosis remained

unchanged after 24 months,) and converting MCI subjects, (those who converted to

AD within 24 months), as this more closely resembles a clinical trial composed only

of MCI subjects at risk of converting to AD. Recall that in the motivating experiments

presented above, I used the control vs. AD difference of means as the disease model,

so as to generate as strong a signal as possible for expository purposes. However, in a

more realistic setting a clinical trial is likely to be focused on at-risk MCI patients,

because these are exactly the patients who stand to benefit from a putative treatment.

Moreover, for the stable MCI population, we cannot rule out the possibility that some

of those subjects are themselves nearing a conversion to full dementia, which would

have happened after the end of the study. This too is a more realistic setting. (cf.

clinical trial enrichment methodologies, discussed in the previous Chapter, which

represents the opposite case.) Thirdly, I used 10,000 voxels, rather than 1000. As

before, these 10,000 voxels were chosen according to voxel-wise t-statistics, using

AD and control participants only. There are several motivations for doing so: while

the AD signal is strongest in the hippocampus and surrounding areas, roughly covered

by the 1,000 strongest voxels, AD-related disease effects can also be seen in a broader,

though somewhat more diffuse, pattern throughout the brain Klöppel et al. [2008],

Cuingnet et al. [2011]. Finally, in order to investigate the relative strength of signal

observed between GM and CSF voxels, I performed all of the following experiments

separately for GM and CSF voxels only, (among the selected set of 10,000) as well as

using all 10,000 voxels. The comparison is of interest because CSF voxels, particularly

those bordering on GM regions, may give a clearer signal of atrophy. This is because

CSF expansion seen at the boundary of gray matter regions is effectively an integration

of all of the contraction happening at interior GM points. In other words, as a gyrus

or other neuroanatomical structure shrinks, the inner-most voxels will appear to be

unaffected, while the outer-most voxels will appear to be shrinking the fastest, and the

surrounding CSF will be quite clearly expanding.

The procedure is as follows: First, I divided the subjects into two groups at random,
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and computed the affine transformation as,

xtrans = (xoriginal − µstable)Σ
−1/2

stableΣ
1/2

converting + µconvering,

where xoriginal is an unmodified stable MCI subject, xtrans is the same subject after

the affine warp,µstable andµconverting are the centroids of the stable and converting

MCI populations, respectively, and Σstable and Σconverting are likewise the stable

and converting MCI sample covariance matrices. Essentially, I centered the stable

subjects, multiplied them byΣ
−1/2

stable, to make them isotropically distributed, multiplied

them again by Σ
1/2

converting to match the covariance pattern of the converting subjects,

and finally I added back in the mean of the converting subjects. This is equivalent to

finding a linear transformation which maps the distribution of the stable MCI group

onto the distribution of the converting group. Thus, the vector difference between

xtrans and xoriginal is the unique, individualized disease trajectory computed for

each subject. For the simulated treatment group, I shorten this transformation by 25%

by taking

xtreatment = 0.25 xoriginal + 0.75 xtrans,

and

xplacebo = xtrans.

Results are shown in Figures 7.6 and 7.7. I opted to display p-values in −log10

scale to better show the power of the proposed method. In Figure 7.6 are shown the

results of this experiment when using all 10,000 voxels, and in Figure 7.7 are shown the

same set of experiments using only CSF voxels. For comparison, the −log10(0.05)

threshold is shown in black, and the −log10(0.001) = 3 threshold in red. As in the

previous simulations, the univariate mean t-test fails to reach even the 0.05 significance

level, while the SVM test shows a significance of 10−6 with only 25 subjects per arm.

This result is very competitive with anything reported so far in the literature (to my

knowledge). Note also that with more and more training subjects, the SVM’s accuracy

continued to improve, giving p-values which decreased exponentially (seen as a linear

trend in log scale).
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Figure 7.6: p-values from simulated trials using all voxels, mapping stable MCI to

converting MCI.

7.5 Simulations Using the AD cohort

In addition to the simulations described above, I also simulated the disease course

using the AD group. These experiments are shown in Figures 7.8 and 7.9. The results

are largely the same, except that for some smaller samples sizes the t-test was able to

show some significance at the 0.05 level, but never for the whole cohort. In the top row,

I simulated the disease course by affinely warping the entire MCI group, including the
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Figure 7.7: p-values from simulated clinical trials using CSF voxels only, mapping

stable MCI to converting MCI.

converters, to the AD group. In the bottom row, I did the same, except using only the

stable MCI subjects. As before, the left column shows the results when using ALL

voxels, and the right column shows the results when using only CSF voxels.
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Figure 7.8: p-values from simulated trials using all voxels, mapping CN to AD.

Figure 7.9: p-values from simulated clinical trials using CSF voxels only, mapping

CN to AD.

7.6 Conclusions

There is an opportunity to dramatically increase the statistical power of clinical trials

using neuroimaging-derived markers as primary end-points, by leveraging ideas from

statistical learning theory to more directly address the question of treatment effect:

rather than asking if a voxel-wise ROI mean differs in a way that is significantly

different from chance, we could instead ask if there exists a linear discriminating

function which can detect treatment effects in a way that is significantly different from
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chance. My simulations show that the covariance structures inherent in neuroimaging

data make uniformly weighted voxel means a non-ideal choice for aggregating high

dimensional data, and that statistical learning methods such as the SVM are much better

suited to the problem of detecting significant differences between trial populations.
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Chapter 8

Future Directions and Open Questions

In this chapter I describe some ongoing work which is at varying stages of completion

at this time. These projects are aimed at extending the works in this thesis both in

theoretical, as well as in translational directions. If these ideas fully lead to fruition,

they will almost certainly have a multiplicative effect on the utility of the contributions

of this thesis.

8.1 Efficient Large-scale Permutation Testing via Matrix

Completion

In previous chapters I have derived novel neuroanatomical markers of atrophy and

used them in both identifying more sensitive outcome measures and specific inclusion

criteria. By themselves, these methods show signs of having the potential to sharply

reduce the required sample cohort sizes. Yet, the goal of a clinical trial is not merely

to derive a yes/no answer that a treatment arm differs from a placebo arm. It is equally

important to assess what the end results really mean — whether the neurodegenerative

effect is as intended, and not a mere epiphenomenon, (e.g., neuro-inflammatory side

effects). To this end, once a difference is detected, we also need to assign statistical

confidence levels both globally and at a voxel or feature level.

In this section, I examine the issue of testing for significant variations between

groups in a high dimensional setting. That is, we are presented with two groups of high

dimensional measurements (i.e., each measurement consists of a high dimensional

vector of random variables) and we wish to detect whether there is a significant

difference in means for at least some of these variables. More generally, I am interested

in finding out whether or not their density functions (PDFs) differ. For instance, in

functional brain imaging, each measurement consists of a 3D image having as many

as 106 voxels, and we are tasked with discerning whether some of these voxels show

higher activation in one experiment group than in the other. When measuring only
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one variable, a simple univariate t-test will often suffice; however, when the number

of variables is large, multiple testing issues make point-wise comparisons difficult to

interpret.

Multiple comparisons, or multiple testing, refers to the situation in which we are

performing many tests on independent random variables, giving a large number of

independent test statistics, which boosts the likelihood of observing a spurious result.

In cases where each random variable – and hence its corresponding test statistic – is

independent of all the others, we can calculate the Family-Wise (or Experiment-Wise)

Type I error probability as a function of the Cumulative Distribution Functions (CDFs)

of the individual test statistics. However, in the other extreme case, where all variables

are 100% correlated, an uncorrected Type I error rate is correct since effectively there

is only one random variable. For cases in between these extremes, there are many

possible approaches to multiple comparison corrections.

As discussed in the previous chapter, another approach to the multiple comparisons

issue is to avoid it altogether by performing one, and only one, test using all of the

data. One such way is to use cross-validation to choose model parameters on one

subset of the data, while evaluating test statistics on another. However, this is not so

much a multiple comparisons correction as it is a multiple comparisons avoidance. In

this section I will return to the more conventional setting in which we would like to

examine in which specific locations a differential has been observed between clinical

groups.

This issue is of vital importance: consider that if a cross-validated classification-

based methodology detects a significant difference between treatment and placebo

arms of a trial, we must still confirm that the difference is beneficial and that it

relates to the disease under treatment. Subjectively, we can examine the pattern

of voxel-wise weights that make up the linear classifier to see whether or not it is

consistent with the existing literature on AD; however, this does not give us the ability

to inspect individual voxels for significance. More broadly, we may propose a similar

methodology for all neuroimaging studies that consider the possible existence and

location of significant variations between groups of measurements. In the following

I will propose a novel methodology currently under development which potentially

offers a way of efficiently performing large-scale permutation tests by applying recently

developed Robust Matrix Completion methods, giving a significant speedup over
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existing methods while preserving the reliability of this method, and freedom from

assumptions on the structure of the data. Next, I will review existing methodologies

for attacking this problem, describe the proposed methodology and its motivation in

detail, and present preliminary experiments demonstrating its effectiveness.

Multiple Comparisons correction methods

The simplest way to account for the effect of Multiple Testing is to use Bonferroni

correction. However, this method makes several strong assumptions: because it is

based on the Union Bound, in which the probability of the union of a number of

events is no greater than the sum of the individual event-wise probabilities, Bonferroni

correction is only exact in the case in which the events are mutually exclusive. In other

words, Bonferroni correction is calculating the probability that any voxel or set of

voxels will show a spurious significance, but it assumes that if this happens at any

single voxel, then the same cannot be the case in any other voxel. This is obviously

problematic when, rather than being mutually exclusive, or negatively correlated, or

even independent, voxel-wise covariates are in fact highly correlated. In practice this

can mask real, significant differences whenever the effect size is too small to provide

a sufficiently high experiment-wise test statistic for the (usually small) number of

subjects involved.

Another approach is to treat the voxel-wise statistics as variables in a Random

Field, which allows a better characterization of their covariances. This type of model

gives a better estimate of the experiment-wise p-value, which we can then use to

filter out meaningful results from the expected amount of false positives. While

several types of random field have been analyzed in this setting, Gaussian Random

Fields (GRFs), which generalize the multivariate Gaussian to the case of an infinite

number of variables, have received the most attention due to the ease of analysis they

afford [Worsley et al., 1992, Worsley, 1994, Worsley et al., 1996]. Results from GRF

theory show that the Euler characteristic number of a set (essentially, the number of

contiguous components minus the number of holes) can be related to the expected

supremum over the field. For the most commonly used global Null hypothesis (i.e.,

that the mean of each voxel-wise distribution is equal between groups) this value

yields the experiment-wise expected Type I error rate. However, this methodology
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makes a Gaussian assumption, i.e., that the distribution of voxel intensities for any

image can be exactly characterized by a multivariate Gaussian distribution. While in

practice individual voxels can be approximately Gaussian-distributed, their dependency

structures can be somewhat more complex and cannot necessarily be captured via a

measure of covariance.

A more direct way of addressing this question is to treat the issue not as a question

of how to correct the measured p-values, but rather, of how to interpret them. In order

to do this, we must have an unbiased estimator of the global (i.e., joint) Null distribution

of the test statistic. (In the following I will assume that this will be the t-statistic of

each voxel for ease of exposition, however others, such as the coefficients of a GLM,

etc., may be used as well, without changing the nature of the problem.) Once we have

a good estimate of the Global distribution of the voxel-wise test statistics under the

Null Hypothesis, we can then assess whether or not the observed range of statistics

falls within this range, and, in particular, we can assess how likely the extremes are to

be spurious, or not. If it were the case that each test statistic (i.e., each voxel) were

independent from all of the rest, then we can calculate the global Null distribution

in closed form using the CDF of the test statistics. However, when covariates are

dependent, this will not suffice, and so we must fall back on drawing samples from

the Global Null distribution. A time-honored way of doing so is to randomly permute

the groups many times, and for each permutation, re-compute the test statistic for each

covariate. Aggregating these samples gives the global Null distribution; this method

is known as Permutation Testing [Pesarin, 2001, Nichols and Hayasaka, 2003]. At the

most basic level, permutation testing can be understood as a type of bootstrap sampling

method [Wasserman, 2006], except that sampling is done without replacement.

Assuming a treatment effect is detected using the models described in the previous

chapters, we can assign a reliable α-level to it by comparing the observed point-

wise statistics with the permutation testing samples. This allows both localization

of treatment effects and assignment of a global confidence level. A fact of crucial

significance is that because we are interested specifically in the tails of the Null

distribution, we require a very large number of iterations, often in the hundreds of

thousands, each of which requires a pass over the entire imaging data set. This is

the major driver of running time, which can run up to several days for large datasets,

and hence there is significant benefit to reducing this cost. If a specific structural



133

redundancy can be identified, then it may be possible to speed up this process by

exploiting it. As described next, the low-rank characteristics of this type of data may

be able to serve this role.

Redundancy and rank in permutation testing

As in previous chapters, we may observe a fact of crucial significance: brain voxels

are highly correlated with one another, even those from opposite ends of the brain,

owing to global anatomical variations. This high degree of correlation means that for

such voxels, if we know the t-statistic of one, we can predict those most correlated

with it with high certainty. In the limit, as voxels become 100% correlated, they

behave as a single t-statistic. Permutation testing, as currently used in neuroimaging

studies [Singh et al., 2003, Nichols and Hayasaka, 2003], is completely unaware of

this structure in the data. Our proposal is to make the above intuition rigorous using

ideas from compressive sensing and matrix completion theory [Fazel et al., 2004,

Recht et al., 2010, Candès and Recht, 2009, Candes and Tao, 2010], allowing for a

more efficient process.

Just as the voxels are highly correlated, so are the rows of the permutation matrix

T ∈ R
m×n, where m is the number of voxels tested per permutation, and n is the

number of permutations performed. Thus, each permutation test fills a single column

of T , where each row is the Null statistic computed for a particular voxel. Such strong

correlations imply that these column-vectors are all tightly clustered in R
m, i.e., highly

coherent. This leads to the central idea of this section – every time we fill in a column

of T , much of this computation is highly redundant because T is inherently low-rank.

Instead, if we were to randomly choose a small subset of entries,Ω, to populate, we

could fill in the remainder of T by treating that process as a matrix completion problem.

The question then becomes what type of low-rank structure do we wish to impose on

this process?

While we do observe that the eigen-values of the sample covariance matrix (which

relate to the singular values of the permutation matrix) decay rapidly, there is still the

issue of what to do with the least singular values. Moreover, I have found that the

singular values of the permutation matrix are spread out somewhat more broadly than

those of the sample covariance matrix. Note that the sample covariance matrix cannot
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be higher in rank than the minimum of the number of samples and the dimension of

the ambient space, owing to the linearity of its construction; while the non-linearity of

the construction of the t-statistics of the permutation matrix (especially in dividing by

the pooled variance estimate) means that this is not necessarily the case. In practice,

I found that the rank of this matrix is significantly higher than that of the sample

covariance, albeit with very small values for the trailing singular values. To a reasonable

approximation, this matrix has roughtly twice the rank as the sample covariance matrix.

That is, when reconstructing from the first 2N, where N is the number of subjects,

singular vectors alone, the average entry-wise absolute residual was on the order of

about 0.005, which is close to negligible for t-statistics. More encouragingly, this

residual was almost always on the positive side, i.e., it slightly over-estimated the

distribution of the maximum, rather than systematically underestimating it, which is

desirable for the intended application.

However, there is a way in which we can turn this behavior to our advantage.

Consider that once the largest singular values are removed, the remainder of the

spectrum is relatively flat. It is well known that among positive semi-definite matrices,

there is a trade-off between sparsity and low-rank. That is, sparse matrices are high-

rank (e.g., the identity matrix is extremely sparse, and is full rank) while low-rank

matrices are non-sparse in general. Thus, the relatively flat portion of the remaining

spectrum, while much lower in magnitude than the few largest singular values, still

contributes a sparse pattern to T , and this sparse pattern could be enough to upset the

distribution of the maximum, which is our primary interest. For this reason, recently

developed methods for sparse-plus-low-rank decomposition such as in He et al. [2012]

are more likely to yield useful reconstructions. This is because they are able to exploit

the “truly” low-rank behavior of the leading singular values, while treating the longer

tail of smaller singular values as a higher ranked, but sparse contribution to the residual.

Doing so will give a more faithful representation of the reconstructed permutation

matrix, leading to a better estimated distribution of the maximum, as is demonstrated

in the preliminary experimental results described below.

Let us therefore suppose that T can be decomposed as a product T ≈ UVT +O,

such that the coefficients of the low-rank expansion are stored in V ∈ R
n×d and

the basis set, or “dictionary” of this expansion, is stored in U ∈ R
m×d, which is

orthonormal and low-rank; d is the size of the dictionary, andO ∈ R
m×n is a sparsely
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populated residual that does not fit within the span of U. We can alternatively think of

the sparsity ofO as being a higher-rank, but lower mass, portion of this reconstruction

rather than a “residual”. Or, we can simply think of O as a sparse but otherwise

unstructured component of the reconstruction. With this model, we need make no

assumption on the Gaussian behavior of the distribution of T , which is the main

motivation for performing permutation tests in the first place.

The reconstruction problem of solving for T as a constrained matrix completion

problem is given as:

min
U,V ,O

‖O‖1,1

s.t. [UVT ]Ω +OΩ = TΩ

rank(UVT ) 6 d (d is a user-supplied constant),

where Ω is a set of entries of T which we have chosen at random to populate. The

constraint on the rank of UVT is crucial because otherwise the problem would be

underdetermined, and any solution setting TΩ = [UVT ]Ω,O = 0 would be optimal.

In general, exact rank-constrained optimization is computationally intractable, but

as in the standard matrix completion problem [Candès and Recht, 2009, Candes and

Tao, 2010], the rank constraint can be substituted with its tightest convex relaxation,

the nuclear norm [Fazel et al., 2004, Recht et al., 2010] so as to make the problem

efficiently solvable. The above model can transform how permutation testing is

deployed within neuroimaging studies, by giving a reliable Family-Wise Error Rate,

as well as power and sample size estimates, at drastically lower computational cost.

Note that matrix completion is a generalization of compressive sensing to matrices,

and much of the Restricted Isometry Property (RIP) theorems carry through [Recht

et al., 2010]. Given that this is the case, it implies that T can be reconstructed to high

fidelity even in the aggressive sampling regime (with information on just 5-10% of

entries). Using an extensive array of first-order methods recently developed [Stich

et al., 2012, He et al., 2012], this methodology can translate into a significant time

savings in neuroimaging studies and clinical trials. Of particular interest is that in [He

et al., 2012], where the rank d is a user-supplied constant and the algorithm returns a

solution with exactly that many basis elements.
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Figure 8.1: Distribution of the maximum t-statistic reconstructed from a varying

sample as a percentage of all voxels.

Preliminary experimental results

Here I present preliminary experimental results demonstrating the effectiveness of the

proposed methodology. The aim is to show that even though we have only sampled a

small percentage of the full permutation table, we can nevertheless recover the object

we desire: the distribution of the maximum Null t-statistic for each permutation trial.

The procedure was as follows: I first computed a full permutation matrix for 1000

voxels over 2000 trials. Then, using the GRASTA method described in He et al. [2012],

I reconstructed the full matrix using an incrementally increasing fraction of randomly

selected entries, ranging from 10% to 25%. I then compared the distribution of the

column-wise (i.e., permutation-wise) maximum of the reconstructed permutation

matrix with that of the full permutation matrix. Distributions were calculated by taking

smoothed histograms, where smoothing was done with a Gaussian filter of width 0.1.

Results are shown in Figure 8.1. As the sub-sampled fraction goes from 10% to
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25%, we can clearly see the reconstructed distribution, shown in blue, converging to the

true distribution, shown in green. Moreover, the reconstruction is always conservative

in that it slightly over-estimates the distribution of the maximum. Even for 15%

sub-sampling, the reconstructed distribution matches the original quite closely, and

at 25% it even matches the particular idiosyncratic features of the true distribution

(bottom right). At this time, the reconstruction method requires more running time

than the permutation sampling method itself, by a factor of about 4 for the 10%

sampling case, and slightly more for the others. While the reconstruction accuracy

is an encouraging sign that this problem can indeed be solved by such methods, the

ultimate motivation is to speed up the process, which is not currently achievable.

However, note that while the process of calculating the actual permutation tests can

never be sped up, there is constant progress being made in efficient matrix completion

algorithms, which strongly suggests that in the near future this methodology will

indeed become the faster way of computing the permutation-wise maximum Null

Statistic. Note in particular that while the latent rank of the permutation matrix is

fixed, we can achieve much lower effective sampling rates by reconstructing a larger

number of covariates at once, which may give the desired level of speed-up.

8.2 Ongoing Applications to Planned Clinical Trials

In the work described in Chapter 7, I used simulated clinical trials of Disease Modifying

(DM) treatments in order to estimate the relative efficacy of the proposed method.

However, until it has been validated on an real-world trial involving real human at-risk

participants being given actual treatments, we cannot be fully certain that the method

has as much merit as it appears to. Therefore, a clinical trial is currently in the planning

stages that will include the proposed methodology in a retrospective analysis with the

hope of validating its efficacy. Specifically, investigators at the Wisconsin Alzheimer’s

Disease Research Center (WADRC) are interested in using multi-modality imaging as

well as other cognitive and biological measures in an MMDM-like framework (see

Section 6.1) which can be used either in screening, as described in Section 6.3, or

more interestingly, as the basis of a learning-based outcome measure as described in

Chapter 7.

Participants in the planned trial are to be recruited from among a cohort of
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90 subjects (63 controls, 27 MCI). This group has previously participated in the

MERIT 220, PREDICT, and other studies conducted under the Wisconsin Registry

for Alzheimer’s Prevention (WRAP). All participants in this special cohort have had

several imaging and other measures acquired at several visits. Imaging measures

acquired include lognitudinal T1, T2 Fluid Attenuated Inversion Recovery (FLAIR),

and Arterial Spin Labeled (ASL) MR images, taken at an intervals of approximately

two years. In addition, family history, APOE genotype and vascular factors such

as blood pressure (systolic and diastolic), HDL and total cholesterol levels, insulin

and glucose levels, and Body Mass Index (BMI) are recorded for each of these visits.

Further, a measure of change on White Matter (WM) hyperintensities (a type of

vascular lesion in white matter found commonly in elderly populations) between the

two visits is to be calculated. Of particular interest, this study will include a wider

array of imaging and non-imaging modalities for each subject than are available in the

ADNI study, and, the T2-weighted FLAIR imaging is expected to be more sensitive to

signs of early dementia than FDG-PET, due to the confounding relationship between

WM hyper-intensities and AD.

During the planning stages, simulated trials will be conducted with the aim of

estimating exactly how sensitive the proposed marker will be, and determining whether

the existing cohort is large enough for this methodology to succeed. The methodology

for deriving a test statistic and α-level will be largely as described in Chapter 7. Once

the trial phase is completed, and all participant images have been normalized to a

standard template, a series of classifiers will be trained with the task of discriminating

between the treatment and placebo arms of the trial. The classifiers can include single-

modality SVMs or Q-SVM or multi-modality methods such as MKL or Q-MKL . The

Q-SVM models will give a more interpretable voxel pattern of discrimination between

groups, however, a Q-MKL classifier will allow the combination of a larger set of

modalities. Naturally, in a real trial we would specify one, and only one, classification

model at the beginning of the trial, so as to avoid multiple testing issues. However, for

the purposes of an exploratory, retrospective analysis, it is advantageous to examine a

wider variety of classification methods.

The above steps having been completed, an α-level will be computed from the

Null distribution of the classifier’s cross-validated predictive error – i.e., a Binomial

distribution. Thisα-level can then be compared against the primary and other secondary
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outcome measures of the trial to confirm or disprove the hypothesis that a learning-

based outcome measure will be more effective than existing measures of cognitive

status. If it is indeed the case that the learning-based outcome measure proves to be

more sensitive to treatment effects than existing measures, then the next question will

be to discern whether or not the treatment has had a beneficial effect. Various methods

for doing so have been suggested in Section 7.3. Comparison and validation of these

methods will be equal in importance to establishing a level of sensitivity.

As an exploratory analysis, this study will provide valuable data and insights into

the efficacy of the proposed methodology, from an empirical perspective.
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Chapter 9

Conclusion

Alzheimer’s Disease is having a growing impact on society and, as a result, the search

for effective treatments is receiving an ever increasing amount of attention. A significant

roadblock to this effort is the difficulty in characterizing the exact relationship between

neuropathology and observable cognitive status. Contributing factors include many

confounds such as cardiovascular health, education level, genotype and family history,

as well as the difficulty in characterizing cognitive status itself. From test-retest

variability, to coarseness and ambiguity in the neuropsychological cognitive status

measures such as delayed recall, auditory and visual learning, or other memory

tasks, it remains difficult to put an exact number on a patient’s degree of cognitive

decline based solely on outward signs. Neuroimaging offers a much more precise and

repeatable way of measuring the underlying pathological process which eventually

leads to cognitive decline, but at the expense of greatly expanding the volume of data

which must be analyzed before inferences can be drawn. When applied en masse,

traditional univariate statistics such as t-statistics, linear regressions or measures

of correlation have limited interpretability owing to multiple testing issues. These

methods, while reliable in their original univariate context, were simply not designed in

an era of massive, high-dimensional data sets, with complex interdependencies among

covariates. In the last decade, the trend has been towards using machine learning

methods as primary analysis tools in neuroimaging, largely as an acknowledgement of

this fact. Yet, while such methods are indeed designed for high-dimensional settings,

there is nevertheless further potential for improving the predictive performance of these

methods by incorporating knowledge of the setting in which they are to be applied.

In this thesis, I have described machine learning methods designed to capitalize on

the particular structural characteristics of neuroimaging data, making more accurate

and more interpretable predictions about the form and progression of Alzheimer’s

Disease. Using data provided by the Alzheimer’s Disease Neuroimaging Initiative

(ADNI), I have experimentally validated the power, and applicability of these methods
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to the analysis of Alzheimer’s Disease in neuroimaging contexts, showing significant

improvements in terms of discrimination ability between diseased and healthy study

participants; in terms of predictive ability as to which MCI patients will progress to

AD; and in terms of the sensitivity of the proposed markers for use in clinical trials.

Beyond the context of Alzheimer’s Disease research, the algorithmic and modeling

developments described above are relevant to the broader advancement of machine

learning methods as well. For instance, the Q-MKL model described in Chapter 5

need not be treated solely as a neuroimaging method; for instance, it can be viewed

as a way of implementing weighted combinations of sparse and non-sparse norm

regularizers in MKL, among many other potential uses. Equally important is the

fact that while improving predictive accuracy is indeed a major goal of this work,

the real aim is to facilitate the use of machine learning methods as tools of scientific

investigation. This means that interpretability of the learned model parameters is

equally important; measures of sensitivity or precision merely serve to establish a

level of confidence in these parameters. In this capacity as well, the models I have

developed serve to enhance the scientific utility of discriminative learning models.

Such enhancements may be brought about by providing more refined spatial models

of atrophy; or providing more effective combinations of different imaging modalities;

or by examining outlier subjects for signs of sub-group heterogeneity; or by allowing

the primary statistical question under consideration to be phrased in new ways.

In the remainder of this chapter, I will describe the principal contributions of this

thesis, and in Section 9.2 I conclude.

9.1 Contributions

The work described in this thesis falls under three main umbrella categories: Spatially

regularized learning methods for neuroimaging; Multi-modality learning methods

based on Multi-Kernel Learning (MKL); and applications of machine learning methods

to clinical trials. Each of these is motivated, as well as evaluated, in the specific context

of neuroimaging analysis of Alzheimer’s Disease, however, there is nothing which

inherently limits these methods to this context alone. So long as the right kind of

structural assumptions can be justified, then the methodologies described throughout

may be applied to other settings as well. In the following, I will briefly summarize
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the key contributions of this work from a methodological, as well as investigative,

perspective.

Structural biases for learning in the context of neuroimaging

In Chapter 3, I described several contributions to single-modality machine learning

based neuroimaging analysis methods, which impose structural biases on the learned

pattern classifier designed to capitalize on the known characteristics of neuroimaging

data.

• Beginning In Section 3.2 I proposed a model, called Spatially Augmented Linear

Program Boosting, which imposes a smoothness prior on the classifier, leading

to both a more interpretable and a more accurate model.

• I then provided extensive and rigorous analyses of this method’s predictive

performance on ADNI data, as well as its ability to correlate with other markers

of cognitive status.

• As a follow-on, I then proposed an alternative model that addresses the same

issue of imposing smoothness, but using a less-harsh regularization scheme

based on a Mahalanobis metric of voxel-wise similarity. This method, called

Q-SVM, produced smoother, more interpretable disease patterns than the flat,

single-valued patterns returned by SA-LP-Boost. Experiments on ADNI data

confirmed that this method gives significant improvements over standard SVM

models.

Multi-modality learning methods

Continuing in Chapter 4 I proposed several novel methods for combining multi-modality

neuroimaging data using MKL-derived methods. These methods are motivated by the

AD classification setting but are in principle applicable to other settings in which their

underlying assumptions are met. As above, I rigorously evaluated these methodologies

using ADNI patient data. These advances are detailed in Chapters 4 and 5.

• In Section 4.1, I examined in detail what effect the p-norm regularizer in existing

MKL models has on discriminative accuracy for MKL models.
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• In Section 4.2 I adapted a previously proposed outlier ablation method to the

multi-kernel setting, in which outlier subjects are detected and systematically

attenuated in terms of their contribution to the output classifier. The motivation

for this is described in detail in Section 6.2. I presented a convex relaxation of

the model which is easy to optimize, and rigorously evaluated its performance

on ADNI data.

• In Chapter 5 I motivated and proposed a new class of MKL algorithms that

make use of measures of interactions between kernels. That is, by measuring

how much a pair of kernels varies in its contribution to the overall classification

error, we can use this information in a regularizer to force greater diversity of

information into the final classifier. If this information comes from outside of

the training data itself, then the improvement in classification power is more

tangible, but, in some cases, estimates of interaction from the training data alone

were sufficient.

• I derived and implemented an optimization framework for this model which

was shown to converge rapidly.

• I presented theoretical analyses showing that there are guaranteed improvements

in learning generalization as long as certain assumptions are met.

Applications to clinical trials and other scientific questions

In Chapters 6 and 7, I described a number of contributions to the field of Alzheimer’s

Disease research, including the proposal and analysis of several new machine learning

based analysis tools, as well as several significant contributions to clinical trial design.

• In Section 6.1 I examined how MKL can be used to generate predictive,

multi-modality disease markers of AD, called Multi-Modality Disease Markers

(MMDMs). I then evaluated their ability to predict which MCI subjects would

progress to AD within a two-year time span.

• In Section 6.2 I detailed two separate analyses of outlier groups within the

ADNI cohort. The identification of these subjects was done by examining their

relative difficulty of classification and by their contribution to anomalous weight
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patterns in the trained classifier. In the first analysis, the results showed that

this sub-group of the AD cohort had more gray matter in certain regions than

the controls cohort did on average and, conversely, the control outlier group

more closely resembled the AD group. These results also carried through to

highly significant variations in several cognitive measures as well. Because the

identification of these outlier groups was made on the basis of discriminative

measures, it is unclear whether they might have been identified by standard

methods alone.

• In Section 6.3 I proposed a method of screening out low-risk subjects from

clinical trials, using multi-modality imaging based predictive markers derived

from an MKL classifier. When a clinical trial is conducted in which many

participants cannot possibly benefit from the proposed treatment due to their

not truly suffering from the disease being treated, then the real benefits of the

treatment will be confined to a smaller pool of participants, which can mask the

effect. Hence, this methodology can have a significant impact on both the size

and sensitivity of clinical trials.

• In addition to screening methods, we can use learning methods to derive more

sensitive outcome measures, (i.e., end-points). That is, by using the AD and

control cohort to train an AD-specific voxel-wise pattern of atrophy, I was able

to increase the effect size, which led in turn to reduced estimates of required

cohort sizes.

• Following this line of reasoning, I developed in Chapter 7 a methodology that

uses a trained model of the actual treatment effect, rather than a predefined AD

disease model, as an outcome measure. That is, if the treatment has an effect

which is similar, but not identical, to the discriminative pattern given by an SVM

or MKL classifier, then we may further increase the sensitivity of the outcome

measure by training it directly from the trial cohort, using treatment and placebo

arms as the classes to be discriminated.

• In order to simulate clinical trials using the proposed methodology, I devised

a novel method of simulating clinical trials which both takes into account the

change in voxel-wise means, as well as changes in their covariances.
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9.2 Summary

This thesis has described in detail my contributions to the state of the art in Ma-

chine Learning, Neuroimaging analysis, and Alzheimer’s Disease research. I have

demonstrated in a variety of ways that whenever domain-specific information can

be incorporated into learning models, there are tangible benefits to doing so. Such

information can take the form of known relationships between features or covariates;

relationships between views, modalities or kernels; estimates of the number of outlier

subjects; or how we wish to use high dimensional data to answer a scientific question.

In short, it is desirable to turn the challenges of high-dimensional data into assets.

The key to doing so is to understand the underlying structure present in the data, and

ensure that the learning model incorporates this understanding in the form of strong

regularizers or priors. This gives the model selection algorithm the freedom to fit the

data as needed, but only so long as it does not violate the known characteristics of

the phenomenon under study. While this thesis makes several important contribu-

tions in this direction, there will always be questions left to answer, advancements

in algorithmic optimization of parameters, and improvements in generalizability. In

particular, I believe that the MKL framework can benefit from a more careful anal-

ysis of its boosting-like behaviors, (or breakdown thereof,) and that an improved

model will expand upon previously demonstrated results. I also believe that machine

learning methods will continue to grow in importance in fields that rely heavily on

high-dimensional data with complex dependencies. Lastly, I believe that there is

potentially a significant benefit to society in the development of modern statistical

analysis tools for high dimensional data, and application to problems of large impact,

of which neuroimaging analysis of Alzheimer’s Disease is but a single example, to

which this thesis aims to contribute.
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