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Abstract—This work investigates the application of artificial 

neural networks to predict transistor dimensions in analog 

integrated circuits using semi-supervised learning. 

Traditionally, circuit designers apply a time-consuming 

iterative approach to find the optimal dimensions of transistors 

that satisfy a set of performance metrics. To address this 

problem, we propose to use artificial neural networks combined 

with an innovative approach wherein each transistor's 

dimensions were first predicted using its own network to 

identify potential learning behavior differences. Some 

transistors exhibited favorable validation loss levels, while 

others displayed up to 3 times higher loss values. Building upon 

this observation, a focused approach was developed, involving 

the splitting of prediction tasks into two individual networks. 

The first targeted transistors with low validation losses and 

relied solely on circuit performance metrics as inputs. The 

second, designed for challenging transistors, introduced a novel 

input structure encompassing not only the performance metrics 

but also the dimensions of other well-trained transistors. This 

adjustment led to a notable reduction in both training and 

validation losses by 3.5 times, thus enhancing prediction 

accuracy for the challenging transistors. These findings 

underscore the importance of tailored artificial neural networks 

in enabling more efficient transistor sizing and present a 

promising approach for advancing analog integrated circuit 

design automation. Furthermore, this study contributes to the 

understanding of machine learning efficiency in the context of 

analog design. 

Keywords— Transistor sizing, Analog IC design, Machine 

Learning, Artificial Neural Networks. 

I. INTRODUCTION 

The design of analog integrated circuits (IC) is widely 
considered a challenging and time-consuming task since their 
performance depends heavily on the physical dimensions 
(width and length) of circuit components, namely transistors 
and passives. Analog designers spend considerable time 
tuning the design parameters DP (Wk, Lk) of all components 
to achieve a set of performance metrics (PM) using electrical 
simulators. For example, an amplifier with 5 transistors has 10 
design parameters and its overall performance can be 
measured by several metrics such as voltage gain, thermal 
noise floor, common-mode rejection ratio, power supply 
rejection ratios, gain-bandwidth product, phase margin and 
current consumption. Each metric can be estimated using a 
proper type of simulation in the design environment. This 
iterative design phase is often referred to as Transistor Sizing.  

An important effort has been conducted in the past decade 
to use artificial neural networks (ANN) to assist in this process 
[1] relying mainly on the efficiency of ANNs to solve complex 
multivariate problems. Both reinforcement and supervised 

learning approaches were used and tested over different 
circuits and technology nodes [1]. Promising results were 
obtained using reinforcement learning [2][3][4], however this 
approach is not considered in this work. Although good results 
were obtained in supervised learning, they were often limited 
to a certain region of the design space [5][6], or linked to an 
available set of pre-designed circuits [7][8], or to scale an 
already existing solution in a novel technology node [9] or to 
circuits with a restricted number of PM [10]. 

In this paper, we investigate the efficiency of the 
supervised learning approach in achieving accurate prediction 
results during component sizing phase. We show that attempts 
to predict the dimensions of all components using a single 
ANN (joint prediction) is not optimal and that the networks 
can learn the design parameters of some transistors more 
efficiently than others. Moreover, we devise an innovative 
approach that splits the learning into two ANNs: the first 
network groups the components having low validation losses 
with the performance metrics PM as sole inputs, while the 
second predicts more challenging transistors and is fed the 
design parameters of the first network. This allows us to gain 
neural insights into the task at hand [11][12]. A final 
contribution of this work is to explain from an electronic 
circuit design perspective why such learning behavior 
differences exist between circuit components.  

This paper is organized as follows: The definition of the 
problem to be tackled is presented in Section II including the 
inputs, outputs, and the circuit under study. The joint 
prediction approach using a single ANN for all components is 
explained in Section 3 with all the relevant machine learning 
details. Section 4 describes the innovative study performed to 
identify the learning behavior differences between the circuit 
components. Section 5 presents how the focused approach 
was derived from the results of Section 4 to split the prediction 
into two individual neural networks having different inputs. 

II. PROBLEM DEFINITION 

The problem we are trying to solve in this work can be 
described as follows: “considering an operational amplifier 
(op-amp) circuit, what would be the optimal physical 
dimensions of its transistors  (Wk, Lk) and passives (Rk, Ck) to 
meet a set of performance metrics?”. To answer this, we will 
use ANN to create a model that can approximate the electrical 
behavior of the circuit by linking design parameters (DP) to 
PM based on a labeled and limited-size dataset (training 
phase). Also, this model should be capable of generalizing to 
predict new outputs for previously unseen inputs with 
sufficient accuracy (validation phase). In such scheme, PM are 
the ANN input features while DP are the outputs (Fig. 1). 



 

Fig. 1. ANN using the circuit’s performance metrics as input features and 
the design parameters as outputs. 

Several relevant questions arise to solve the problem: 

• What do we define and obtain performance metrics? 

• How to generate the data used in the training phase? 

• How to generate the data used in the validation phase? 

• What is the adopted architecture of the ANN? 

 

In the following paragraphs we address these questions 
We will first describe the studied circuit, then how the dataset 
and the subsets were generated and finally the details of the 
adopted machine learning approach. 

A. The Studied Circuit 

There are various analog circuits designed today for 
numerous applications such as signal amplification, signal 
filtering, frequency mixing and others. A well-known circuit 
that is extensively used in closed-loop systems is the op-amp. 
Therefore, in this work we have decided to study a basic 
CMOS op-amp with resistive biasing and having a source-
follower output stage. The circuit schematic is given in Fig. 2.  

The op-amp example is composed of 8 transistors in total, 
of which six share the same design parameters two by two 
(W1,L1 / W2,L2 / W3,L3). Therefore, there are 5 distinct 
transistors only, each having a width and a length, and one 
resistor value resulting in 11 design parameters. The op-amp 
overall performance can be evaluated using a set of metrics, 
that need to be defined properly.  

In this work, we have chosen to use the metrics 
summarized in TABLE I. , which are well-known to the 
analog IC design community as well as in the op-amp standard 
theory. They capture the overall circuit behavior in terms of 
dc, ac, frequency, noise, and nonlinearity. 

 

Fig. 2. Simple CMOS op-amp composed of an amplifying stage and a 
driving source-follower output stage for low resistive loads. 

TABLE I.  PERFORMANCE METRICS OF THE STUDIED CIRCUIT 

Symbol 

Performance Metrics PM 

Description Note 

AV Open-loop voltage Gain  

CMRR Common-mode rejection ratio 
Unwanted signals that 
are common to inputs 

PSRR+ Positive supply rejection ratio 
Noise coming from 
positive power lines 

NSRR- Negative supply rejection ratio 
Noise coming from 
negative power lines 

IIN Integrated noise level  
NTH Thermal noise floor  

FC Noise corner frequency  

GBW Gain-bandwidth product  

PhM Phase margin  
Ibs Current consumption  

VOUT dc output level  

IIP3 3rd order Input-intercept point  

 

B. Dataset Generation 

The semi-supervised setting relies on an automatic 
generation and labelling of the training dataset. This task was 
performed using a SPICE-like electrical simulator. We created 
a python script that generates one file containing a user-
defined number of DP samples. Those samples have random 
values and are uniformly created between predefined bounds 
that are consistent with the design space of the circuit and the 
chosen technology (CMOS 0.13μm).  TABLE II.  shows the 
limits used in our study. The file is fed as an input to the 
electrical simulator that automatically computes the 
corresponding PM values. Since this operation requires high-
speed hardware, this dataset was generated in 6 hours of 
runtime using a 16-core i9-12900 12th generation processor. 
Each row of the dataset is composed of 23 columns: 11 values 
for the design parameters and 12 for the performance metrics. 
In total we generated 150,000 samples. 

C. Machine-Learning Approach 

We now describe the whole learning process for our ANN, 
and detail our machine learning approach. 

1) Dataset separation: To ensure the robustness and 

generalization capability of the ANN models, the generated 

dataset was partitioned into training, validation and test sets, 

with a ratio of 80%, 10% and 10% respectively. The training 

dataset is used to learn the neural network parameters while 

the validation set is used to test its performance. Finally the 

architecture that exibits the smallest validation loss is used on 

the test set. This separation prevents overfitting, and 

generalize to new data. The computed validation loss VL, 

provides a quantitative measure of how well the model is 

likely to perform in real-world scenarios. 

TABLE II.  RANDOM DATASET GENERATION BOUNDS 

Symbol 

Bounds 

Description Minimum Maximum 

WK Width of MOS transistors 0.3μm 50μm 

LK Length of MOS transistors 0.13μm 1μm 

Rb Value of the biasing resistor 5kΩ 40kΩ 

 

2) Data filtering and loss function: In our application we 

are trying to predict DP from PM. To perform well in the case 



of op-amp, MOS transistors need to operate far from the deep 

triode region, ideally in saturation. No matter how well we 

put an effort to bound the random generation of the dataset to 

guarantee this condition, there will be minor samples in our 

data where the transistors are poorly biased and hence will act 

in deep triode region. Those points are actually outliers, and 

will lead most likely to a poor circuit performance from 

which the ANN is building its model. As it is more beneficial 

to push the network to learn on the majority of the “stable” 

points, we designed a logic-based filtering function that 

rejects samples that fall into the deep triod region. Finally, we 

adopt the Mean Absolute Error (MAE) as a training loss 

function since it was proven to be one of the most stable loss 

functions for regression problems [13]. 

3) Activation of neurons: The primary role of activation 

functions in ANN is to transform the summed weighted input 

of a neuron into an output value to be fed to the next layer or 

to the output. They are mainly used to add non-linearity to the 

networks. Since all circuit design parameters are positive 

quantities (Widths, Lengths), Rectified Linear Unit (ReLu) is 

usually recommended and widely-used in such cases [14]. In 

this work, we have opted for the Exponential Linear Unit 

(ELU) a similar variant of ReLU that modifies the slope of 

the negative part of the function to allow for slow smoothing 

and to avoid bias shift effects [14]. 

4) ANN architecture: The 12 performance metrics of the 

op-amp comes from various types of electrical simulations: 

dc, ac, frequency, noise, and large-signal. Moreover, MOS 

transistors have non-linear behavior that considerably affects 

the op-amp performance. The number and the diversity of the 

simulations used, make the relationships between DP and PM 

excessively difficult to model with moderate mathematical 

models. Due to this complexity and to the non-linear behavior 

of the op-amp circuit, a fully-connected flat ANN 

architecture is devised in this work. 

5) Training Process: The network is trained multiple 

times with different random initial weights for the neurons 

(iterations) and different random splits between the training 

and validation subsets (random states). The training is 

implemented in a developed Python code based on 

TensorFlow using Keras library and Adam optimizer. 

III. JOINT APPROACH: PREDICTION OF ALL TRANSISTORS 

SIMULTANEOUSLY 

Our first attempt to train the ANN using the previously 
generated dataset is based on the straightforward method 
described by Fig. 1: all PM are used as inputs and the same 
network will be trained to predict all the DP simultaneously. 
We call it the joint approach since all the design parameters 
are jointly predicted by the same ANN. This network, which 
has 12 inputs and 11 outputs, will use 120,000 samples (80%) 
within the dataset to learn the links or relationships between 
PM and DP. The training in the joint approach tries to build 
approximations of the functions DPk = 1…11 = f (P1, …, P12) 
blindly as a black box, without any prior imposed condition or 
any guidance from a human designer. We trained on different 
network complexities in terms of number of layers (input, 
hidden and output) and number of neurons per layer, to look 
for the best architecture that provides the lowest validation 
loss (VL). TABLE III. provides details on the different ANN 
complexities we have used in this work. Each result is 

obtained by repeating the process for 5 different random states 
and 5 different iterations (25 points). Each single point 
required 9 minutes of processing using RTX 3090 Ti GPU 
leading to ~4 hours of runtime for each result that corresponds 
to just one network complexity. By doing a progressive 
training process our model has converged, and losses have 
stabilized after 600 epochs of training for all network 
configurations. Fig. 3 shows an example of training results for 
the case of a flat network having 7 layers and 150 neurons per 
layer. It is clear how training loss and VL have reached a 
plateau and that no more processing is needed. 

We trained 24 different networks as per TABLE III.  
guidelines and summarize the results in Fig. 4 by taking the 
average loss values from the 25 points of each result. 

TABLE III.  ANN COMPLEXITIES USED IN THE JOINT APPROACH 

Symbol 

ANN Complexities 

Description Minimum Maximum Step 

L # of layers 3 8 1 

N # of neurons per layer 50 200 50 

 

 

Fig. 3. Training and Validation losses on one ANN case showing how both 
losses have stabilized after 600 epochs. 

A couple of observations can be made from Fig. 4: First, 
with more network complexity (layers, neurons) the training 
loss decreases since the ANN is more capable of learning the 
complex and non-linear circuit relationships between PM and 
DP. Second, although the validation loss improves when we 
add more layers to the ANN, the decrease rate is slower, and 
it behaves differently since it reaches a minimum range 
between 0.22 and 0.25 no matter how many layers or neurons 
we add. Worth noting that increasing the network complexity 
clearly does not help, as we can see how the magenta, green 
and yellow curves at the right plot of Fig. 4 start to increase 
indicating a poor generalization capability of the learning. The 
MAE validation loss cannot be reduced to less than 25% on 
the 11 design parameters. In other words, the width and length 
of the transistors as well as the resistor value may exhibit an 
error of 25% or higher during ANN prediction. Of course, this 
error is averaged on the eleven DP, therefore some DP may 
have a higher error while other ones may have a lower error. 



 

Fig. 4. Training and Validation losses for all ANN complexities showing 
the limitation of the learning efficiency in the joint approach. 

Our results suggest that there is an inherent minimum on 
VL obtained in the joint approach that represents a limitation 
of the model accuracy. In the next section we will devise an 
alternative ANN learning strategy to better understand the 
reasons and overcome this effect. 

IV. INVESTIGATIVE APPROACH: PREDICTING TRANSISTORS 

INDEPENDENTLY 

To overcome the limitation observed in the joint approach, 
the first step is to understand why we reached a minimum for 
VL. This section describes an innovative domain-augmented 
approach that links circuit and ANN learning behaviors. 

A. Description of our domain-augmented approach  

An IC engineer has a domain knowledge of the circuit 
behavior and can expect in advance what transistor(s) or 
component(s) influence a certain performance metric. During 
simulations, circuit sizing never happens in one shot [15][16], 
it is an iterative process, where each component is tuned as a 
standalone entity. For example, an IC designer will not 
attempt to size the width of one transistor without sizing its 
length. Moreover, the focus on a certain component should be 
mapped to the type of simulations being run [17][18][19], e.g., 
during op-amp ac voltage gain simulation the focus is mainly 
on the differential pair transistors (M1 and M2) as they directly 
impact this specific performance. Therefore, the core idea in 
this section is to assign a different ANN for each transistor to 
predict its width and length simultaneously, as any IC designer 
would do in real life. The benefit of this study is to capture 
whether the behavior of some transistors can be more easily 
modeled, and in parallel if some are more challenging. The 
bloc diagram of this innovative approach is depicted in Fig. 5. 
Each circuit component is treated as a standalone entity and is 
assigned a network to predict its dimensions. In this work, we 
ended up having 6 individual ANNs to model the circuit (each 
fed the 12 metrics PM) compared to just one ANN in the joint 
approach. This process will naturally increase the computation 
time and complexity of the system. Nevertheless, we are not 
planning to predict the dimensions this way, this separation 
will be used only to understand the tricky relationships 
between DP and PM. 

B. Training Results  

To make sure the results are stable and can be used to draw 
conclusions, we have tested our investigative approach on six 
different networks having 4, 6 and 8 layers with 50 and 100 

neurons per layer for each case. The values obtained for 
training loss and VL are given in Fig. 6. 

 

Fig. 5. Dividing the learning process by mapping an individual ANN for 
each circuit component (Transistor, resistor) in the investigative approach. 

 

Fig. 6. Validation and Training Losses showing that the circuit components 
are not similarly learned by ANN. Two transistors, M4 and M5, show 
significant high VL while the others have much lower values. 

C. Physical Interpretation of the Results 

It is clear from the two peaks in all curves of Fig. 6 that 
transistors M4 and M5 are challenging components for the 
ANN to learn. In fact, they both exhibit 3 times higher training 
and validation losses compared to the remaining transistors 
M1, M2, M3 and the resistor R0. This observation means the 
relationships between W4 / L4, W5 / L5 and the performance 
metrics PM are less meaningful than those between the 
remaining design parameters and PM. Most likely M4 and M5 
are responsible for the minimum bound on VL observed using 
the joint approach in the previous section, when one single 
ANN was trying to predict all DP simultaneously. 

To understand the previous anomaly on the challenging 
transistors one must refer to a circuit designer’s perspective. 
M4 transistors (left and right on schematic of Fig. 2) serve as 
a current mirror to fix the dc current flowing in the 
symmetrical branches of the differential pair M1 and its load 
M2. Their role in the circuit is indeed important to properly 
bias the active pair of the op-amp. However, M4 has limited 
effect on the performance metrics described in TABLE I. . In 
fact, any IC designer with sufficient skills in the field would 



know that M4 impacts mainly CMRR and NSRR due to the 
dependency of those quantities on its output resistance ro and 
has little effect on the remaining PM. Similarly, M5 acts as a 
load to the active transistor of the source follower M3. Its role 
is similar to a simple resistor and will affect only the second 
stage voltage gain which is very low (almost unity ~1). 
Therefore, sub-optimal values for W5 / L5 will certainly make 
AV drop, but once they are in a typical range their effect is 
almost negligible on the remaining PM. 

Based on the VL results obtained during ANN learning, 
we have identified two patterns: circuit components with low 
VL values and others with significantly high values. 
Moreover, the previous physical interpretations from a circuit 
design perspective corroborate those findings. Building upon 
this observation, we will propose in the next section a focused 
approach to make the learning more efficient and reduce the 
VL value below the minimum obtained in the joint approach. 

V. FOCUSED APPROACH: SPLITTING OF NEURAL NETWORKS 

The core idea in the focused approach is to split the 
prediction of the design parameters into two individual ANNs 
based on the VL patterns obtained from section IV.  

 

Fig. 7. The focused approach wherein prediction is split into 2 distinct 
ANNs based on VL patterns. ANNCH predicting the challenging transistors 
incorporates design parameters of other transistors as inputs. 

Transistors M1, M2, M3 and resistor R0 showed low VL 
values and will be hence predicted together using a single 
ANN that learns from the performance metrics solely 
(ANNWL in Fig. 7). On the other hand, a second network will 
predict the challenging transistors M4 and M5 and has a 
distinctive and unique input structure incorporating (in 
addition to PM) dimensions of the other transistors from the 
first network (ANNCH in Fig. 7). Details on this split are shown 
in Fig. 7. The focused approach is guided by the VL results 
obtained in section IV, but it is also motivated by the physical 
interpretation of the roles of M4 and M5 in the circuit. We 
strongly believe that the ANN predicting them had difficulties 
capturing the relationships between their DP and PM because 
there is little link existing between those quantities. By adding 
the design parameters of the other components with much 
lower VL values to the ANN input, the latter has now more 
relevant information to process and can couple information 
from DP of M1, M2, M3 and R0 with the performance metrics. 

We have tested the focused approach by training 12 
different networks (4,6,8 layers and 50,100,150,200 neurons 
per layer), we summarize the results in TABLE IV. . We 
repeated each result 25 times using the same process explained 

in paragraph II.C.5). In TABLE IV. , both losses have 
decreased significantly by a factor of ~ 3.5 (30% of its original 
value) when comparing the focused approach results with the 
single transistor results of section IV. For example, in a 6-layer 
network having 100 neurons per layer, the VL decreased from 
~0.4 down to ~0.11. This decrease is significant and can 
considerably enhance the prediction accuracy for the 
challenging transistors, which are the main issue faced in the 
sizing problem. For the remaining circuit components, 
transistors M1, M2, M3 and resistor R0, the results were quasi-
equal to those in section IV. This is expected since no 
additional inputs were given to ANNWL that predicts those 
components (see Fig. 7). 

Based on the training results obtained on ANNCH, there is 
a clear enhancement in the training loss, and more importantly 
in VL, hence in the prediction accuracy. To measure this 
improvement, we compare the results of the focused approach 
with the joint approach if section III. Since we have two 
networks and two distinct values for VL (one for ANNWL and 
one for ANNCH), we compare the average loss. As Fig. 8 
shows the VL decreased by ~50% on all 12 networks tested, a 
considerable improvement by the focused approach leading to 
better prediction accuracy. TABLE IV.  provides also the test 
loss values (TL) computed on the last 10% test set of the data. 

TABLE IV.  LOSS IMPROVEMENT FOR CHALLENGING TRANSISTORS  

ANN Architecture 

Investigative Approach 

(ANN for each transistor) 

Focused 

Approach 

VL VL VL TL 

Layers 
Neurons 
per Layer 

M4 M5   

4 50 0.44 0.41 0.16 0.18 

4 100 0.40 0.39 0.12 0.13 
6 50 0.44 0.41 0.15 0.16 

6 100 0.43 0.39 0.11 0.12 

8 50 0.48 0.44 0.13 0.13 

8 100 0.43 0.40 0.10 0.11 

 

A major outcome of this work is highlighting that for some 
circuit components, the joint approach which learns to predict 
all the DP together, has serious limitations. Putting all circuit 
components in the same ANN and disregarding their different 
roles within the circuit leads to sub-optimal results. Splitting 
the process into two distinct networks based on VL patterns 
obtained from the training of each circuit component alone 
enables an efficient and circuit-focused learning approach. 
Results in Fig. 8 for 12 different ANNs confirm this finding. 

 

Fig. 8. Comparison of the average VL in the focused approach with the VL 
in the joint approach, showing 50% improvement. 



Building upon this, we recommend a general 3-step design 
procedure for analog circuit sizing based on semi-supervised 
learning and a hierarchical ANN training process: 

• Evaluate the difficulty of predicting each circuit 
component alone by training an ANN for each 
component using PM as sole inputs. 

• Classify components into two categories, challenging 
ones exhibiting high VL values and straightforward 
ones with low VL values. 

• Split the learning process into a network for each 
category, with the second ANN having a modified 
input structure incorporating DP of other components. 

From a circuit design perspective, the challenging 
transistors of the op-amp circuit studied in this work have less 
impact on the PM compared to the straightforward ones. First, 
M1 and M2, namely the active pair and load are the central 
components that make the main circuit function: the 
amplification of the inputs. Those two components have a 
major impact on almost all PM since the input signals are fed 
and amplified in this part of the circuit. M3 also has an 
important role in the second stage of the circuit since it is the 
active component of the source follower connecting the 
amplified signal of the first stage to the output where all PM 
are measured. Therefore, it is reasonable to expect an ANN to 
learn the behavior of those components from the PM solely. 
On the other hand, M4 is used to copy a current fixed by 
resistor R0 and convey it to the differential pair branches. The 
dimensions of M4 are not particularly critical to this function 
since M4 left transistor is diode-connected and will be in 
saturation regardless of the values chosen for W4 and L4. The 
latter have impact on few PM (mainly CMRR, NSRR and to 
a certain extent Ibs) only. However, they are affected by the 
behavior of M1 and M2 as the sum of drain-source voltage of 
M1, M2 and M4 is equal to the supply voltage VDD (Kirchoff 
law). In addition, M5 acts a simple load to M3, therefore it does 
not need to operate in saturation to perform well and W5/L5 

also have little impact on most PM. Similarly, they are 
affected by the behavior of M3. 

VI. CONCLUSION 

This paper investigated several approaches in using 
supervised learning and ANNs to predict components 
dimensions from analog circuit’s performance metrics. It 
shows that joint prediction of all components of an op-amp 
using one network led to significant challenges and sub-
optimal results with a high validation loss. To overcome this, 
we conducted an investigative approach to classify transistors 
based on high (challenging) and low VL patterns obtained 
from the training of a single ANN for each circuit component. 
Then, we split the learning into two distinct networks one for 
the challenging transistors that incorporates the design 
parameters from the remaining transistors as additional inputs, 
and the second network is fed PM as sole inputs. Results show 
considerable improvement with VL values decreasing to 50% 
compared to the joint approach values. We provide a physical 
interpretation of the split from a circuit design perspective 
based on the role of the circuit components. An aspect for 
future work is to test and validate this approach on more 
analog circuits, and also to integrate this approach into an 
analog design environment software. 
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