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DIFFERENTIAL RELATIONAL LEARNING

Houssam Nassif

Under the supervision of Professor David Page

At the University of Wisconsin-Madison

Differential prediction is defined as the case where the best prediction equations and/or

the standard errors of estimate are significantly different for different groups of examinees.

Maximizing the differential prediction over specific data subsets is an interesting research

problem with several real-world applications. This work represents the first attempt to

address the multi-relational differential prediction problem. Our approaches are based on

Inductive Logic Programming (ILP), which we use to learn differential rules.

We explore several differential methods for learning differential rules in a two-class two-

strata system. First we propose the Model Filtering (MF) approach, which builds a rule

model on the target stratum, and then selects rules that exhibit a differential performance

on the other stratum. Second we propose the Differential Prediction Search (DPS) method,

which alters the search space to consider both strata while scoring rules according to their

differential prediction score. Unlike the first two automated methods, the third approach,

Expert Driven (ED), builds a model on each dataset and lets an expert compare them and

infer differential rules.

We compare these methods over a synthetic dataset, and over two important biomedi-

cal applications: modeling hexose-protein binding sites, and identifying age-specific breast

cancer stage rules. In doing so, we devise the first glucose-binding classifier, empirically vali-

date biochemical hexose-binding knowledge, report the first instance of differential predictive

rules discovery, and infer new hexose-binding and breast-cancer dependencies.

Our results show that, for large and noisy data, which is what most real world applications

are, DPS is more appropriate. For small and non-noisy data, MF outperforms DPS. We also



xiii

augment a Bayes Net with differential rules for risk prediction, and observe a significant

performance increase.

Finally, two off-shoots emerged from the main line of work. First, we alter the recall

selection of the ILP system ProGolem, establishing that randomized-recall ProGolem should

be used by default. Second, we present an information extraction method for free-text

mammogram reports, resulting in the first successful mammography information extraction

application. We also confirm the application of this method on another dataset and in an-

other language, namely creating the first Portuguese mammography information extraction

application.

David Page
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Chapter 1

Introduction

Classical classification problems focus on segregating between two or more target classes,

by maximizing a given statistic (e.g., accuracy, area under the precision-recall curve). Never-

theless, the predictive power of a classifier can vary across the input space; the classifier may

exhibit significant differences in performance over particular instance subgroups. Capturing

and modeling this differential prediction allows for a deeper understanding of the underlying

problem, context-specific decision making, and identification of diverging data subsets.

Building classifiers sensitive to differential prediction is an open research field, and can

be seen as a second-order classification problem. Differential prediction often arises as a

by-product of standard machine learning problems. A classifier is trained on a dataset,

and it may or may not have differential prediction with respect to certain subgroups. An

interesting research problem is to construct a classifier that maximizes differential prediction

over specific data subsets. This task often arises in the context of analysis of relational

databases consisting of multiple tables or relations, known as multi-relational data sets. We

here present the first work that explores approaches to address the multi-relational differential

prediction problem. Our approaches are based on Inductive Logic Programming (ILP), and

we evaluate them in the context of discovery in two biomedical domains.

1.1 Differential Prediction

A recurrent problem in social sciences is to understand why two or more different pop-

ulations exhibit differences in a trait. In psychology [29, 72, 137], one may want to assess
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the fairness of a test over several different populations. In marketing [56, 75, 103], one may

want to compare subjects and controls in order to study the effectiveness of an advertising

campaign. Similar tasks arise in other domains and, depending on the domain, the prob-

lem is known as differential prediction [137], differential response analysis [103], or uplift

modeling [104].

Originally used by psychologists to assess the fairness of cognitive and educational tests,

differential prediction is defined as the case where the best prediction equations and/or the

standard errors of estimate are significantly different for different groups of examinees [137].

Initially assessed using linear regression, differential prediction arises when a common re-

gression equation results in systematic nonzero errors of prediction for subgroups. This

phenomenon is detected by fitting a regression model for each subgroup, and comparing the

resulting models [29, 72].

An example is assessing how SAT test scores predict first year cumulative GPA for males

and females. For each gender group, we fit a regression model. We then compare the slope,

intercept and/or standard errors for both models. If they differ, then the test exhibits

differential prediction and may be considered unfair.

In contrast to most studies of differential prediction in psychology, marketing’s uplift

modeling assumes an active agent. It directly models the incremental impact of a treatment,

such as a direct marketing action, on the behavior of a set of individuals. The SAT score

doesn’t actively change GPA, whereas a marketing action does actively change behavior. In

both cases, the population is stratified into predefined sub-populations (henceforth called

strata), and we aim at detecting and modeling the class differential prediction over the

stratified data. We thus argue that the concepts and techniques originally developed for

uplift marketing can, and should, apply to the task of differential prediction (and vice versa).

Starting from a one-variable simple regression, differential prediction has been studied

extensively in the context of multi-attribute data [104, 112]. One approach is to generate

different classifiers for each given subgroup, and to look for the main differences between the
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classifiers, as typically done in psychology. Further progress requires building models driven

by differential evaluation functions [111].

1.2 Thesis Statement

My thesis is that ILP-based differential relational classifiers can effectively propose rules

that apply to a given multi-relational data subset, maximize performance differences over a

stratified dataset, and offer significant insight into the underlying domain. My work is moti-

vated by two biomedical applications: modeling hexose-protein binding sites, and identifying

age-specific breast cancer stage rules.

Even though our work obeys the main postulates followed by prior work in uplift mod-

eling [111], we observe that, to the best of our knowledge, this is the first approach directly

designed to learn differential rules. Instead, prior work on differential prediction has focused

on learning trees or logistic regression models that can estimate differential performance.

Our work focuses on understanding factors that describe differential performance.

In this work, we explore several differential methods for learning differential rules in a

two-class two-strata system. A very basic method is the Expert Driven (ED) approach, which

builds a model on each dataset, and lets an expert compare the two and infer differential

rules. A fully automated method is the Model Filtering (MF) approach, which builds a rule

model on the target stratum, and then selects rules that exhibit a differential performance on

the other stratum. The third approach is the Differential Prediction Search (DPS) method,

which alters the search space to consider both strata while scoring rules according to their

differential prediction score.

1.3 ILP for Differential Prediction

ILP is a machine learning approach that learns a hypothesis, composed of a set of rules

in first-order logic, that explains a given dataset [79]. In standard classification, ILP has

three major advantages over other machine learning and data mining techniques. First, it

allows an easy interaction between humans and computers by using background knowledge
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to construct hypotheses and guide the search. Second, it returns results in an easy-to-

understand if-then format. Finally, it can operate on data in a relational database, because

such databases are a theoretical subset of first-order logic.

In the context of differential prediction, ILP — as a rule-learning technique — has a

fourth major advantage. We can investigate the performance of each rule on a given dataset,

identify rules that only apply to particular data subsets, and isolate subgroups covered by

particular rules. Given a stratified dataset, we can examine the performance of rules on the

various strata, and select stratum-specific rules that have significantly different performances

across strata. These rules are subgroup-specific due to their differential predictive ability.

We are not aware of any prior use of rule-learners to identify differential predictive rules.

One aim of this work is to formally define the differential predictive rule identification

paradigm. Another is to implement it within the ILP framework. A third is to apply it to

important biomedical domains.

1.4 Document Overview

The rest of this document is organized as follows. Chapter 2 reviews prior differential

prediction work, and formally define the task of learning differential predictive rules. Chap-

ter 3 covers the necessary background, it overviews ILP systems, the datasets we use, and

our comparison methodology. Our work is driven by two main applications, identifying age-

specific breast cancer stage rules, and modeling hexose-protein binding sites. Chapters 4,

5 and 6 present three different differential predictive rule learning techniques. Chapter 7 is

a hexose application off-shoot, where we alter the recall selection method of the ProGolem

ILP system. Chapter 8 explains a necessary information extraction preprocessing step for

mammography free-text records. Chapter 9 concludes with a summary and future work

suggestions.
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Chapter 2

Differential Prediction

The problem of differential prediction, where one wants to capture and model differences

between two or more subgroups, arises independently in a variety of fields. In this chapter

we review prior work on differential prediction in greater detail. We close this chapter with

a novel formulation of differential predictive concepts.

2.1 Regression Usage

Differential prediction was first used in Psychology to assess the fairness of cognitive and

educational tests. It is defined as the case where the best prediction equations and/or the

standard errors of estimate are significantly different for different groups of examinees [137].

It is detected by fitting a common regression equation and checking for systematic prediction

discrepancies for given subgroups, or by building regression models for each subgroup and

testing for differences between the resulting models [29, 72]. The standard approach uses

moderated multiple regression, where the criterion measure is regressed on the predictor

score, subgroup membership, and an interaction term between the two [6, 119]. If the

predictive model differs in terms of slopes or intercepts, it implies that bias exists because

systematic errors of prediction would be made on the basis of group membership.

Coming back to the earlier SAT example in Section 1.1, we fit a regression model for

each gender group (Figure 2.1). If the slopes or intercepts are significantly different between

both models, then the SAT test exhibits differential prediction with respect to gender.
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Figure 2.1: Using regression to detect differential prediction. Fit a regression model for each

group and compare both models. SAT exhibits differential prediction across gender if the

models are significantly different.

The same concept arises in case-control studies, and is referred to as differential mis-

classification. Instances are cross-classified by case-control status and exposure category.

An exposure misclassification is defined as differential if the probabilities of misclassification

differ for instances with different case-control categories. Similarly, a case-control misclas-

sification is defined as differential if the probabilities of misclassification differ for instances

with different exposure categories [27, 43]. This concept is the basis of the related machine

learning concept of “differential misclassification cost”, incorporating different misclassifica-

tion costs into a cost sensitive classifier [113]. During the training phase, such a classifier

would assign different misclassification costs for various subgroups (usually for each class),

and would predict the class with minimum expected misclassification cost.

Examining each predictor separately in a regression analysis may result in a misspecified

model. The regression coefficient can be biased if we omit a variable that is related to the

target and correlated with a measured predictor variable [73]. This problem is known as the

omitted variable problem. It can be leveraged by broadening the selection system to include

other relevant predictors in the regression [112].
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2.2 Classifier Usage

The classification literature, especially in the medical domain, has extended the differen-

tial prediction concept to differences in predicted performance when an instance is classified

into one condition rather than into another [119]. Hence differential prediction is detected

by comparing the performance of different classifiers on the same subgroup (e.g. [39]), or the

same classifier on different subgroups (e.g. [101, 131]).

An important application of differential prediction is in marketing studies, where it can

be used to understand the best targets for an advertising campaign and it is often known as

uplift modeling. Seminal work includes Radcliffe and Surry’s true response modeling [103],

Lo’s true lift model [75], and Hansotia and Rukstales’ incremental value modeling [56]. As

an example, Hansotia and Rukstales construct a regression and a decision tree, or CHART,

model to identify customers for whom direct marketing has sufficiently large impact. The

splitting criterion is obtained by computing the difference between the estimated probability

increase for the attribute on the treatment set and the estimated probability increase on the

control set.

Recent work by Rzepakowski and Jaroszewicz [111] suggests that performance of a tree-

based uplift model may improve by using a divergence statistic. The authors propose three

postulates that should be obeyed by tree-based splitting criteria. First, the value of the

splitting criterion is minimum if and only if the class distributions in treatment and control

groups are the same in all branches. Second, the splitting criterion is zero if treatment

and control are independent. Third, if the control group is empty, the criterion reduces to a

classical splitting criterion. They introduce two new statistics, one based on Kullback-Leibler

divergence, the other based on Euclidean distance. Evaluation on prepared data suggests

improved performance. Radcliffe and Surry [104] criticize the third postulate and the fact

that the measures are independent of population size, a parameter that they consider crucial

in practical applications.



8

2.3 Rules for Differential Prediction

Although, for the best of our knowledge, this work is the first to address differential rule

learning, this section reviews other usages of rules for differential prediction.

2.3.1 Indexes of Development

The use of rules to achieve a differential classification is a technique utilized in devel-

opmental psychology as a developmental metric to systematically classify linguistic perfor-

mances into a hierarchical taxonomy of cognitive-structure types [122]. Researchers, through

observation and collective informal judgments, identify specific skills that reflect a particu-

lar developmental stage [30, 42]. Thus, by inductive and abductive reasoning, researchers

manually construct rules — called indexes of development — that classify performances into

cognitive types.

Notice that the concept of rule generation and prediction in developmental psychology

is different than in machine learning. Rules and indexes are manually created by a panel

of experts following observation studies. Dealing with behavioral data, rules are validated

according to psychometric validity and reliability parameters [6]; and not according to ac-

curacy or precision. This is often the case in social sciences, where ground truth is typically

unknown, and the rule coverage is mainly determined by an expert. The way the resulting

rules are viewed as metrics organized in an index of development is closer to a multi-class

prediction task, than it is to identifying differential predictive rules.

2.3.2 Relational Subgroup Discovery

We observe that the task of discriminating between two dataset strata is closely related

to the problem of Relational Subgroup Discovery (RSD), that is, “given a population of

individuals with some properties, find subgroups that are statistically interesting” [138]. In

the context of multi-relational learning systems, RSD applies a first propositionalization step

and then applies a weighted covering algorithm to search for rules that can be considered

to define a sub-group in the data. Although the weighting function is defined to focus on
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unexplored data by decreasing the weight of covered examples, RSD does not explicitly aim

at discovering the differences between given partitions.

2.3.3 Instance Relabeling

The only other effort we are aware of to identify rules that achieve a differential prediction

across a stratified dataset recently came from our research lab. Working on uncovering

adverse drug effects, the aim is to find rules covering patient subgroups that have a differential

prediction before and after drug administration [96].

They start with an after-drug administration subset with positive P1 and negative N1 in-

stances, and a before-drug administration subset with positive P2 and negative N2 instances.

Using the coverage evaluation function (the number of positives covered by the rule, minus

the number of negatives covered), a rule that has a good performance on the target set (after

drug administration) and a bad performance on the other set (before drug administration)

will result in a high (cover(P1)− cover(N1)) score and a low (cover(P2)− cover(N2)) score.

Their methodology consists of redefining the positive set as (P1 +N2), and the negative

set as (P2 + N1), as shown in Figure 2.2. By using the coverage evaluation function, which

maximizes the Pos−Neg cover score for a rule, they aim at maximizing:

Score = cover(Pos)− cover(Neg)

= cover(P1 +N2)− cover(P2 +N1)

= (cover(P1) + cover(N2))− (cover(P2) + cover(N1))

= (cover(P1)− cover(N1))− (cover(P2)− cover(N2)).

(2.1)

Now the differential assumption of a high (cover(P1) − cover(N1)) score means a high

cover(P1) and a low cover(N1). The low (cover(P2) − cover(N2)) score assumption is am-

biguous, since it can be fulfilled by a high cover(P2) and a high cover(N2), a low cover(P2)

and a low cover(N2), or a low cover(P2) and a high cover(N2).

The Instance Relabeling score does not guarantee returning a rule with high cover(P1),

since a non-differential rule with a high cover(N2) and low covers for P1, P2 and N1 will
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Figure 2.2: Instance relabeling for differential prediction

result in a high score. This scoring function assumes that:

argmax cover(P1 +N2) and argmin cover(P2 +N1) ≈

argmax(cover(P1)− cover(N1))− (cover(P2)− cover(N2)).
(2.2)

This is not necessarily the case. The instance-relabeling method may produce suboptimal

or even non-differential prediction rules.

It is important to note that this instance-relabeling method is specific to the coverage

rule-scoring evaluation function. The instances rearrangement performed in Equation 2.1

doesn’t match the differential prediction score of other clause-utility functions. Applying

this method to another scoring function necessitates a different instance relabeling schema,

or may not be feasible at all.

2.4 Differential Predictive Rule Definition

Given data that can be partitioned into a set of strata, we define a differential predictive

concept (expressed as a rule in ILP) as a concept whose measure is significantly different over

one stratum as compared to the others. To be more precise, we define a stratified dataset

as one composed of disjoint partitions, where each partition contains at least one instance

of each target class.

Definition 2.4.1 (Stratified Dataset). Let tc be a target class defined over the set of

instances X, and let D = {〈x, tc(x)〉} be a set of examples labeled according to tc. Let
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{D1, . . . , Dn} be n disjoint subsets of D, and let Dl
i be the set of examples of Di with class

label l, such that:

(∀(i, j) ∈ [1, n], i 6= j) Di ⊂ D, Dj ⊂ D, Di ∩Dj = ∅, (2.3)

∀(i, l) Dl
i 6= ∅. (2.4)

A k-strata dataset D over the set of instances X is the union of k such subsets Di, with

2 ≤ k ≤ n, such that:

D = {Di | 1 ≤ i ≤ k}. (2.5)

As an example, and in the case of our breast cancer application, the concept tc is the

cancer stage, with labels l being invasive and insitu. The set X of instances is the set of

mammogram records, and D is the cancer records set. We stratify D according to age, with

k = 3, resulting in a younger, middle and older strata. In our experiments, we only retain

the younger and older subsets, forming a 2-stratified dataset D.

Note that the definition itself can also be relaxed to allow for overlapping groups (not

completely stratified). For example, if you stratify by race, some people might belong to

multiple races, or if you stratify by the geographical region where people were raised, some

might have lived in multiple regions. In this case, we do not require Di ∩Dj = ∅.

After specifying the instance space, we define a differential predictive concept.

Definition 2.4.2 (Differential Predictive Concept). Let c be a concept over the set of

instances X, and let D be a k-strata dataset. Let S(c|Di) be the classification performance

score for c over the subset Di. A stratum-j specific differential predictive concept is a concept

cj such that:

∀i 6= j, S(cj|Dj)� S(cj|Di). (2.6)

The score difference (�) can be evaluated using statistical significance tests or by com-

paring against a threshold. In practice, we search a large space of possible concepts/rules for

differential predictive ones. In real-world applications, we also want the rules to achieve a

minimum level of performance. In this work we focus on 2-strata 2-class differential problems.
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Chapter 3

Background

In this chapter, we cover the necessary background before presenting our ILP-based

differential prediction methods. This includes an overview of ILP, the datasets we use, and

our comparison methodology.

3.1 ILP

Inductive Logic Programming is a class of classifiers that learns rules in first-order logic.

There exist multiple ILP systems. In this work, we use two different ILP algorithms, top-

down Aleph [121] and bottom-up ProGolem [82].

3.1.1 Terminology

The first-order logic alphabet is composed of predicate symbols (e.g. round), function

symbols (e.g. color), constants (e.g. Blue) and variables (e.g. x ) [79]. Predicates are features

that take on true or false values, whereas functions are features that may take constants as

their values. Constants are capitalized, while variables are in lowercase.

A term is any constant, variable, or function applied to a term (e.g. Blue, x, color(x)).

An atomic formula is a predicate symbol together with its arguments, each argument being

a term. A ground atom (or fact) is an atomic formula with no variables (e.g. sibling(A,B)).

Dataset features are ground atoms, and they constitute the background knowledge. A literal

is an atomic formula or its negation (e.g. round(x), ¬ sibling(x,A)).
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A clause is a disjunction of literals whose variables are assumed to be universally quanti-

fied [110]. A Horn clause is a clause with at most one positive literal, the remaining literals

being negated. A definite clause is a Horn clause with exactly one positive literal. A definite

clause is equivalent to an implication, since

H ∨ ¬L1 ∨ ¬L2 ∨ · · · ∨ Ln (3.1)

can be rewritten as the rule

H ← (L1 ∧ L2 ∧ · · · ∧ Ln), (3.2)

if (L1 ∧ L2 ∧ · · · ∧ Ln), then H. (3.3)

The literal H is the head of the clause, while (L1 ∧L2 ∧ · · · ∧Ln) constitute the clause body.

3.1.2 Bottom Clause

Given a dataset composed of positive and negative instances, an ILP classifier attempts

to learn a set of rules (definite clauses) that will correctly discriminate between the two

sets. These rules would cover most or all of the positive instances, and little or none of the

negative instances.

In the Figure 3.1 example, positive instance A has atomic formulas red(A), big(A),

round(A), and sibling(A,B). A bottom clause is the most specific clause that entails the

example selected [110]. Since instance A is linked to instance B, the bottom clause of instance

A would also include the atomic formulas of instance B.

Bottom clause(A) : red(A), big(A), round(A), sibling(A,B), red(B), big(B), round(B).

(3.4)

More formally, given a positive example pos(xi), let ⊥i be the bottom clause for example

i. ⊥i is the most specific hypothesis that, together with the background knowledge B, entails

xi: (B ∧ ⊥i ∧xi) ` pos(xi).
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Figure 3.1: ILP example

3.1.3 Aleph

Aleph [121] is an ILP system that implements the Progol algorithm [83]. Progol’s main

advantage is the use of a bottom clause to guide the search. It randomly selects a positive

example pos(xi) and builds its bottom clause ⊥i during the “saturation” step. The use of

a bottom clause ensures that, by construction, all clauses in a refinement graph search are

guaranteed to cover at least the example associated with the bottom clause.

Aleph then performs a general-to-specific top-down hypothesis space search, bounded by

the most general possible hypothesis and by the bottom clause. To do so, Aleph guides the

search using the bottom clause. Starting with the most general hypothesis pos(X), Aleph

refines the clause by repeatedly adding literals from the bottom-clause. The new rule will

be more specific, covering only a subset of the examples previously covered. This process is

the “reduction” step. Algorithm 3.1 highlights the major steps of Aleph.

Pertaining to the Figure 3.1 example, let us suppose instance A is first selected. Aleph

would construct Bottom clause(A) (Equation 3.4) during the saturation step. It starts its
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Algorithm 3.1 Aleph

Require: Examples E, mode declarations M, background knowledge B, Scoring function S

Learned rules← {}

Pos← all positive examples in E

while Pos do

Select example e ∈ Pos

Construct bottom clause ⊥e from e, M and B . Saturation step

Candidate literals← Literals(⊥e)

New rule← pos(X) . Most general rule

repeat . Top-down reduction step

Best literal← argmax
L∈Candidate literals

S(New rule with precondition L)

add Best literal to preconditions of New rule

until No more S(New rule) score improvement

Learned rules← Learned rules+New rule

Pos← Pos− {members of Pos covered by New rule}

end while

return Learned rules

top-down search by considering any instance to be positive. Aleph then refines this most

general hypothesis during the reduction step by adding predicates from Bottom clause(A).

3.1.4 ProGolem

ProGolem [82], on the other hand, is a newly developed algorithm combining approaches

from Progol [83] and Golem [81]. Like Progol and Aleph, it uses a bottom clause to guide

the search. But unlike them, it performs a variant of Golem-like bottom-up search, based

on Asymmetric Relative Minimal Generalization (ARMG). It uses ARMG to navigate a

specific-to-general bottom-up subsumption order relative to the bottom clause.



16

Like Aleph, ProGolem randomly selects a positive example pos(xi) and constructs its

bottom clause ⊥i during the saturation step. ProGolem starts the search from this most-

specific clause, considering as positives only the examples covered by the bottom clause ⊥i.

During the reduction step, it successively drops a minimal set of atoms from the body to allow

coverage of one additional example. This is done by constructing the ARMG clause of the

current clause and the additional example. By dropping this set of literals the clause becomes

more general, and will cover a superset of the examples previously covered. Algorithm 3.2

highlights the major steps of ProGolem, it mirrors the Aleph algorithm to highlight search

strategy differences.

Algorithm 3.2 ProGolem

Require: Examples E, mode declarations M, background knowledge B, Scoring function S

Learned rules← {}

Pos← all positive examples in E

while Pos do

Select example e ∈ Pos

Construct bottom clause ⊥e from e, M and B . Saturation step

New rule←⊥e . Most specific rule

repeat . Bottom-up reduction step

Select a different example e′ ∈ Pos

Blocking literals← ARMG(New rule, e′)

remove Blocking literals from preconditions of New rule

until No more S(New rule) score improvement

Learned rules← Learned rules+New rule

Pos← Pos− {members of Pos covered by New rule}

end while

return Learned rules

Going back to the Figure 3.1 example, let us suppose instance A is first selected. Pro-

Golem too would construct Bottom clause(A) (Equation 3.4) during the saturation step.
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It starts its bottom-up search by considering as positives only the instances covered by

Bottom clause(A). ProGolem then refines this most specific hypothesis during the reduc-

tion step by dropping selected predicates.

3.1.5 Theory Rules

Both ProGolem and Aleph stop hypothesis refinement when the hypothesis score stops

improving. A rule scores well if it covers many positive and few negative examples. If the

rule passes a certain performance threshold, it is added to the theory, and all the positive

examples it covers are removed. The cycle of saturation and reduction continues on the

remaining examples. When all positive examples are covered or no new rules can be found,

the ILP system outputs its theory, the set of the best rules found so far. Then, in the testing

stage, a new instance is classified as positive if it is covered by any of the theory rules,

otherwise it is labeled as negative.

In the Figure 3.1 example, a possible theory would be composed of the following rules:

• P (X) if square(X)

• P (X) if red(X) ∧ big(X)

• P (X) if sibling(X, Y ) ∧ square(Y )

This theory will result in one false positive (the red, big, and round negative instance) and

one false negative (the blue, big, and round positive instance).

Aleph adopts a local theory construction method, incrementally adding a new rule to

its theory after each reduction cycle. This method depends on the ordering of the positive

examples, and it is possible that the best rules are not generated. This situation may occur

if these better rules would be generated by examples that were removed by previous sub-

optimal rules. By contrast, ProGolem implements a global theory construction approach,

which ensures that the theory is only constructed after all rules have been generated. Pro-

Golem repeatedly adds to the theory the rule that best improves the global theory score.
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3.2 Mammography Dataset

Our main application is to uncover age-specific breast cancer stage differential prediction

rules. We here present our mammography dataset and our preprocessing work to augment

it with additional features.

3.2.1 Original Dataset

Our database consists of 146, 198 consecutive mammograms recorded at the University

of California San Francisco (UCSF) Medical Center between January 6, 1997 and June 29,

2007. In addition to the mammography table, our relational database includes another table

consisting of 4, 081 biopsies performed between January 7, 1997 and November 18, 2007.

Biopsy results are either invasive, in situ or benign. Attempting to discriminate invasive

versus in situ cancers based on mammography findings, we identify cancerous biopsies and

match each of them with its corresponding diagnostic mammography exam. We end up with

1063 invasive and 412 in situ cancerous diagnostic mammography exam cases.

We separate our data into three cohorts based on age (Table 3.1). We designate patients

aged 65 and older as an “older” cohort, patients between 50 and 64 years as a “middle”

cohort, and patients less than 50 years old as a “younger” cohort. While we did not stratify

by menopausal status; we do know that mean age at menopause among US women is reported

to range between 49.1 and 50.5 for different birth cohorts [93]. Therefore, a large proportion

of women less than 50 years old (our “younger“ cohort) would be premenopausal and a large

proportion of women aged 65 and older (our “older“ cohort) would be postmenopausal.

Age of subjects ranged from 27 to 97, with mean 59.7 and standard deviation 13.4. The

overall proportion of in situ was 27.9% with a slightly higher incidence in our younger and

middle groups versus our older group, which is consistent with the literature [40].

3.2.2 Structured and Extracted Features

The mammography reports use a structured format that records patient characteristics

and examination findings (Table 3.2). Additional relevant details describing the findings were
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Table 3.1: Age-based cohorts

Cohort Invasive In Situ Biopsies Patients In Situ (%)

Younger 264 110 374 353 29.4%

Middle 398 170 568 538 29.9%

Older 401 132 533 493 24.8%

Total 1063 412 1475 1384 27.9%

dictated by the interpreting radiologist in free text. Mammography features and findings are

based on the American College of Radiology’s Breast Imaging Reporting and Data System

(BI-RADS) [5]. To extract the BI-RADS descriptors from the dictated text, we developed

a Natural Language Processing technique and applied it on the UCSF dataset (Table 3.2).

We present our medical text information extraction method in Chapter 8.

Table 3.2: List of structured and extracted features

Structured Extracted using NLP [91]

Family breast cancer history Mass margin

Personal breast cancer history Mass shape

Prior surgery Calcification distribution

Palpable lump Calcification morphology

Screening v/s diagnostic Architectural distortion

Indication for exam Associated findings

Breast Density Mammary lymph node

BI-RADS code left Asymmetric breast tissue

BI-RADS code right Focal asymmetric density

BI-RADS code combined Tubular density

Principal finding Mass size
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3.2.3 Extensional Predicates

One of ILP’s advantages is that it can naturally operate on a relational database, because

such databases are a theoretical subset of first-order logic. To take full advantage of ILP’s

relational abilities, we extend the basic background knowledge of Table 3.2 by introducing

predicates that link related records and features together.

The mammography table schema (Table 3.2) specifies a “left-breast” and a “right-breast”

BI-RADS code. A BI-RADS code is a number that summarizes the radiologist’s opinion and

findings concerning the mammogram [5]. The BI-RADS codes are ranked as 1 < 2 < 3 <

0 < 4 < 5, in increasing order of malignancy probability. Since we know which breast was

biopsied for our target cancerous patients, we convert the left and right BI-RADS features

to “this-side” and “other-side” BI-RADS codes. Similarly we change any “left” or “right”

value into “this-side” or “other-side”.

For example, suppose one of our records is identified by UniqueID = 21 and has the fol-

lowing features: FamilyHistory = None, BiradsCodeLeft = 4, PalpableLump = Right.

By consulting the biopsy table, we find that the left breast was biopsied. We thus con-

vert BiradsCodeLeft to ThisSideBirads = 4, and the value Right to OtherSide. The

resulting ILP predicates would be: FamilyHistory(21, None), ThisSideBirads(21, 4),

PalpableLump(21, OtherSide).

We then extend this basic background knowledge by linking each patient’s cancerous di-

agnostic mammography record to the patient’s other previous screening or diagnostic mam-

mograms (Table 3.3). This link allows ILP to access and learn from the patient’s previous

mammography history. In addition, we add predicates that monitor mass size change and

BI-RADS code change when compared to older mammography studies, as well as predi-

cates detecting the occurrence and location of prior biopsies (Table 3.3). This allows ILP to

compare mass sizes to given size intervals, and different BI-RADS codes to each other.
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Table 3.3: List of ILP extended predicates

first diagnostic mammogram (id)

old study (id, old id)

old biopsy (id, old id, result)

old biopsy same location (id, old id, result)

mass size decrease (id, old id)

mass size increase (id, old id)

this side BI-RADS old study (id, old id, old BI-RADS)

other side BI-RADS old study (id, old id, old BI-RADS)

combined BI-RADS old study (id, old id, old BI-RADS)

this side BI-RADS decrease (id, old id)

other side BI-RADS decrease (id, old id)

combined BI-RADS decrease (id, old id)

this side BI-RADS increase by at least X (id, old id)

other side BI-RADS increase by at least X (id, old id)

combined BI-RADS increase by at least X (id, old id)

3.3 Synthetic Michalski-Trains Dataset

In addition to our target application, we use synthetic data to evaluate the ability of

our approaches to uncover ground truth differential rules, and to study their sensitivity to

variations in noise and in dataset size, two major concerns in real-world data. The multi-

relational Michalski-trains dataset [70] is often used by ILP researchers to evaluate system

performance in a controlled environment. Given two sets of trains, eastbound and westbound,

the original problem consists of finding a concept which explains the eastbound trains. Each

train includes multiple carriages of varying size, content and shape. Concept complexity is

parametrized by generating more complex explanations of eastbound trains.

To test for differential prediction, we define two categories of trains, red and blue. We

thus have a 2-strata (red, blue) 2-class (east, west) dataset. We randomly create up to 5

eastbound rules that are common for both red and blue trains. We then randomly create
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two additional sets of eastbound rules, each set is specific to one stratum, red or blue. These

are color-specific eastbound differential predictive rules. We ensure that all rules are unique,

and that color-specific rules are not subsets of common rules nor of each other.

We generate the eastbound trains using the stratum’s common and specific rules. We de-

fine westbound trains as non-eastbound trains. Our aim is to recover the color red differential

predictive eastbound rules. They are our target rules.

As an example, suppose we have the following eastbound rules. Common eastbound rule:

east(T ) :- infront(T,C1, C2), short(C1), long(C2). (3.5)

Stratum red specific eastbound rule (target rule):

east(T ) :- has car(T,C), jagged(C). (3.6)

Stratum blue specific eastbound rule:

east(T ) :- has car(T,C), double(C). (3.7)

Figure 3.2(a) shows red trains, where eastbound trains 1, 3 and 4 have a short carriage in

front of a long one (common rule), while train 2 has a jagged roof carriage (red specific rule).

Figure 3.2(b) shows blue trains, where eastbound trains 3 and 4 follow the common rule,

while trains 1 and 2 have a double-hulled carriage (blue specific rule). Note a jagged roof on

blue westbound train 5, it would have been classified eastbound if it were red.

We devise two scenarios, the first with one red target rule to recover, and the second

with up to 5 red target rules. For both scenarios we have up to 5 blue-specific rules. For

each scenario, we randomly generate 30 different 2-strata 2-class train problems.

For every problem, we use a random train generator [80] to randomly construct 1000

eastbound and 1000 westbound trains for each strata, for a total of 4000 trains per experi-

ment. We ensure that each red eastbound target rule covers at least 10% of the eastbound

red trains. We refer to this noise-free data as clean1000. To test the scalability of our al-

gorithms, we also construct clean100, which consists of the first 100 trains (for each strata,

class and problem) of clean1000.
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TRAINS GOING EAST TRAINS GOING WEST

1.

2.

3.

4.

5.

6.

7.

8.

(a) Color red trains, specific rule (jagged-roof) in bold

TRAINS GOING EAST TRAINS GOING WEST

1.

2.

3.

4.

5.

6.

7.

8.

(b) Color blue trains, specific-rule (double-hulled) in bold

Figure 3.2: A 2-strata 2-class Michalski-train problem

Since real world data is hardly clean, we also create noisy versions. For each problem, we

randomly swap the target class of 5% of our instances, creating the noisy1000 and noisy100

datasets. When using the clean sets, we don’t allow any negative examples to be covered

by an acceptable clause. When using the noisy sets, we allow a negative rule cover of up to

10% of the number of red trains. We generate 30 simulations for each scenario, noise level

and size combination.
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3.4 Hexose Dataset

We also consider a secondary application, inferring differences between specific glucose

and general hexose binding. We collect a hexose dataset and extract multiple chemical and

spatial features from the binding site.

3.4.1 Dataset Collection

Due to the crucial importance of 3-D structure for protein binding, our model should

be based on 3-D spatio-chemical data. The Protein Data Bank (PDB) [10] is the largest

repository of experimentally determined and hypothetical three-dimensional structures of

biological macromolecules. We mine it for proteins crystallized with the most common

hexoses: galactose, glucose and mannose [44]. We ignore theoretical structures and files

older than PDB format 2.1. We eliminate redundant structures using PISCES [134] with a

30% overall sequence identity cut-off. We use Swiss-PDBViewer [54] to detect and discard

sites that are glycosylated or within close proximity to other ligands. We check the literature

to ensure that no hexose-binding site also binds non-hexoses. The final outcome is a non-

redundant positive data set of 80 protein-hexose binding sites (see Appendix Table A.1).

Since, the number of binding-sites crystallized with glucose is small (35), we use the same

glucose data as part of our hexose dataset (relaxed version of Definition 2.4.1).

We also extract an equal number of negative examples. The negative set is composed of

non-hexose binding sites and of non-binding surface grooves. We choose 22 binding-sites that

bind hexose-like ligands: hexose or fructose derivatives, 6-carbon molecules, and molecules

similar in shape to hexoses (see Appendix Table A.2). We also select 27 other-ligand binding

sites, ligands who are bigger or smaller than hexoses (Table A.2). Finally, we specify 31 non-

binding sites: protein surface grooves that look like binding-sites but are not known to bind

any ligand (see Appendix Table A.3).

We use 10-fold cross-validation to validate our approach. We divide the data set in 10

stratified folds, thus preserving the proportions of the original set labels and sub-groups.
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3.4.2 Binding Site Representation

We view the binding site as a sphere centered at the ligand, as portrayed in Figure 3.3. We

subdivide the sphere into concentric layers [9]. We compute the center of the hexose-binding

site as the centroid of the coordinates of the hexose pyranose ring’s six atoms. For negative

sites, we use the ligand’s central point when a ligand is present, and the center of the cavity

when a ligand is missing. The farthest pyranose-ring atom from the ring’s centroid is located

2.9 Å away. Considering atomic interactions to be significant within a 7 Å range [12], we fix

the binding site sphere radius to 10 Å. Given the molecule and the binding site centroid, we

extract all protein atoms within the sphere, as well as water molecules and ions present in

the binding groove. We discard hydrogen atoms since most PDB entries lack them.

Figure 3.3: Glucose bound to a hydrolase, PDB entry 1I8A. The concentric-layers binding

site center is the centroid of the glucose pyranose ring.

For every extracted atom we record its PDB-coordinates, its charge, hydrogen bonding,

and hydrophobicity properties, the residue group it belongs to, and its atomic element and

name. Every PDB file has orthogonal coordinates and all atom positions are recorded ac-

cordingly. The partial charge measure per atom is positive, neutral, or negative; atoms can
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form hydrogen bonds or not; hydrophobicity atomic measures are considered as hydrophobic,

hydroneutral, or hydrophilic. Amino acids are generally categorized into subgroups, based

on the structural and chemical properties of their side chains [11, 125]. Finally, every PDB-

atom has an atomic element and a specific name. Tables 3.4 and 3.5 detail the amino-acid

grouping and the atomic feature values used.

Table 3.4: Residue subgrouping

Category Residues

Aromatic Phe, Tyr, Trp, His

Aliphatic Ala, Val, Leu, Ile, Met

Neutral Gln, Asn, Ser, Thr, Pro, Gly, Cys

Acidic-carboxylate Glu, Asp

Basic Lys, Arg

3.5 Comparing Differential Prediction Results

When using synthetic data to uncover differential predictive rules, we know the ground

truth. We thus can compare the predicted rules to the original rules. We consider identical

rules (up to variable renaming) as true findings. We label the remaining theory rules as

false positive findings, and the missing original rules as false negative findings. We rank the

theory rules by their score, and compute their precision-recall (PR) curve using [34]. Since

we do not have scores associated with the missing false negative findings, we truncate the

PR curve at the recall returned by the theory. Note that this yields a PR curve on recovered

rules rather than on data.

We compare the different classifiers using their PR area under the curve (AUC-PR). We

use the Mann-Whitney test to compare two sets of experiments. When comparing multiple

sets, we use the Friedman test with a Hommel adjusted two-tailed Wilcoxon for the post-

hoc pairwise tests. We chose these tests based on the recommendation of [35]. We set the

confidence level to 95%.
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Table 3.5: Chemical atomic features. Charge is either positive, neutral or negative. Atoms

are either capable of forming hydrogen bonds, or are not. Hydrophobicity levels are +1

(hydrophobic), 0 (hydroneutral) and -1 (hydrophilic).

Atom Type Functional Group Location Residue PDB Atom Symbol Chrg Hydrophob H Bond

Oxygen Amide peptide linkage Backbone All O 0 -1 H Bond

Oxygen Carboxyl – C terminus Backbone All OXT -ve -1 H Bond

Oxygen Side Chain GLU OE1 -ve -1 H Bond

Oxygen Side Chain GLU OE2 -ve -1 H Bond

Oxygen Carboxyl Side Chain ASP OD1 -ve -1 H Bond

Oxygen Carboxyl Side Chain ASP OD2 -ve -1 H Bond

Oxygen Amide Side Chain GLN OE1 0 -1 H Bond

Oxygen Amide Side Chain ASN OD1 0 -1 H Bond

Oxygen Hydroxyl Side Chain SER OG 0 -1 H Bond

Oxygen Hydroxyl Side Chain THR OG1 0 -1 H Bond

Oxygen Hydroxyl - Phenolic Side Chain TYR OH 0 -1 H Bond

Nitrogen Amide peptide linkage Backbone All except PRO N 0 -1 H Bond

Nitrogen Amide peptide linkage Backbone PRO N 0 -1 --

Nitrogen Amide Side Chain GLN NE2 0 -1 H Bond

Nitrogen Amide Side Chain ASN ND2 0 -1 H Bond

Nitrogen Amine Side Chain LYS NZ +ve -1 H Bond

Nitrogen Guanidino Side Chain ARG NE +ve -1 --

Nitrogen Guanidino Side Chain ARG NH1 +ve -1 H Bond

Nitrogen Guanidino Side Chain ARG NH2 +ve -1 H Bond

Nitrogen Imidazole Side Chain HIS ND1 0 -1 --

Nitrogen Imidazole Side Chain HIS NE2 0 -1 H Bond

Nitrogen Indole Side Chain TRP NE1 0 0 --

Carbon Amide peptide linkage Backbone All C 0 0 --

Carbon C-alpha Backbone All CA 0 0 --

Carbon Aliphatic – neutral Side Chain Set A (See below) CB, CG, CD, CE 0 0 --

Carbon Aliphatic – hydrophobic Side Chain LEU, VAL, ILE, MET CB, CG, CD, CE 0 1 --

Carbon Aliphatic – Branch Side Chain LEU, VAL, ILE CG1, CG2, CD1, CD2, CD1 0 1 --

Carbon Phenyl - aromatic Side Chain PHE, TYR CG,CD1, CD2, CE1, CE2, CZ 0 1 --

Carbon Imidazole Side Chain HIS CG, CD2, CE1 0 1 --

Carbon Aromatic Side Chain TRP CG,CD1, CD2, 0 1 --

Carbon Aromatic Side Chain TRP CE2, CE3, CZ2, CZ3, CH2 0 1 --

Sulfur Sulfhydril Side Chain CYS SG 0 -1 H Bond

Sulfur Thioether Side Chain MET SD 0 0 --

Oxygen Sulfate HET Group SO4 O1, O2, O3, O4 -ve -1 H Bond

Oxygen Phosphate HET Group 2HP O1, O2, O3, O4 -ve -1 H Bond

Oxygen Water HET Group HOH O 0 -1 H Bond

Calcium Ion HET Group CA CA +ve -1 H Bond

Magnesium Ion HET Group MG MG +ve -1 H Bond

Zinc Ion HET Group ZN ZN +ve -1 H Bond

Set A = ALA, SER, THR, CYS, ASP, ASN, GLU, GLN, ARG, LYS, PRO

Carboxyl

Carboxyl
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Lacking differential rule ground truth, we can not use this method for real world data.

Uplift curves are often used to address this problem [111]. Using 5-fold cross-validation,

we use the learned theory rules as attributes to a Bayes Net TAN classifier [47] to assign

a probability to each example. Given a threshold p, we compute the lift Li, defined as the

number of positive examples amongst the fraction p of examples that are ranked the highest

on strata i. We generate an uplift curve by ranging p from 0 to 1 and plotting {p, L1−L2}.

3.6 Augmenting a Bayes Net with Rules

Bayesian Belief Networks (Bayes Nets for short) are informatics tools used for predicting

the probability (risk) of an outcome based on observed variables. Bayes Nets predict the

probability of an outcome using a graphical structure encoding variables (nodes), conditional

dependence relationships (arcs) and probabilities quantified in conditional probability tables

associated with each node [79].

Given feature vectors composed of discrete variables, Bayes Nets can be learned directly

from data. Using various heuristic search techniques, the objective is to infer a network that

best represents the training data probability distribution, as measured by likelihood, BIC,

or other measures of fit to data. After the Bayes Net structure is determined, conditional

probability tables are computed using standard occurrence counting techniques [79].

We use the Tree Augmented Naive Bayes (TAN) algorithm [47], as implemented in

Weka [55]. TAN starts with a Naive Bayes structure: the class variable has no parents,

and is itself the sole parent of each attribute. TAN then adds arcs between variables to

approximate the interactions between attributes. It uses a tree structure to ensure that each

attribute has at most one other attribute augmenting edge pointing to it.

Rules can be incorporated into a Bayes Net as additional variables in the original feature

vector data. Each rule can be seen as a binary variable: a given example is either covered

or not covered by that rule. We then learn a Bayes Net over the rule-augmented data.



29

Chapter 4

The Model Filtering Approach

This chapter introduces our automated Model Filtering (MF) approach. Applying this

method to breast cancer resulted in the first instance of differential predictive rules discovery.

This chapter is based on a paper presented at ACM International Health Informatics (IHI-

10) [89], and on another submitted to PLoS ONE journal [8].

4.1 Problem Motivation

Breast cancer is the most common type of cancer among women. An estimated 1.3

million new cases of invasive breast cancer were expected to occur among women in 2007

[49]. Statistical data shows that a woman in the US has a 1/8 lifetime risk of developing

breast cancer [4].

There are two basic stages of breast cancer. If cancer cells are confined within the ducts

and lobules where they developed and have not spread, the stage is in situ. If cancer cells

have broken through their originating ductal or lobular structures to invade the surrounding

tissue, the stage is invasive. In situ cancers represent 25% of breast tumors [3].

Since nearly all in situ cases can be cured [3], current practice is to treat in situ occurrences

in order to avoid progression into invasive tumors [4]. Nevertheless, the time required for an

in situ tumor to reach invasive stage may be sufficiently long for a woman to die of other

causes; raising the possibility that the diagnosis and treatment may not have been necessary,

a phenomenon called overdiagnosis.
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Cancer occurrence and stage are determined through biopsy, a costly, invasive, and po-

tentially painful procedure. Actual treatment is costly, and may generate undesirable side-

effects. For these reasons, the 2009 US National Institutes of Health consensus conference

on ductal carcinoma in situ highlighted the need for methods that can accurately identify

patient subgroups that would benefit most from treatment, as well as those who do not need

treatment [2].

Researchers have successfully used pre-biopsy mammography features to build breast-

cancer classifiers capable of discriminating between invasive and in situ cancers [66, 85, 128].

Mammography, or x-ray of the breast, is the main tool used for early detection of breast can-

cer. A routine asymptomatic mammography exam is called a screening mammogram, while a

more detailed exam following symptoms or a higher risk is called a diagnostic mammogram.

Using patient characteristics and mammography findings to uncover invasive and in situ

differential predictive rules may help decrease the number of biopsies which may confer

minimal benefit in elderly women; and target interventions to younger women, who would

benefit the most from early diagnosis.

4.2 Age Matters

To accentuate age-based differences, we limit our age-based analysis to the mammography

younger and older cohorts (Table 3.1). If age based differences exist, they are most likely

explained by steady and gradual changes rather than an abrupt shift at any single age. In

fact, early work showed that the assignment of mammography exams into specific age cohorts

with a certain cut point (usually at age 50) may not be desirable unless outcomes abruptly

change at this cut point [68]. Changes due to menopause do not appear as sharp changes

at any specific age when averaged over a population of women. Removing the middle-age

group helps impose a more marked distinction between older and younger age groups making

potential observed differences clearer.
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To identify differential prediction in the context of age, we fit a Multivariable Logistic

Regression model for the older and younger cohorts using the structured and extracted fea-

tures of Table 3.2, and compare the resulting curves. We use stepwise logistic regression [64],

which minimizes the Akaike Information Criterion (AIC) goodness of fit measure to eliminate

predictors that do not substantially improve the model fit. The pairwise correlations among

the predictors are small and the results from the stepwise fits are stable. We do not include

interaction terms because sparse information in the two way tables between predictors made

these terms difficult to estimate and interpret. We evaluate the performance of our models

using leave-one-out cross validation.

The resulting older women regression model includes eight variables, six of which are

statistically significant at the 95% level in predicting invasive cancer versus in situ (Appendix

Table B.1). Specifically, presence of a palpable lump (p = 0.013), family history of breast

cancer (p = 0.043), principal abnormal finding (p < 0.001), calcification distribution (p =

0.008), mass margins (p < 0.001), and mass shape (p = 0.033) are statistically significant.

Prior surgery (p = 0.132) and focal asymmetric density (p = 0.077) were included but were

not statistically significant.

The resulting younger women regression model includes five variables, three of which

were statistically significant at the 95% level (Appendix Table B.2). Presence of a palpable

lump (p < 0.001), principal abnormal finding (p < 0.001), and mass size (p = 0.047) were

significant. Architectural distortion (p = 0.063) and mass shape (p = 0.090) were included

but were not statistically significant.

We compare the performance of both models in predicting cancer stage (invasive versus

in situ) using the Area Under the ROC Curve (AUC-ROC) value (Figure 4.1). The model

for older women achieved an AUC-ROC of 0.848 whereas the model for younger women had

an AUC-ROC of 0.778, a significant difference (p = 0.049).

These results show that the invasive versus in situ classification problem exhibits age-

based differential prediction. The predictive ability of our logistic regression models in dif-

ferentiating between invasive and in situ does depend on age. Even though both models
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Figure 4.1: ROC curves and area under the curve (AUC) for old and young patients Multi-

variable Logistic Regression models

found the presence of a palpable lump and the principal abnormal finding to be significant

predictors, each regression incorporated different additional significant predictors. Family

history, calcification distribution, mass shape, and mass margins for older, and mass size for

younger. In addition, our older women model significantly outperforms our younger women

model, when each is applied on its data subset.

4.3 Model Filtering Method

Having established differential prediction and the fact that, based on age groups, different

mammographic features can be used to classify cancer as invasive or in situ, we now shift

our attention to extracting differential predictive rules.
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We start by constructing an ILP model over the target stratum. The search is guided

by a clause evaluation function that maximizes some statistic (e.g. coverage, compression,

entropy) discriminating between invasive and in situ over the given target stratum. The

model outputs a high-performance stratum-specific theory. By construction, the theory

rules perform well on their stratum, according to the given scoring function S. We test each

theory rule on the other stratum, and select rules with a poor performance, hence filtering

the original model. According to this approach, the greater the performance difference, the

more differentially predictive a rule is.

As an example, the flowchart of Figure 4.2 outlines the construction of in situ rules

specific to the older stratum. Starting with the older subset, we construct an ILP model

that discriminates between in situ and invasive. The learner generates a theory composed

of rules which, by construction and taken together, explain the training data. The generated

rules are expected to have a good performance over the older stratum. We then test each

rule on the younger stratum, and keep rules that perform poorly.

Older
cohort
reports

ILP
classifier

In situ 
rules

Younger
cohort
reports

Differential
prediction

Older-specific
in situ
rules

Figure 4.2: Model Filtering approach to identify older-specific in situ rules

The differential prediction rule filtering component can be based on a statistical signifi-

cance test, on a threshold, on cross-validation or on a tuning set. For example, we can set

aside older and younger tuning sets, and select rules whose precision is significantly worse

on the younger tuning set when compared to the older.
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4.4 Experiments and Results

To test our approach, we apply it to each age (older, younger) and cancer stage (in situ,

invasive) combination, using the structured, extracted (Table 3.2) and extensional (Table 3.3)

features. We opt for a tuning set model filter, and divide each cohort in half to form a training

and a tuning set. We make sure all records pertaining to the same patient end up in the

same subset. We perform our experiments using Aleph [121] running within the Yap Prolog

compiler [115].

To avoid reporting rules with low coverage, or with bad predictive precision, we select

rules whose recall on the same-age tuning subset is greater than or equal to 10%, and precision

on the same-age tuning subset is greater than or equal to 60%. We filter and select rules

whose precision is significantly better, at the 95% confidence level, on one tuning subset

compared to the other. We assume a uniform prior and use a probabilistic interpretation of

precision in order to compare precision measurements on different datasets [53].

We present each logical rule’s English translation. We divide them by the age cohort and

cancer stage categories to which they refer. In cases where no rule meets our selection criteria

for a certain category, we report sub-optimal rules for completeness as well as comparison

purposes. We group rules by predicate similarity and provide their clinical summary. We

include for each rule its invasive and in situ coverage, as well as its precision p and recall

r, on both its corresponding younger and older tuning subsets. We also include the results

over the middle cohort for comparison purposes. The middle cohort experiments were not

used in rule generation or selection.

4.4.1 Rules Predicting Invasive in Older Cohort

The following invasive-predicting rules have a significantly better precision, at the 95%

confidence level, on the older cohort when compared to the younger. A cancerous diagnostic

mammogram A is invasive if:



35

1. The mammogram has a palpable lump in this-side breast.

(younger: 86 invasive, 13 in situ, p = 87%, r = 65%)

(middle: 99 invasive, 15 in situ, p = 87%, r = 50%)

(older: 85 invasive, 5 in situ, p = 94%, r = 42%)

2. The mammogram’s indication for exam is “breast problem palpable lump”.

(younger: 82 invasive, 13 in situ, p = 86%, r = 62%)

(middle: 78 invasive, 15 in situ, p = 84%, r = 39%)

(older: 71 invasive, 4 in situ, p = 95%, r = 35%)

3. The mammogram’s indication for exam is “breast problem palpable lump”,

its other side BI-RADS score is less than 3,

and its mass margin is not reported.

(younger: 54 invasive, 8 in situ, p = 87%, r = 41%)

(middle: 42 invasive, 6 in situ, p = 88%, r = 21%)

(older: 39 invasive, 1 in situ, p = 98%, r = 19%)

These three rules show that the presence of a palpable lump leads to a more precise

prediction of invasive cancer as compared to in situ in older women. Having a palpable lump

in younger women does not differentiate as well between invasive and in situ.

4. The mammogram has an old-biopsy that was invasive.

(younger: 24 invasive, 4 in situ, p = 86%, r = 18%)

(middle: 82 invasive, 1 in situ, p = 99%, r = 41%)

(older: 101 invasive, 3 in situ, p = 97%, r = 50%)

5. The mammogram has an old-biopsy that was invasive,

and the biopsy happened within the same age group.

(I.e. an older women had the prior biopsy when she was above 65 years old)

(younger: 24 invasive, 4 in situ, p = 86%, r = 18%)
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(middle: 81 invasive, 0 in situ, p = 100%, r = 41%)

(older: 89 invasive, 0 in situ, p = 100%, r = 44%)

In the setting of recurrence, older women may be more likely to have invasive rather than

in situ cancer. In other words, the fact that a woman is having a recurrence is a better

predictor of invasiveness in older women than it is in younger women.

4.4.2 Rules Predicting In Situ in Older Cohort

Only one in situ-predicting rule has a significantly better precision, at the 95% confidence

level, on the older cohort when compared to the younger. Its recall value is 4.55%, well below

our cutoff value of 10%, and thus is a sub-optimal rule that we report for completeness. A

cancerous diagnostic mammogram A is in situ if:

1. The mammogram’s indication for exam is “breast problem other”,

there is no prior surgery,

and its mass size is not reported.

(younger: 2 in situ, 7 invasive, p = 22%, r = 4%)

(middle: 11 in situ, 9 invasive, p = 55%, r = 13%)

(older: 3 in situ, 1 invasive, p = 75%, r = 5%)

This rule’s coverage is very low and doesn’t allow for an adequate clinical interpretation.

4.4.3 Rules Predicting Invasive in Younger Cohort

No invasive-predicting rule has a significantly better precision, at the 95% confidence

level, on the younger cohort when compared to the older. The best discriminating rule is

only significant at the 87% confidence level, and is thus a sub-optimal rule. A cancerous

diagnostic mammogram A is invasive if:

1. The mammogram has a palpable-lump in this-side breast,

its breast density is class 2,
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and its calcification distribution is not reported.

(younger: 15 invasive, 1 in situ, p = 94%, r = 11%)

(middle: 31 invasive, 0 in situ, p = 100%, r = 16%)

(older: 23 invasive, 6 in situ, p = 79%, r = 12%)

Low breast density usually allows for easier mass detection on the mammogram. However,

when there is a palpable finding, the detection task facilitated by low breast density ceases

to be important.

4.4.4 Rules Predicting In Situ in Younger Cohort

The following in situ-predicting rule has a significantly better precision, at the 95%

confidence level, on the younger cohort when compared to the older. A cancerous diagnostic

mammogram A is in situ if:

1. The mammogram has a personal history of cancer in this-side breast,

this-side breast has a prior surgery,

and its combined BI-RADS increased by at least 2 points compared to a

previous study.

(younger: 6 in situ, 3 invasive, p = 67%, r = 11%)

(middle: 4 in situ, 9 invasive, p = 31%, r = 5%)

(older: 1 in situ, 11 invasive, p = 8%, r = 2%)

This rule suggests that if a patient has a recurrence, this is a better predictor of in situ

in younger women. This rule complements rules 4− 5 in Section 4.4.1.

4.5 Differential Rules Discussion

Our MF differential prediction approach provides a number of interesting rules, some of

which are previously unreported and are worthy of further investigation.
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4.5.1 Predicting Invasive in Older Cohort

Starting with rules predicting invasive in older women, we notice that the first three rules

involve palpable lump, the first two rules having it as a sole predicate. We further check

recall values, and find that the three rule’s recall is significantly better for the younger cohort.

This means that there is a significantly higher percentage of younger women diagnosed with

palpable lumps; but the presence of a palpable lump is a significantly more precise indicator

of invasiveness in older women.

Typically women under the age of 40 are not included in a breast-screening program.

Because younger women with breast cancer rarely undergo mammography before diagnosis,

they often present a palpable lump detected through self-examination or by assessment by

their general practitioner [48]. As opposed to a screening mammogram detection, which is

often the case with older women. This explains higher palpable lump recalls associated with

the younger cohort.

The palpable lump rules’ higher precision associated with the older cohort is more inter-

esting. Here is a possible explanation. Studies have shown that breast cancer in younger

women is pathophysiologically more aggressive and has a poorer prognosis [38, 48]. Younger

women tend to have higher proportions of poorly differentiated, rapidly proliferating tumors

that tend to be larger and to involve regional lymph nodes [1]. Due to their larger size,

the tumors are more likely to be palpable, increasing the palpability likelihood of an in situ

tumor in younger women. Which may explain the palpable lump rules’ better precision

over the older cohort, where the mass grows at a slower pace, and once it is big enough to

be palpable, it is almost certainly invasive. These rules merit further investigation, with a

possible factoring of histological grade and date of last screening mammogram.

Rules 4 and 5 predict an invasive tumor based on a prior biopsied invasive tumor. Both

rules also exhibit a significantly better recall in the older cohort. This reflects the higher

risk of proliferation and recurrence of invasive tumors [74] which, combined with a longer

life-span for the recurrence to manifest itself, is more common in older women.
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4.5.2 Predicting In Situ in Older Cohort

The only reported rule is based on a very small number of older examples and doesn’t

meet the 10% recall cut-off. It specifies “other” as the clinical indication for the exam, a

miscellaneous and not very informative category. In addition, rules reporting the absence

of features are difficult to clinically interpret. Unfolding in situ-predicting rules with a

significantly better performance in older women requires further studies.

4.5.3 Predicting Invasive in Younger Cohort

Although the reported rule is only significant at the 87% confidence level, and no conclu-

sions should be drawn based on it, it sheds some light on the previously discussed palpable

lump issue.

The rule requires a palpable lump in this-side breast, together with a breast density of

class 2, scattered fibroglandular tissue. This is a relatively low breast density for younger

women, since it is well established that younger women tend to have denser breasts than

older women [63, 135]. Mammogram sensitivity significantly increases with declining breast

density [78], since a low breast density allows for easier mass detection on the mammogram.

However, when there is a palpable finding, the detection task facilitated by low breast density

ceases to be important. While the discriminating ability of low breast density may explain the

relative increase in invasive detection precision in younger women in this rule, the inclusion

of a palpable lump predicate adds some doubts to the clinical explanation of this rule.

4.5.4 Predicting In Situ in Younger Cohort

The rule predicting in situ in the younger cohort requires both a prior surgery and

a personal cancer history to be present in the same breast. Combined with a BI-RADS

increase, it favors in situ in younger and invasive in older. This rule complements rules

4− 5 in Section 4.4.1, suggesting that a recurrence is a better predictor of in situ in younger

women.



40

This rule covers more invasive than in situ cases when tested on the older subset. It

thus provides opposite predictions across the age divide. In addition, it is the only rule

that links the current mammogram to older ones. This rule takes full advantage of ILP’s

relational capabilities, and allows previous mammograms features to influence the current

mammogram classification.

Opposite predictions across age-strata, and linking to previous mammograms, this previ-

ously unreported rule offers a clear-cut age-specific personalized prediction and merits further

clinical investigation.

4.6 Middle Cohort Comparison

To accentuate age-based differences, we limited our differential rules generation to the

younger and older cohorts. In this section, we investigate the performance of the resulting

rules on the middle cohort. Table 4.1 compares the middle cohort performance of each

differential rule (see Section 4.4) to its performance on the younger and older cohorts. We

apply the same statistical test used to select our age-specific rules.

Suppose a rule has a middle cohort performance that is significantly different from one

non-middle cohort, say older, and is not significantly different from the other, younger in

this case. Then the middle cohort is more similar to the non-significant (i.e. younger) cohort

in the scope of the concerned rule. On the other hand, suppose a rule has a middle cohort

performance that is not significantly different from both non-middle cohorts. Then, in the

scope of this rule, the middle cohort shares similarities with, and its features lie in between,

the two other cohorts. For our age-specific rules, the middle cohort behaves indeed as a

“middle” cohort. For some rules it displays similarities to either the younger or the older

cohorts, while in others it is situated in the middle.

4.7 Model Filtering Approach Discussion

Our results show that the MF approach works. It is able to learn meaningful differential

predictive rules. The resulting rules are age-specific, for which the discarded middle cohort
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Table 4.1: Middle Cohort Precision Comparisons

Comparing Middle Cohort with:

Rule (see Section 4.4) Older Cohort (p-value) Younger Cohort (p-value)

Invasive Older Prediction

Rule 1 0.04* 0.50

Rule 2 0.01* 0.32

Rule 3 0.05 0.49

Rule 4 0.26 0.00*

Rule 5 0.48 0.00*

In Situ Older Prediction

Rule 1 0.27 0.06

Invasive Younger Prediction

Rule 1 0.00* 0.12

In Situ Younger Prediction

Rule 1 0.10 0.06

* Statistically significant at the 95% confidence level.

behaves indeed as a “middle” cohort. Nevertheless, the coverage of some of the rules is small,

and filtering rules solely on their differential precision may not be adequate. In addition, we

did not uncover any significant nor meaningful older in situ differential rule, which is our

main motivation.

In order to infer meaningful and significant older in situ rules, we may need to use a

different filtering function, one that also incorporates size and recall. In addition, we can

increase the training set size by using a statistical test differential filter instead of a tuning

set. Finally, we may need a different approach more tuned to the differential prediction

search space. We explore these alternatives in the next chapter.
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Chapter 5

Differential Prediction Search Approach

The Model Filtering (MF) approach is a generate-then-test method. Target stratum

rules are generated by training solely on the target stratum subset, and then filtered by

tuning on the other stratum. A more rigorous approach is to use test-incorporation. This

chapter introduces the Differential Prediction Search (DPS) approach, which builds a dif-

ferential prediction classifier by altering the ILP search space. We test and compare our

methods on synthetic data as well as on the mammography data. We establish that for large

and noisy data, which is what most real world applications are, DPS is more appropriate.

Finally, we augment a Bayes Net with differential rules for risk prediction, forming a Logical

Differential Prediction Bayes Net (LDP-BN), and observe a significant performance increase.

This chapter is based on a paper presented at ECML-12 [90], and on another accepted at

AMIA-12 [92].

5.1 Differential Prediction Search Method

Our third method, differential prediction search (DPS), uses test-incorporation by alter-

ing the ILP search space. It defines a new clause evaluation function that considers both

strata during search-space exploration and rule construction. This allows ILP to return rules

specifically selected for their differential prediction score, rules that it would have overlooked

otherwise. This is achieved through a differential-prediction-sensitive score that measures

the performance difference of a rule over both strata.
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Definition 5.1.1 (Differential-Prediction-Sensitive Scoring). Let R be a clause (rule)

over the set of instances X, and let D be a 2-strata dataset over X. We define a differential-

prediction-sensitive scoring function Q as a function of R, Dt and Do, such that Q is posi-

tively correlated to the performance of R over Dt, and negatively correlated to the perfor-

mance of R over Do.

A very simple example is the difference of the classification score of a rule over both

strata. Let S(R|Di) be the performance score for R over the subset Di. We have:

Q(R|Dt, Do) = S(R|Dt)− S(R|Do). (5.1)

Figure 5.1 flowchart outlines the construction of older-specific in situ rules. The differ-

ential prediction classifier takes both strata as input. It constructs, scores and selects rules

according to their differential-prediction-sensitive score.

Older
stratum
reports

DP
sensitive

ILP classifierYounger
stratum
reports

Older-specific
in situ rules

Figure 5.1: Differential prediction search approach to identify older-specific in situ rules

5.2 Scoring Functions

The approaches we propose can be applied to any ILP algorithm, and can be used with

any scoring function S. In this work, we use the m-estimate to represent the probability of

an example given a rule. We set both m and the minimum number of positive examples to

be covered by an acceptable clause to 10% of the number of positive examples per stratum
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and class. Given a rule R covering P (R) positives and N(R) negatives over data D, with

Prior being the fraction of positive examples in the data D, m-estimate is computed as:

mEstimate(R|D) = (P (R) +m× Prior)÷ (P (R) +N(R) +m)). (5.2)

An important concern in real-life situations is population size [104]. Probability estimates

tend to favor highly precise estimates (even taking into account the m count) and may be

prone to overfitting, a difficult problem in ILP given the number of rules we generate and

their complexity. In this work, we heuristically compensate for population size by multiplying

the m-estimate score by the rule positive cover, as shown below for each approach.

We implement our differential predictive rule learning methods using Aleph [121]. We

invoke induce max, which induces a theory that is unaffected by the order of the examples.

We set depth = 100000, i = 10, nodes = 50000 and clauselength = 5. We perform

experiments with the YAP Prolog compiler [115].

As a running example, suppose we are given a 2-strata 2-class dataset of breast cancer

records, with class labels in situ and invasive, and strata older and younger. Our task is

to find rules that exhibit a differential performance over the two strata. More precisely, we

want rules that correctly predict in situ versus invasive in the older stratum, but have a

significantly worse performance over the younger stratum. Our target stratum Dt is thus

older, while younger is the other stratum Do. We do not hold out tuning sets.

5.2.1 Baseline Score

We first establish a standard ILP baseline. We merge both strata together while including

the stratifying attribute as an additional predicate in the background knowledge. Thus

older stratum examples will have stratum(Example, older) as an additional feature, while

stratum(Example, younger) will describe younger instances. We run ILP over the whole

dataset and select theory rules that have the condition stratum(Example, older) in their

body. Such rules are specific to the older stratum. We call this approach the baseline

approach (BASE).
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We score each rule R by considering its positive cover and m-estimate over the merged

strata:

SBASE(R|Dt, Do) = poscover(R|Dt ∪Do)×mEstimate(R|Dt ∪Do). (5.3)

5.2.2 Model Filtering Score

During the MF search phase, we score a rule R over strata Dt using SBASE(R|Dt). Given

the final theory, we score each theory rule Rt according to:

SMF (Rt|Dt, Do) = SBASE(Rt|Dt)− SBASE(Rt|Do). (5.4)

5.2.3 Differential Prediction Search Score

For the DPS method, we introduce the following differential-prediction-sensitive scoring

function:

QDPS(R|Dt, Do) = poscover(R|Dt)× (mEstimate(R|Dt)−mEstimate(R|Do)). (5.5)

Note that this function is non monotonic, as are most user-defined scoring functions, which

prohibits us from custom-pruning the search space.

It is enlightening to relate this scoring function with the postulates described in [111].

Postulate 2 is trivially satisfied: if the condition is independent from treatment then the

measure should indeed be zero. In contrast to Postulate 1, we select rules that do better in

one strata, and not rules that do differently. This is standard in ILP, where the search aims

at covering the positive examples, E+. In fact, in this setting, the standard techniques to

explain negatives is to perform another search, switching E+ and E−. The last postulate

concerns the case where the control set is empty. In this case, this measure indeed reduces

to a classic non-differential ILP scoring function.
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5.2.4 Instance Relabeling Score

Finally, we consider the Instance Relabeling method (Section 2.3.3). This method is

specific to the coverage rule-scoring evaluation function; we do not use m-estimate and

compensate for population size as we did for the other methods.

Let Pt and Nt be the positive and negative instances of the target stratum (older in our

case), and Po and No be the positive and negative instances of the other stratum (younger

in our case). A given rule R scores:

SRLBL(R|Dt, Do) = cover(R|Pt ∪No)− cover(R|Po ∪Nt). (5.6)

5.3 Michalski-Trains Results

Before going to our mammography target application, we use Section 3.3 Michalski-Trains

synthetic data to evaluate the ability of our approaches to uncover ground truth differential

rules, and to study their sensitivity to variations in noise and in dataset size, two major

concerns in real-world data.

The data has 30 simulations for each scenario, noise level, size and method combination.

Table 5.1 reports the AUC-PR mean and standard deviation for each method and experi-

mental block. The Instance Relabeling method runs took too long, and retrieved few true

positive rules, if any. We discard this approach after a few simulations. See Section 2.3.3 for

a discussion of this method’s weakness.

We compare two methods by using a paired Mann-Whitney test on all their corresponding

experiments. Our results show that MF outperforms BASE on all testbeds (p-value =

0.00048). BASE outperforms DPS on size 100 sets (p-value = 0.019), while DPS outperforms

BASE on size 1000 (p-value = 0.01). On large noisy sets, DPS outperforms both BASE (p-

value = 0.0018) and MF (p-value = 0.0374). See Table 5.2 for detailed comparisons.
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Table 5.1: AUC-PR mean and standard deviation for each scenario, noise level, size and

method combination. Each experimental block is composed of 30 experiments.

Dataset clean100 clean1000 noisy100 noisy1000

Method BASE MF DPS BASE MF DPS BASE MF DPS BASE MF DPS

One target rule scenario

Mean 0.73 0.83 0.62 0.87 0.90 0.88 0.57 0.62 0.54 0.63 0.80 0.87

Std dev 0.45 0.34 0.40 0.35 0.24 0.29 0.50 0.47 0.42 0.49 0.36 0.31

Multiple target rules scenario

Mean 0.61 0.70 0.42 0.75 0.86 0.77 0.38 0.52 0.31 0.52 0.55 0.65

Std dev 0.33 0.28 0.29 0.33 0.24 0.30 0.37 0.28 0.32 0.39 0.27 0.29

Table 5.2: p-value of pairwise Hommel adjusted paired two-tailed Wilcoxon tests. Significant

results are in bold.

Clean Noisy

100 1000 100 1000

BASE DPS BASE DPS BASE DPS BASE DPS

One target rule scenario

DPS 0.33 - 0.83 - 1 - 0.03 -

MF 0.33 0.02 0.83 0.83 1 1 0.06 0.44

Multiple target rules scenario

DPS 0.03 - 0.65 - 0.30 - 0.04 -

MF 0.14 0.00 0.14 0.21 0.21 0.00 0.56 0.05

Both scenarios combined

DPS 0.03 - 0.79 - 0.41 - 0.00 -

MF 0.05 0.00 0.26 0.20 0.13 0.02 0.04 0.04
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5.3.1 Michalski-Trains Discussion

As one expects, performance improves with larger sets of training examples, and decreases

with multiple target rules and noisy sets. The noisy runs are harder for three reasons. First

is the noise effect per se, randomly assigning the wrong target class to 5% of the trains.

Second is the 10% minimum positive cover threshold per rule. If a target rule originally

narrowly passed this threshold, the addition of noise may decrease its positive coverage

below the threshold, and the rule becomes undetectable. Third is the maximum negative

cover threshold: in clean runs, we only consider rules that don’t cover any westbound train,

which drastically reduces the number of evaluated rules. In noisy runs, we allow up to 10%

of negative cover. Even if no noise is injected, the exponential expansion of the search space

increases the probability that some non-target rule scores better than a target.

It is interesting to note that DPS is the least affected by noise. In each experimental block,

DPS suffers the least decrease in mean AUC-PR, none of the DPS losses being significant.

In the one-target rule and large-set block, adding noise decreases DPS mean by just 1 point,

from 0.88 to 0.87 (p-value = 0.94). On the other hand, MF and BASE drop by 10 and 24

percentage points (Table 5.1). In the four sets of experiments where noise is a variable, DPS

drops an average of 8 percentage points, compared to 21.5 for BASE and 20 for MF.

Similarly, DPS improves the most with increasing sample size. In each of the four sets of

experiments where size is a variable, DPS displays the highest increase in mean AUC-PR,

all of the DPS increases being significant. In these experiments, DPS increases an average of

32 percentage points, compared to 12 for BASE and 11 for MF (Table 5.1). Although more

experiments are necessary to establish a performance-size curve, this evidence suggests that

BASE and MF increase rate may be stalling at size 1000, while DPS performance is likely

to keep improving.

Although no clear pattern emerges from comparing different methods on one-target versus

multiple-target scenarios, DPS seems to be slightly more sensitive to the number of target

rules. DPS suffers an average decrease of 19 AUC-PR percentage points over the four

experimental blocks where target rule scenario is a variable, compared with 13.5 for BASE
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and 13 for MF (Table 5.1). Nevertheless, this performance decrease does not alter the method

ranking over each experimental block.

In summary, our experiments show that MF is more suitable for either clean data or

small datasets. But for large and noisy data, which is what most real world applications are,

DPS is more appropriate (Table 5.2). In addition, DPS performance increases at a faster

rate than MF, and thus may outperform MF for larger clean datasets. DPS, by navigating

the differential prediction search space, requires more training examples and generates a set

of rules as a consistent theory which explains the data. In contrast, MF and BASE select

individual rules that may be suboptimal.

5.4 Breast Cancer Diagnosis

Our motivating application is to learn older-specific in situ breast cancer differential pre-

dictive rules. We apply our three methods to the breast cancer data described in Section 3.2.

We use the same experimental setting as for the synthetic data, but set nodes = 200, 000

since the number of predicates is much larger.

5.4.1 Breast Cancer Diagnosis Results

The BASE method does not return any rules, which highlights the difficulty of this

task. Lacking ground truth, we use uplift curves (see Section 3.5) to compare MF and DPS

(Figure 5.2). DPS consistently outperforms MF, which in turn consistently outperforms a

baseline random classifier. DPS has an area under the curve (taken to the baseline) of 16.5,

almost double the 9.1 of MF.

As the data sets are skewed, we present the precision and recall curves for the classifiers

in Figure 5.3. In both cases, the differential rules theory performs better on the older cohort,

as it should. This is the case almost across the whole PR space, even though the older cohort

has a weaker negative bias. The exception is for very high recalls, where the difference in

bias dominates. We also note a larger gain for the DPS method.
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Figure 5.2: Uplift curve for breast cancer stage (see Section 3.5)

Uplift curves provide good insight into how the different models differ in terms of lift. To

obtain more insight into theory quality and how the theories differ between folds and between

cohorts, we compare the per-fold AUC-PR of the differential theories across both cohorts

(Table 5.3). In this case the differences are less clear for MF, but DPS consistently shows an

increase from younger to older. We also observe that DPS tends to generate theories that

perform better on the older cohort and worse on the younger cohort. We performed a t-test

on the 5 folds, and the difference between cohorts is significant at the 99% confidence level

for DPS, and not significant for MF at the 95% confidence level .

5.4.2 Breast Cancer Differential Rules

MF returns 4 differential predictive rules that have a significantly better precision and

recall [53] over the older cohort. DPS returns 15. A practicing radiologist, fellowship-

trained in breast imaging, examined and assessed all the rules. One MF rule was not found

meaningful, while the remaining three are redundant to each other and translate to:
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Figure 5.3: Pooled Precision and Recall curves for the MF and DPS methods on the two age

cohorts

1. Tumor is older-specific in situ if its principal mammographic finding is calcification or

single dilated duct, and patient does not have prior surgery.
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Table 5.3: AUC-PR difference between the two cohorts per fold

MF DPS

older younger ∆ older younger ∆

1 0.74 0.64 0.10 0.76 0.54 0.22

2 0.86 0.82 0.04 0.84 0.64 0.20

3 0.62 0.84 -0.22 0.89 0.80 0.09

4 0.71 0.68 0.03 0.80 0.69 0.11

5 0.63 0.64 -0.01 0.78 0.51 0.27

Single dilated duct is a rare finding and was combined with calcification in our data for

convenience. Based on this rule, the more common finding, calcification, is a differential

predictor of in situ disease in older patients, which is a novel and interesting result. A

possible explanation is that, in asymptomatic women, in situ disease is often associated with

screen-detected micro-calcifications; while in symptomatic women, in situ is associated with

a palpable mass or pathological nipple discharge [97]. Younger women tend to have more

rapidly proliferating cancers that develop into a palpable mass [48], in contrast to more

indolent, non-palpable in situ disease manifest as micro-calcification in older patients. This

previously unreported finding merits further investigation.

DPS provides a more complete picture of older-specific in situ differential predictors. All

15 returned rules are meaningful and, in addition to extracting the rule described above, four

additional themes emerge. DPS is thus able to detect more differentially predictive features

than MF, offering a better insight into the medical problem. We select representative clauses

from each theme. Tumor is older-specific in situ if:

2. Patient had prior in situ biopsy, and examined-breast had a BI-RADS score of 1 during

a previous mammogram, which was not the first visit.

3. Patient had prior in situ biopsy, its examined-breast BI-RADS increased by at least 3

since a previous visit, whereas its other-breast BI-RADS remained constant.
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4. Principal mammographic finding is calcification or single dilated duct, examined-breast

BI-RADS score increased by at least 3 since a previous visit, and patient had an even

earlier screening mammogram.

5. Patient has a breast density of 2, is having a unilateral exam, doesn’t have a focal asym-

metric density, and principal mammographic finding is calcification or single dilated

duct.

Besides calcification, the second DPS rules theme is the presence of a prior in situ biopsy

(rules 2, 3). A prior history of biopsy revealing in situ disease is thus a better predictor of

in situ recurrence in older women. This observation is partially explained by the longer life

span of older women which offers more time for a recurrence to manifest. But this rule may

also relate to the indolent nature of in situ breast cancer in older women. In fact, both

invasive and in situ tumors in older patients tend to be less aggressive and have lower rates

of local recurrence than tumors in younger patients [48]. More specifically, younger women

with in situ disease are more likely to progress to an invasive recurrence rather than develop

another in situ tumor when they recur [130].

The third theme is the increase in the examined breast BI-RADS score (rules 3, 4).

The BI-RADS score is a number that summarizes the examining radiologist’s opinion and

findings concerning the mammogram [5]. The radiologist assigns a score for each examined

breast. An increase in the BI-RADS score over multiple visits reflects increasing suspicion

of malignancy. This may be a more pronounced feature in older women because they have

more prior mammograms.

The next observation, whereas screening visits predict in situ in older women (rule 4),

may also relate to the greater opportunity for screening in older patients. Regular screening

mammography is usually recommended for women aged 40 and above. Younger women are

more likely to seek care for a palpable lump detection rather than via screening [48]. Thus

older women tend to have more screening exams because of regular visits after age 40.
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Finally we note the relevance of a class 2 breast density, out of an increasing density

scale of 1 to 4 (rule 5). This is a relatively low breast density, more common in older

women, since breast density decreases with age [63]. This rule is of special relevance since

it doesn’t link to any previous mammogram or history predicate, hence leveling the playing

field between younger and older in terms of time. It requires a class 2 breast density and an

observed calcification during a unilateral (and hence diagnostic) exam. A lower breast density

significantly increases mammogram sensitivity [78], allowing for easier micro-calcification

detection.

5.5 Logical Differential Prediction Bayes Net

In order to advocate for watchful waiting rather than biopsy in women > 65, risk pre-

diction of benign, in situ, and invasive disease based on mammographic features must be

accurate. The literature confirms that the mammographic appearance as described by the

radiologist can predict the histology of breast cancer [128, 126]. Fortunately, mammog-

raphy performs superiorly in older women [108]. In fact, Bayes Net models built using

BI-RADS mammography features can accurately determine breast disease in a general pop-

ulation [18, 19].

5.5.1 Augmenting a Bayes Net with Differential Rules

Nevertheless, to personalize and optimize breast cancer diagnosis specifically to aging

women, we need multirelational algorithms that can address the reality of disease hetero-

geneity (in our case, based on age), while learning predictive variables for risk prediction

in the target population. We can achieve this by combining differential predictive rules

with a Bayes Net (see Section 3.6), thus forming a Logical Differential Prediction Bayes Net

(LDP-BN). LDP-BN includes: 1) leveraging multi-relational data to discover predictive rules

via Inductive Logic Programming (ILP), 2) addressing breast cancer heterogeneity by per-

forming differential prediction over age, and 3) incorporating these predictive logical rules,

tailored to women > 65, into a Bayes Net for classification/risk prediction.
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Once we generate ILP differential rules, we incorporate them as additional variables in

the original feature vector data. We then learn a Bayes Net over the rule-augmented data.

This resulting Bayes Net is a Logical Differential Prediction Bayes Net.

5.5.2 LDP-BN Results

We compare four different Bayes Nets over the older-stratum mammography data. The

first is a baseline Bayes Net built without the added differential prediction rules. The second

is an LDP-BN that uses older-specific rules learned using the MF method. The third is an

LDP-BN that uses older-specific rules learned using the DPS method. The fourth is a Bayes

Net augmented with non-differential rules generated by Aleph over the older cohort.

To train and test our Bayes Nets, we use conventional stratified 10-fold cross validation.

We construct the ROC curves with the final curve being the result of vertically averaging

the 10 curves from the 10 folds. For rule generation, we use the same scoring functions and

experimental setting as Sections 5.2 and 3.5 above. We select rules whose older-stratum

precision and recall results are each no worse than younger’s, with one of them being sta-

tistically significantly better at the 95% confidence level [53]. We mine both invasive and in

situ older-specific differential predictive rules and incorporate all of them into the Bayes Net

for older-specific invasive/in situ prediction.

Table 5.4 shows the Area Under the ROC Curve (AUC-ROC) for each of the 10 folds.

Figure 5.4 depicts the final ROC curves. We note that the DPS augmented Bayes Net is

constantly outperforming the MF augmented one, which in turn constantly outperforms the

Baseline Bayes Net. In fact, the differences are statistically significant at the 99% confidence

level. A paired two-tailed t-test gives p-value < 0.0001 for MF compared to Baseline, and

p-value = 0.0055 for DPS compared to MF.

The non-differential Aleph-augmented Bayes Net is constantly outperforming MF, and

the difference is statistically significant (p-value = 0.0041). Although the Aleph average

is better than its DPS counterpart, their two ROC curves cross, and the difference is not

significant (p-value = 0.7388). DPS performs better at a lower false positive rate, and Aleph
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Table 5.4: Area under the ROC curve results for the baseline, MF, DPS and Aleph augmented

Bayes Nets over the 10 folds

Fold Baseline BN MF LDP-BN DPS LDP-BN Aleph BN

1 0.8067 0.8846 0.9587 0.8942

2 0.8208 0.8996 0.9062 0.9644

3 0.8714 0.8973 0.9482 0.9357

4 0.8438 0.8714 0.9080 0.9187

5 0.7990 0.8615 0.9000 0.9096

6 0.8769 0.9346 0.9615 0.9452

7 0.7183 0.8163 0.8337 0.8481

8 0.9154 0.9654 0.9442 0.9654

9 0.8490 0.9317 0.9558 0.9279

10 0.8154 0.8779 0.9365 0.9067

Average 0.8304 0.8911 0.9197 0.9212

Figure 5.4: Final ROC curves for the baseline, MF, DPS and Aleph augmented Bayes Nets
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at a higher false positive rate. The two curves intersect at a true positive rate (recall,

sensitivity) of 0.9 and at a false positive rate (1-specificity) of 0.2. Even though Aleph-

augmented and DPS-augmented Bayes Nets have similar performances, DPS LDP-BN has

the advantage of offering differential prediction insight into the underlying domain.

It is important to note that LDP-BN rules are learned for their differential predictive po-

tential, separately from the Bayes Net. The differential rules identification and the Bayesian

Network construction are not integrated into a global optimization framework, as in the

SAYU system [32]. It may be possible to further improve the Logical Differential Prediction

Bayes Net by doing so in the future.
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Chapter 6

The Expert Driven Approach

So far we introduced two automated differential predictive rule learning methods. A

more basic approach is to rely on an expert to infer differential predictive rules by comparing

models built on the different strata. In this chapter, we introduce the Expert Driven (ED)

approach for differential prediction. Applying the Expert Driven approach to extract older-

specific in situ breast cancer stage rules resulted in too many rules to be practical. For

illustration, we apply it to infer differences between specific glucose and general hexose

binding, showing that it works on an important biological problem. In doing so, we create

the first glucose-binding classifier, and perform an ILP-based data-driven empirical validation

of biochemical hexose-binding knowledge. This chapter is based on a paper published in the

journal Proteins: Structure, Function and Bioinformatics [86], and on another presented at

the ILP-09 conference [87].

6.1 Biological Background

We start by an overview of hexoses and their binding properties.

6.1.1 Problem Significance

Hexoses are 6-carbon sugar molecules that play a key role in several important biochem-

ical pathways, including cellular energy release, signaling, carbohydrate synthesis, and the

regulation of gene expression [120]. Proteins that bind these sugars are implicated in several

human diseases, including diabetes, various metabolic disorders, and Huntington disease.
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The biochemical and molecular pathways for these disease mechanisms have not all been

elucidated and much work remains to be done.

In parallel, genome sequencing of a wide range of species has yielded sequence knowledge

of a large number of proteins whose biochemical functions are still unknown. The three-

dimensional structures of many of these proteins were elucidated. Some of these proteins

have been shown to be members of certain pathways, but they lack sufficient sequence or

structural similarity to any other protein with a known function.

The functional annotation of these “unknown” proteins is of paramount importance.

One approach to tackle this problem is to predict what these proteins may bind to. Predic-

tion of glucose-specific binding sites will significantly improve our understanding of protein

structure-function relationships and enable us to assign possible functions to some of the

many genomic proteins whose function remains unknown [98]. This, in turn, will allow us

to better understand disease mechanisms that may involve some of these proteins and be

better placed for either diagnosis or treatment of these diseases.

6.1.2 Hexoses

Galactose, glucose and mannose (Figure 6.1) are, in this order, the most commonly

found hexoses in nature [44]. All hexoses have two chemical groups that can react together,

the carbonyl group and the hydroxyl group situated on carbon number 5 (see Figures 6.1

and 6.2). The reaction between these two groups folds the molecule on itself as shown in

Figure 6.3. This intra-molecular cyclization reaction forms a pyranose ring from five carbons

and one oxygen atoms [20]. The cyclized hexose can adopt either of two configurations, α or

β, according to whether the hydroxyl group −OH* is located below or above the pyranose

ring.

Hexoses can readily shift from one conformation to another, as indicated in Figure 6.3 by

the double arrows −−⇀↽−− . In physiological solutions, i.e. in the living organisms’ cells, fluids

and tissues, hexoses exist almost exclusively in the pyranose forms. For example, at 31◦C,
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Glucose exists in an equilibrium mixture of 64% β-Glucopyranose and 36% α-Glucopyranose,

with only a tiny fraction in the open-chain form [57].

6.1.3 Hexose Binding

Binding proteins are characterized by a binding site: a cleft or groove in their structure

where binding occurs. The molecule that binds to the protein is called a ligand. The binding

process, known as docking, occurs in a key-lock fashion, where the binding site is tailored to

accept and bind to this specific ligand.

Hexose binding proteins belong to diverse functional families that lack significant se-

quence similarity and, often, even structural similarity [65, 123]. Despite this fact, these

proteins show high specificity to their hexose ligands. The 3-D conformation and the chemi-

cal properties of the few amino acids (also called residues) present at the binding site play a

large role in determining the binding site’s distinctive topology and biochemical properties;

and hence the ligand type and the protein’s functionality.

Proposed protein-sugar computational models are based, at least partially, on prior bio-

chemical findings and knowledge [77, 117, 123, 127]. They incorporate different parts of

these findings in predictive black-box models. No prior work has taken the opposite ap-

proach: given hexose binding sites data, what biochemical rules can we extract by just

looking at the PDB features without incorporating other biochemical knowledge, and how

do they compare to known rules? Hence we argue that there is a need for a data-driven

empirical validation of biochemical hexose-binding findings.

Even though glucose is the second most abundant hexose, there is no glucose-specific

binding model. It is thus interesting to uncover the differences between glucose-specific and

hexose general binding.

In this chapter, we build models for hexose and glucose binding, and let an expert compare

the models to infer differential rules and features. We use the Section 3.4 glucose and hexose

dataset. The ED approach is not ILP-specific and can be applied to any classifier. We

consider both ILP and SVMs. In doing so, we create the first glucose-binding classifier,



62

and perform an ILP-based data-driven empirical validation of biochemical hexose-binding

knowledge.

6.2 Literature Review

Researchers have investigated protein-sugar binding sites for several years. Most of these

attempts focused on galactose, since it is the most common hexose in biological processes.

6.2.1 Biochemical Approach

From the biochemical perspective, Rao et al. [105] fully characterized the architecture

of galactose and mannose binding in Lectins, a major hexose-binding protein family. They

identified four conserved residues that occupy identical positions independent of their sugar

specificity, and interact with the hexose independent of its type. These invariant residues

are Asp, Gly, Asn and an aromatic Phe/Tyr.

Later, Quiocho and Vyas [102] presented a review of the biochemical characteristics of

carbohydrate binding sites and identified the planar polar residues (Asn, Asp, Gln, Glu,

Arg) as the most frequently involved residues in hydrogen bonding. They also found that

the aromatic residues Trp, Tyr, and Phe, as well as His, stack against the apolar surface

of the sugar pyranose ring. Quiocho and Vyas also pinpointed the role of metal ions in

determining substrate specificity and affinity. Ordered water molecules bound to protein

surfaces are also involved in protein-ligand interaction [61].

Taroni et al. [127] analyzed the characteristic properties of sugar binding sites and de-

scribed a residue propensity parameter that best discriminates sugar binding sites from other

protein-surface patches. They also note that simple sugars typically have a hydrophilic side

group which establishes hydrogen bonds and a hydrophobic core that is able to stack against

aromatic residues. Sugar binding sites are thus neither strictly hydrophobic nor strictly hy-

drophilic, due to the dual nature of sugar docking. In fact, as Garćıa-Hernández et al. [50]

showed, some polar groups in the protein-carbohydrate complex behave hydrophobically.
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Furthermore, Zhang et al. [139] reported that the hydrogen bonds between the hexose lig-

and and certain amino acids in galactosyltransferases are crucial for the orientation of the

ligand and the correct function of the protein.

6.2.2 Computational Approach

Some of this biochemical information has been used in computational work with the

objective of accurately predicting sugar binding sites in proteins. Taroni et al. [127] de-

vised a probability formula by combining individual attribute scores. Shionyu-Mitsuyama et

al. [117] used atom type densities within binding sites to develop an algorithm for predicting

carbohydrate binding. Chakrabarti et al. [23] modeled one glucose binding site and one

galactose binding site by optimizing their binding affinity under geometric and folding free

energy constraints. Other researchers formulated a signature for characterizing galactose

binding sites based on geometric constraints, pyranose ring proximity and hydrogen bonding

atoms [123, 124]. They implemented a 3D structure searching algorithm, COTRAN, to iden-

tify galactose binding sites. More recently, Malik and Ahmad [77] used a Neural Network to

predict general carbohydrate as well as specific galactose binding sites.

On a broader scale, Gold and Jackson [52] compiled the SitesBase database of pre-

calculated protein-ligand binding site similarities. They did this by performing an all-against-

all geometric hashing over the Protein Data Bank (PDB). Given a binding site, SitesBase

returns all entries with similar binding sites, ranked by a similarity score. Although the

primary use of this database is to examine structural similarities between related binding

sites, it can also provide evidence of functional similarity for unclassified binding sites.

Finally, segmentation and visualization techniques can be used to model protein cavities

and binding-sites. Some approaches can detect protein surface-pockets of a given size [62,

136] and, when used as an input to a hexose-classifier, can present it with potential binding-

sites for discrimination. Others techniques work on surface matching [28]: given a set of

binding-sites in protein examples, they search for matching functional sites in other proteins.
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6.3 Classifiers

Since the Expert Driven approach is not ILP-specific and can be applied to any classifier,

we build both ILP and SVM models for each hexose and glucose classification problem.

6.3.1 SVM Model

The Support Vector Machines (SVM) classifier [129] requires a constant length feature

vector representation. To generate this feature vector, we begin by subdividing the binding-

site into 8 concentric layers. The first layer has a width of 3 Å and the subsequent 7 layers

were 1 Å each. We then compute the cumulative number of atomic chemical properties

(partial charge, hydrogen-bonding ability, hydrophobicity level) within each layer, as well as

the cumulative number of residue groupings (Table 3.4). This scheme ensures a constant-

length feature vector representation.

Since the classifier performance depends both on the sample size and the number of

features, a rule of thumb is to provide at least ten times as many training samples per

class as the number of features [59]. This is not the case with our small (yet exhaustive)

dataset. Nevertheless, of all the different biochemical and geometrical features of a binding

site, only some are essential for correct classification. Recognizing these features as part of

a dimension-reduction step should improve the efficiency of our method [60].

Random Forests (RF) [15] is a classification algorithm based on multiple classification

trees. RF provides measures of feature importance, and can be used as a feature selection

tool [36]. Coupling RF feature selection with SVM classification tends to outperform SVM

alone [26]. Its use is ideal in our case: RF feature selection is robust to noise, can be used

when the number of features is much larger than the number of observations, incorporates

feature interactions, and returns a direct feature importance measure.

RF feature selection improves the SVM classification on our data, as example Table 6.1

shows for Glucose. We report the number of support vectors, that is the number of data

points supporting the SVM discriminating hyperplane. A smaller number of support vectors
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reflects a better generalization [31]. By lowering the number of support vectors, RF-SVM

increases generalization potential.

Table 6.1: Comparison of SVM’s cross-validated performance on chemical and residue prop-

erties with and without RF feature selection over the glucose dataset

Property RF Feature Error Sensitivity Specificity Support

Number (%) (%) (%) Vectors (%)

Charge false 24 24.32 79.31 73.33 77.03

true 5 14.86 86.21 84.44 44.59

Hydrogen false 16 17.57 82.76 82.22 41.89

Bonding true 3 14.86 82.76 86.67 47.30

Hydro- false 24 16.22 72.41 91.11 65.57

phobicity true 15 12.16 82.76 91.11 40.54

Residue false 48 21.62 48.28 97.78 100.0

Grouping true 19 09.46 93.10 88.89 41.89

Features false 112 18.92 75.86 84.44 79.73

Combined true 24 08.11 89.66 93.33 40.54

To infer relevant rules and features from RF-SVM, we first investigate the classification

performance of each one of the biochemical features on its own (charge, hydrogen bonding,

hydrophobicity, residue grouping). We then combine all features to form our final model

(see Table 6.1). As an example of this technique, Figure 6.4 shows the charge features and

their importance scores as returned by RF. We can see the importance of negatively charged

atoms, especially in layer 3, the protein layer in contact with the docked hexose.
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Figure 6.4: Importance of charge features according to RF over glucose dataset. NEUT

stands for neutral, NEG for negative, and L# for the layer number.

6.3.2 ILP Model

After performing SVM runs, we note that the layers covering the first 5 Å, the subsequent

3 Å and the last 2 Å share several attributes. We thereby subdivide our binding-site sphere

into 3 concentric layers, with layer width of 5 Å, 3 Å and 2 Å respectively. For each layer,

we mine the total number of atoms in that layer and the cumulative number of each atomic

property (charge, hydrogen-bonding, hydrophobicity).

We use the ILP engine Aleph [121] to learn first-order rules. The consequent of any rule

is bind(+site), where site is predicted to be a hexose binding site. No literal can contain

terms pertaining to different binding sites. As a result, site is the same in all literals in a

clause.
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Literals describing individual PDB-atoms are of the form:

point(+site,−id,−X,−Y,−Z,−charge,−hbond,−hydro,−elem,−name) (6.1)

where site is the binding site and id is the individual atom’s unique identifier. X, Y , and

Z specify the PDB-Cartesian coordinates of the atom. charge is the partial charge, hbond

the hydrogen-bonding, and hydro the hydrophobicity. Lastly, elem and name refer to the

atomic element and its name.

Clause bodies can also use distance literals:

dist(+site,+id,+id,#distance,#error) . (6.2)

The dist predicate, depending on usage, either computes or checks the distance between two

points. site is the binding site and the ids are two unique point identifiers. distance is their

Euclidean distance apart and error the tolerated distance error, resulting in a matching

interval of distance± error. We set error to 0.5 Å.

We want our rules to refer to properties of PDB-atoms, such as “an atom’s name is

ND1”, or “an atom’s charge is not positive”. Syntactically we do this by relating PDB-

atoms’ variables to constants using “equal” and “not equal” literals:

equal(+setting,#setting) , (6.3)

not equal(+feature,#feature) . (6.4)

feature is the atomic features charge, hbond and hydro. In addition to these atomic features,

setting includes elem and name.

Aleph keeps learning rules until it has covered all the training positive set, and then it

labels a test example as positive if any of the rules cover that example. This has been noted

in previous publications to produce a tendency toward giving more false positives [33, 32]. To

limit our false positives count, we restrict coverage to a maximum of 5 training-set negatives.

Since our approach seeks to validate biological knowledge, we aim for high precision rules.

Restricting negative rule coverage also biases generated rules towards high precision.
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6.4 Expert Driven Differential Rules

After building the hexose and glucose models, we analyze the selected rules and features.

We compare both models to uncover differential rules. Table 6.2 compares the equivalent

rules found by the models.

Table 6.2: Rules and features of the glucose-specific and hexose-general models

Feature Glucose Hexose

Water and ions x x

Negative charge and carboxylate residue x x

Surface hydrogen bonding x x

Dual hydrophobic-hydrophilic x x

Aromatic residue docking x

Glucoses being hexoses, most of the extracted rules and model features are similar.

Their respective models confirm the relevance of water and ions in binding. Ordered wa-

ter molecules and ions present at or near the binding cavity do play a role in determining

substrate specificity and affinity [102, 61].

Both models also show a prominence of acidic residues (which have a negative partial

charge) and of atoms with a negative partial charge. This is a known feature [102] and may

be explained by the need to stabilize the dense hydrogen-bond network formed by the hexose

hydroxyl groups. In fact, both models confirm the presence of hydrogen bonding atoms in

direct contact with the docked hexose [139].

Hexose binding sites are neither hydrophobic nor hydrophilic, but rather exhibit a dual

hydrophobic-hydrophilic nature where both antagonistic properties are involved in dock-

ing [127]. The hydrophilic region, composed of protruding hydroxyl groups, establishes

hydrogen bonds. The hexose hydrophobic region is its pyranose ring, and it tends to stack

over hydrophobic residues. Both models had rules pinpointing this uncommon dual nature.
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Nevertheless, one key binding aspect was different. The pyranose ring, when stacking

hydrophobically, tends to do so over an aromatic residue. These residues have large hy-

drophobic rings that the pyranose ring stacks over [116]. The hexose model highlighted this

interaction.

The glucose model did not report this aspect. In fact, and unlike other hexoses, glucose

stacks over an aromatic residue in most, but not all, binding sites [124]. This may be

the reason why the glucose model finds hydrophobicity as the best discriminating atomic

chemical property (see Table 6.1). Since the aromatic stacking is due to hydrophobic forces,

and the hydrophobic interaction is present even in the absence of aromatic residues, the

glucose model incorporated the ubiquitous hydrophobic feature as a whole instead of singling

out its aromatic component.

This chapter has demonstrated that the Expert Driven approach to differential predic-

tion, in conjunction with ILP or other machine learning algorithms, can uncover important

knowledge about a domain. In the next chapter we show how a technical improvement to ILP

can further improve the quality of learned knowledge in this same hexose-binding domain.
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Chapter 7

Randomized and Domain-Dependent ProGolem

This chapter builds on the hexose work, where we alter the recall selection of the ILP

system ProGolem. We establish that randomized-recall ProGolem should be used as default

since it avoids data idiosyncrasies; and that recall selection, as well as other ProGolem

settings, is domain-dependent. This chapter is based on a paper published in the journal

BMC Bioinformatics [114].

7.1 Motivation

The hexose-binding ILP task is a highly non-determinate one. A residue can have multiple

atoms, and the distance literal checks the distance from an atom to all other atoms. The

complexity and size of the hypothesis space often presents computational challenges in search

time which limit both the insight and predictive power of the rules found.

Top-down ILP systems, like Aleph [121], tend to use a “one-step lookahead” search

strategy that assumes literals are conditionally independent given the target class. Even

multi-step lookaheads and backtracking can not capture complex predicate dependencies. If

the features are highly correlated, which is the case for hexose-binding, this results in the

myopia effect [67], where a significant portion of the search resources is wasted searching

very similar hypotheses, resulting in a poorer chance of finding good theories.

To address both these problems, we consider using ProGolem [82], a newly developed

bottom-up ILP algorithm which is able to learn better than Aleph in highly non-determinate

domains. It explores the search space lattice following a subsumption order relative to a
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bottom clause, and is less prone to the myopia effect. For a review of ILP, Aleph and

ProGolem, see Section 3.1.

We theorize that a bottom-up approach is more suitable in the case of non-determinate

and correlated predicates. We note that ProGolem bounds the non-determinacy of non-

ground predicates to low recall values, introducing placement bias by relying on the given

order of ground terms. We argue that randomizing the ProGolem selection of recall ground

atoms would eliminate the placement bias.

7.2 Non-Determinacy and Recall

In ILP, an example can have multiple instances from the same attribute. For illustration,

a person has exactly one full legalName, two parent instances, and may have multiple child

instances. Hence legalName(Joe,X) has just one solution, parent(Joe, Y ) will have exactly

two solutions, while child(Joe, Z) can have any number of solutions. The number of possible

solutions or answer substitutions of a given predicate is called its non-determinacy.

Determinate predicates may have at most one solution when their input arguments are

instantiated. Hence legalName is a determinate predicate, while parent and children are

non-determinate.

In Prolog, background knowledge about predicates is encoded using mode declarations.

Knowing and encoding the predicates non-determinacy helps ILP systems limit their search.

The bound on the non-determinacy of a predicate is called its recall. The meaning of recall

in ILP is not to be confused with the statistical measure of the same name (also called

sensitivity) which is the fraction of correctly classified positive examples over all the positive

examples.

For illustration, the mode declarations for our three predicates are:

: −mode(1, legalName(+person,−name)).

: −mode(2, parent(+person,−person)).

: −mode(∗, child(+person,−person)).

(7.1)
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Here, recall takes the values 1, 2 and ∗ respectively. The value ∗ indicates the recall is not

finite. We can also specify predicate recall values smaller than their non-determinacy. For

instance, we can have:

: −mode(5, child(+person,−person)). (7.2)

where we limit the number of children to five. If a person has more children, only the first

five will be considered, the others will be ignored.

The concept of recall and non-determinacy is particularly relevant during saturation.

Highly non-determinate predicates may result in an exponential growth in the number of

bottom clause literals. Since ProGolem is a bottom-up algorithm starting the search from

the bottom-clause, it is even more vulnerable to bottom-clause growth than Aleph. Non-

determinacy makes ProGolem learning time exponential in the number of solutions consid-

ered, and it is often necessary to limit the recall to low values.

7.3 Altering ProGolem Recall

In highly non-determinate domains, such as hexose-binding, ProGolem bounds the recall

to remain tractable. In other words, even if a predicate has multiple possible instantiations,

only the first recall such instantiations are incorporated in ProGolem’s bottom clause, and

therefore in a hypothesis. A major drawback of this technique is that it introduces placement

bias, by relying on the given order of ground terms. It is subject to data idiosyncrasies,

discards many potentially useful ground atoms, and results in information loss.

As a remedy, we propose to randomize ProGolem’s selection of recall ground atoms. This

randomized recall approach considers all solutions first, out of which it randomly picks a

number equal to recall ; rather than the first recall atoms in the binding-site data represen-

tation.

We also notice that PDB-atoms closer to the binding center are more likely to influence

binding [86]. We thus propose a domain-dependent recall approach where we order the



73

background PDB-atoms by their distance from the binding site center. The recall bound

will only consider the recall atoms closest to the cavity centroid.

We thus consider three schemes. The first orders the PDB atoms according to their

occurrence in the PDB file, which follows the protein primary sequence. The second scheme

randomizes the order of the atoms in the background knowledge. The third scheme, domain-

dependent, orders the atoms by their distance to the binding-site center. The three ap-

proaches respectively yield an accuracy of 59.4%, 68.8% and 74.4% (Table 7.1).

Table 7.1: 10-folds cross-validation predictive accuracies for ProGolem using different recall

selection methods on the hexose dataset

ProGolem recall selection method

Fold Primary sequence Randomized Domain-dependent

1 43.8% 56.3% 87.5%

2 62.5% 93.8% 78.5%

3 81.3% 87.5% 87.5%

4 56.3% 50.0% 43.8%

5 68.8% 68.8% 81.3%

6 37.5% 56.3% 81.3%

7 56.3% 62.5% 75.0%

8 68.8% 68.8% 81.3%

9 62.5% 81.3% 62.5%

10 56.3% 62.5% 68.8%

Mean 59.4% 68.8% 74.8%

Std Dev 12.6% 14.4% 13.4%

Sorting the binding-site atoms according to their distance from the binding center outper-

forms randomizing them, which in turn outperforms using their given PDB sequence order.

Clever manipulations based on prior knowledge will have better results compared to default
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settings. We thereby argue that Randomized-ProGolem should be used as default since it

avoids data idiosyncrasies; and that recall selection, as well as other ProGolem settings, is

domain-dependent.

7.4 Assessing Domain-Dependent ProGolem

Using the domain-dependent predicate ordering, we compare Aleph, ProGolem and RF-

SVM. We consider both an atom-only representation (Table 3.5), and one augmented with

amino-acid residue grouping information (Table 3.4). Table 7.2 shows the results.

7.4.1 ProGolem Performance

We notice that ProGolem performs better using the enhanced amino acid representation

rather than atom-only (p-value = 0.029). However, the amino acid representation yields no

statistically significant improvement in Aleph (p-value = 0.39). A possible explanation as

to why ProGolem takes advantage of the amino acid representation more than Aleph is the

myopia effect [67]. The myopia effect occurs because general-to-specific ILP systems, like

Aleph, indirectly assume literals are conditionally independent given the target class. They

refine the working hypothesis by adding one literal at a time, the one that maximizes a fitness

function. If literals have a strong conditional dependency, any selected literal will roughly

have the same score. Thus multiple literals need to be added before Aleph can determine

which set is optimal. If the literals are highly non-determinate, as is our case, a significant

portion of the search resources is wasted searching very similar hypotheses, which results in

a poorer chance of finding good theories.

ProGolem outperforms Aleph for both representations. The differences in their predic-

tive accuracies are statistically significant for both atom-only (p-value = 0.043) and amino

acid (p-value = 0.004) representations, the latter being significant even at the 99% confi-

dence level. This discrepancy is in part explained by ProGolem’s global theory construction,

which only constructs the final theory after all hypotheses have been generated rather than

incrementally, on a per-example basis, as Aleph does.
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Table 7.2: 10-folds cross-validation predictive accuracies for domain-dependent ProGolem,

Aleph, and RF-SVM over the hexose dataset. The 1 besides Aleph and ProGolem stands for

the atom-only representation and the 2 for the representation including amino acids. SVM

uses a representation that includes amino acids.

Learning algorithm

Fold Aleph 1 ProGolem 1 Aleph 2 ProGolem 2 RF-SVM

1 50.0% 75.0% 56.3% 75.0% 81.3%

2 68.8% 81.3% 68.8% 81.3% 87.5%

3 62.5% 68.8% 68.8% 93.8% 87.5%

4 50.0% 56.3% 68.8% 75.0% 75.0%

5 75.0% 81.3% 56.3% 81.3% 75.0%

6 68.8% 87.5% 81.3% 87.5% 87.5%

7 75.0% 81.3% 75.0% 81.3% 93.8%

8 93.8% 81.3% 75.0% 93.8% 87.5%

9 68.8% 75.0% 75.0% 81.3% 75.0%

10 56.3% 56.3% 87.5% 81.3% 62.5%

Mean 66.9% 74.4% 71.3% 83.2% 81.3%

Std Dev 13.2% 10.8% 9.8% 6.6% 9.3%

Finally, we compare ILP to RF-SVM. Despite amino acid ProGolem having a higher

average accuracy and a lower standard deviation than SVM, the difference is not statistically

significant (p-value = 0.52). More surprisingly, SVM does not significantly outperform amino

acid Aleph (p-value = 0.057). SVM significantly outperforms both Aleph (p-value = 0.005)

and ProGolem (p-value = 0.025) in the atom-only representation.
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7.4.2 ProGolem Insight from Rules

ProGolem returned rules covering similar themes as Aleph (see Table 6.2). In addition,

ProGolem mined two novel rules characterizing a hexose-binding site:

1. It contains a TYR residue whose CB and OH atoms are 5.6± 0.5 Å apart, a HIS residue

whose ND1 atom is 8.9± 0.5 Å away from the binding center, and a TYR residue whose

O atom is 9.8± 0.5 Å away from the binding center.

[Positives covered = 6, Negatives covered = 0]

2. It contains CYS and LEU residues, and an ASP residue whose N and OD2 atoms are

4.6± 0.5 Å apart, and whose C atom is 7.6± 0.5 Å away from the binding center.

[Positives covered = 18, Negatives covered = 0]

The first rule requires the presence of one or two TYR, and a HIS. This rule is thus

describing a conformational representation of two or three aromatic residues around the

binding-site center. It is interesting that this low-coverage rule may indeed be capturing the

infrequent sandwich interaction, whereby two or more aromatic residues engage both faces

of a hexose pyranose ring [13].

The second rule specifies CYS and LEU residues. Both have negative interface propensity

measures and do not form hydrogen bonds with hexoses [127]. The interface propensity

measure is defined as the logarithm of the ratio between a surface residue frequency at the

sugar binding site, and the average frequency of any surface residue at the binding site. It

is a measure that quantifies the disposition of amino acids to be in contact with the docked

sugar. A residue with a negative propensity measure does not favor the sugar binding-site

region since it is present there less frequently than average.

This rule covers 18 positive examples and no negative examples, and clearly specifies the

presence of CYS and LEU as a discriminative factor for hexose-binding site recognition. This

dependency over LEU and CYS is not previously identified in literature and merits further

attention.
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Chapter 8

BI-RADS Information Extraction

Our breast cancer dataset is mostly in a free-text format. Since ILP and most other

machine learning classifiers operate on tabular data, an information extraction preprocess-

ing step is required. This chapter presents the first successful mammography information

extraction application from free-text mammogram records, as well as the first breast tis-

sue composition extractor. We also confirm the application of this method on another

dataset and in another language, namely creating the first Portuguese mammography in-

formation extraction application. This chapter is based on a paper presented at ICDM-09

Workshops [91], on another published in the Journal of the American Medical Informatics

Association (JAMIA) [99], and on a third accepted at BIBM-12 [88].

8.1 Problem Overview

The American College of Radiology (ACR) developed a specific lexicon to homogenize

mammographic findings and reports: Breast Imaging Reporting and Data System (BI-

RADS) [5]. The BI-RADS lexicon consists of 43 mammography descriptors organized in

a hierarchy (Figure 8.1).

In radiology reports, these concepts are not uniformly described. Radiologists use dif-

ferent words to refer to the same concept. Some of these synonyms are identified in the

lexicon (e.g. “equal density” and “isodense”), while others are not and need to be provided

by experts (e.g. “oval” and “ovoid”). Some lexicon words are ambiguous, referring to more

than one concept, or to no concept at all. The word “indistinct” may refer to the “indistinct
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Figure 8.1: BI-RADS lexicon

margin” or to the “amorphous/indistinct calcification” concepts. Or it may be used in a

non-mammography context, like “the image is blurred and indistinct”.

Therefore, we cannot solely rely on the lexicon to map words and phrases in the text

into concepts. A second level of complication arises from the presence of non-mammography

medical concepts in the text. Negation presents a third substantial challenge, since pertinent

negative observations often comprise the majority of the content in medical reports [24].

8.2 Literature Review

Only one prior study addresses BI-RADS information extraction from compliant radiol-

ogy reports [17]. This research used a Linear Least Squares Fit to create a mapping between

mammography report words-frequency and BI-RADS terms. It makes minimal use of lexical

techniques and reports poor performance. However, several researchers tackled the similar

problem of clinical information extraction from medical discharge summaries, discussed next.
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8.2.1 Clinical Information Extraction

Most approaches to processing clinical reports heavily rely on natural language processing

techniques. For instance, the MedLEE processor [45, 46] is capable of complex concept

extraction in clinical reports. It first parses the text, using a semantic grammar to identify its

structure. It then standardizes the semantic terms and maps them to a controlled vocabulary.

In parallel, the emergence of medical dictionaries emphasizes a phrase-match approach.

The National Library of Medicine’s Unified Medical Language System [71] (UMLS) compiles

a large number of medical dictionaries and controlled vocabulary into a metathesaurus, which

provides a comprehensive coverage of biomedical concepts. The UMLS metathesaurus was

used to index concepts and perform information extraction on medical texts [7, 76]. Similar

approaches have been used with more specialized terminology metathesauri, such as caTIES

and SNOMED CT [22]. The BI-RADS lexicon can be seen as a metathesaurus for our task.

Finally, most clinical reports are dictated. They contain a high number of grammatically

incorrect sentences, misspellings, errors in phraseology, transcription errors, acronyms and

abbreviations. Very few of these abbreviations and acronyms can be found in a dictionary,

and they are highly idiosyncratic to the domain and local practice [106]. For this reason,

expert knowledge can contribute to effective data extraction.

8.2.2 Negation Detection in Clinical Documents

Negation presents another substantial challenge for information extraction from free text.

In fact, pertinent negative observations often comprise the majority of the content in medical

reports [24]. Fortunately, medical narrative is a sublanguage limited in its purpose, and its

documents are lexically less ambiguous than unrestricted documents [109]. Clinical negations

thus tend to be much more direct and straightforward, especially in radiology reports [84].

A very small set of negation words (“no”, “not”, “without”, “denies”) accounts for the large

majority of clinical negations [25, 84].
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Negation detection systems first identify propositions, or concepts, and then determine

whether the concepts are negated. Basic negation detection methods are based on regu-

lar expression matching [25, 84]. More recent approaches add grammatical parsing [58],

triggers [51] and recursion [107].

8.3 Mammography Feature Extraction Algorithm

In order to map words and phrases in the text into mammography concepts, we supple-

ment the BI-RADS lexicon by a semantic grammar that maps the underlying BI-RADS cat-

egories into well-defined semantic patterns. Our approach has three main modules (Fig. 8.2).

Given the free-text BI-RADS reports, it first applies a syntax preprocessor. Then the seman-

tic parser maps subsentences to concepts. Finally a lexical scanner detects negated concepts

and outputs the tabulated BI-RADS features.

Figure 8.2: BI-RADS extraction algorithm flowchart
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8.3.1 Syntax Analyzer

The first module in our system is a preprocessing step that performs syntactic analysis.

Since BI-RADS concepts do not cross sentence boundaries, we process the reports by indi-

vidual sentences. We then remove all remaining punctuation. We keep stop words because

some of them are used in the negation detection phase.

8.3.2 Concept Finder

The concept finder module takes the syntactic token (a sentence) and applies grammar

rules to search for concepts. Due to different word forms and misspellings, we use stem-words

and ease our matching constraints. We formulate the rules as a context free grammar, and

express them using Perl’s pattern matching capacities [133].

For each BI-RADS concept, we first start with a rule that is solely based on the lexicon.

This rule is then iteratively refined by an expert radiologist, who monitors the rule’s per-

formance over the training set. The expert establishes the order and scope of a rule, and

provides domain synonyms, acronyms and idiosyncrasies.

As an example, the lexicon specifies the word “regional” to represent the “regional”

distribution concept. The initial rule, searching for sentences with the word “regional”,

returns many false positives. Experts refine the rule to “regional not followed by medical or

hospital”.

8.3.3 Negation Detector

Once the semantic grammar detects a concept occurrence, it hands the subsentence token

to the negation detection module. The negation detection module is a lexical scanner that

searches for negation signals using regular expressions. It analyzes their negation scope to

determine if they apply over the concept.

Following the approach of [51], we identify adverbial (“not”, if not preceded by “where”)

and intra-phrase (“no”, “without”) negation triggers. Similar to previous findings [84], we

find that negation triggers usually precede the concepts they act upon. In addition, since
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our approach maps a concept to a subsentence, the negation trigger may appear within the

concept’s underlying indexed text structure. For instance, the word “mass” followed by

“oval” within 5 words, is a rule for the “oval shape” concept. The subsentence “mass is not

oval” is a negation within the concept.

We also note that there may be several words between the negation trigger and the

concept it negates, and a single trigger may negate several concepts. The maximum degree

of word separation between a trigger and its concept, referred to as the negation scope,

differs among concepts. Accurate analysis of scope may involve lexical, syntactic, or even

semantic analysis. We establish each concept’s negation scope by counting and looking at a

subset of the trigger’s hits over the unlabeled training set. Starting with a high scope, we

assess the number of false positives we get. With smaller scopes, we can assess the number

of false negatives. We choose the scope that minimizes the error ratio.

Since we treat each concept occurrence individually, we can correctly detect a concept

in a sentence containing both the concept and its negation. We hence avoid the pitfall of

erroneously rejecting a concept encountered by [25], who negated the entire concept if a

single instance of that concept was negated.

While analyzing negation errors, [84] reported errors caused by double negatives. We

address this issue using the same approach to detect negation triggers. We identify a set

of double-negation triggers which, when coupled with negation triggers, deactivate them.

These signals are: “change”, “all”, “correlation”, “differ” and “other”. Therefore “there is

no change in rounded density” does not negate the concept “round shape”.

8.3.4 Handling Latent Concepts

Multiple latent concepts may exist in a given report. For instance, our mammography

reports often contain ultrasound concepts. Ultrasound and mammography concepts can

have common underlying words, thus the need to discriminate them. A “round mass” is a

BI-RADS feature, while a “round hypoechoic mass” is an ultrasound feature. We use an

ultrasound lexicon, composed of the concepts “echoic” and “sonogram” and apply the same



83

approach (Fig. 8.2) to detect ultrasound concepts. We require that a BI-RADS concept not

share common subsentences with an ultrasound concept. Our method is thus able to handle

multiple latent concepts within the text.

8.4 BI-RADS Features Extractor

We train our BI-RADS features extractor on the original 146, 972 mammograms UCSF

dataset (see Section 3.2). To test our method, we compare our algorithm’s results to manual

information extraction performed by radiologists. Our testing set consists of 100 records

from the database that a radiologist on our team manually indexed in 1999 [17].

8.4.1 BI-RADS Extractor Methodology

Each record has a Boolean feature vector of 43 elements representing the BI-RADS

lexicon categories (see Fig. 8.1). The information extraction task is to correctly populate

the 43 × 100 = 4300 elements matrix by assigning an element to 1 if its corresponding BI-

RADS feature is present in the report, and to 0 otherwise. The manual method extracted a

total of 203 BI-RADS features, leaving 4097 empty slots.

The algorithm, on the other hand, extracts a total of 216 BI-RADS features, out of which

188 are in agreement with the manual extraction. In 43 cases, only one of the methods claims

the presence of a BI-RADS feature. Upon review of these disparate results, a radiologist

determined that our algorithm correctly classified 28 cases while the manual method correctly

classified 15.

Clearly the manual method, applied in 1999, does not constitute ground truth. In fact,

correctly labeling a text corpus is complicated enough that even experts need several passes

to reduce labeling errors [41]. Due to the high labeling cost, in practice one must rely on

the imperfect judgments of experts [118]. Since time spent cleaning labels is often not as

effective as time spent labeling extra samples [69], our reviewing radiologist reexamined only

the diverging cases.



84

We consider as ground truth the features that both computational and manual methods

agree on, in addition to the relabeling of diverging cases by experts. This approach is likely

underestimating the number of true features. The omission error of a method is bounded by

the number of diverging cases correctly labeled by the other method. We assume that the

classifier and the labelers make errors independently, since humans and computers generally

classify samples using different methodologies. We use Lam and Stork’s method of handling

noisy labels [69]: we treat the classification differences between the two methods as apparent

errors, and the classification differences between each method and ground truth as labeling

errors. We factor both error terms to get the true classification errors and the confusion

matrices for both our algorithm and the manual method (Table 8.1).

Table 8.1: Automated and manual extraction, 1st run

Actual

Method Predicted Feature present Feature absent

Automated Feature present 211 5

Feature absent 10 4074

Manual Feature present 198 5

Feature absent 23 4074

To compute test statistics, we treat the present features as positives and the absent

features as negatives. Our data being highly skewed, we employ precision-recall analysis

instead of accuracy. For the double-blind run, the manual method achieves a 97.5% precision,

a 89.6% recall rates and a 0.93 F1-score. Our algorithm achieves a much better recall (95.5%)

and F1-score (0.97) for a similar precision (97.7%). It correctly classifies 65.1% of the disputed

cases.

To compare both methods, we use the probabilistic interpretation of precision, recall

and F -score [53]. Using a Laplace prior, the probability that the computational method is
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superior to the manual method is 97.6%. Our result is statistically significant at the 5%

level (p-value = 0.024).

As in most clinical data, false negative mammograms are critical and often more costly

than false positive ones [100]. Many technical or human errors cause missed or delayed

diagnosis of breast cancer. Among the several reasons are observer error, unreasonable

diagnostic evaluation, and problems in communication [16]. Therefore, it is notable that

the main gain of our algorithm is in recall, by achieving low false negative counts. The

algorithm’s recall rate of 95.5% is higher than the manual method’s 89.6% and the Linear

Least Squares Fit method’s reported 35.4% recall rate [17].

8.4.2 BI-RADS Extractor Final Model

Before the first run, we only adjusted the algorithm using unlabeled data. After perform-

ing the first run on labeled data, the experts suggested slight changes to some of the rules.

We consider this modified version our final algorithm and use it for extracting terms from

the UCSF database. This approach can be viewed as utilizing both labeled and unlabeled

data to modify the algorithm [94]. Using the final version of the algorithm, we perform a

second run over the test data (Table 8.2). Note that the test set is no longer a valid test set,

since we looked at it to modify the algorithm. We are showing the results as a confirmation

step, due to the lack of ground truth and the small number of labeled data.

During the second run, the algorithm correctly classifies some of its previous mismatches,

dropping its false positive and false negative counts. It now achieves a precision of 99.1%,

a recall of 98.2% and an F1-score of 0.99. In addition, the algorithm discovers two more

previously unrecognized true positives, which increases the manual method’s false negative

count.

8.4.3 Cross-Institution Portability

After training our parser on the UCSF data, we use it to extract BI-RADS features

from mammography records at the Marshfield Clinic. We first validate our algorithm on 71
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Table 8.2: Automated and manual extraction, 2nd run

Actual

Method Predicted Feature present Feature absent

Automated Feature present 219 2

Feature absent 4 4075

Manual Feature present 198 5

Feature absent 25 4072

reports manually annotated by a trained non-radiologist collaborator. A radiologist reviewed

and re-annotated the diverging cases. Our algorithm achieves 97.9% precision and 95.9%

recall, significantly outperforming the manual method. This result suggests cross-institution

portability of our software.

8.5 Portuguese BI-RADS Features Extractor

To test the applicability of our approach to other languages, we apply our iterative method

to Portuguese, resulting in the first Portuguese BI-RADS feature extractor. Our annotated

dataset comes from the Centro Hospitalar São João in Porto, Portugal. It consists of 153

patients each of whom has one basic screening and one detailed diagnostic text report.

8.5.1 Portuguese Extractor Methodology

In order to build our parser, our first step was to translate the BI-RADS lexicon to

Portuguese. This was done with the help of a specialist. We then proceeded in a similar

manner as described previously. We built a dictionary of synonyms for every BI-RADS term.

Using an iterative process, we supplemented this list using expert knowledge to differentiate

between different uses of the same word, to gauge the proximity of the words of a multi-word

concept, and to capture medical wording practices and idiosyncrasies. We perform stemming
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and group words in the same concept if they are synonyms or typos. After detecting a

concept, we proceed to the treatment of negations. Following [51], we identify a set of

negation triggers: “não” (not) when not preceded by “onde” (where), “sem” (without), and

“nem” (nor).

The evaluation of the parser was done in 3 phases. In the first phase, we only used the

translated terms to extract the features. After reviewing the results with the specialist, we

augmented our parser with synonyms and fine-tuned the word proximity for multi-words

concepts. We performed this process of iterative expert knowledge incorporation over two

iterations, constituting phases 2 and 3 of our analysis. The algorithmic performance also

prompted the radiologist to update her own classification, since the parser was discovering

BI-RADS features that she overlooked in her manual annotation.

Tables 8.3 and 8.4 show the total number of features extracted by the parser and the

radiologist during the 3 different phases, for both the screening and the diagnostic mam-

mograms. We group the extracted features according to the BI-RADS hierarchy (Figure

8.1).

8.5.2 Portuguese Extractor Results

During the first phase of evaluation, and using the screening mammogram reports, the

parser extracted 44 features while the radiologist extracted 66. Out of 92 distinct extracted

features, both methods had 18 features in common (20%), and disagreed on the remaining

74. Using the diagnostic mammography reports, the parser returned 71 features, and the

manual method 122. Out of 160 distinct extracted features, both methods agreed on 33

(21%), and disagreed on the remaining 127. This was a double-blind experiment, where the

parser and radiologist were not influenced by each other.

We discussed the first set of results with the radiologist, reviewing the parser’s vocabulary.

We refined its internal rules accordingly, and parsed the texts again. On the screening

reports, the parser thus returned 87 features. Out of 99 distinct extracted features, the

parser and radiologist had 54 cases in common (54%), a substantial improvement from the
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Table 8.3: Number of attributes extracted from the screening mammograms, grouped by

category

Concept 1st phase 2nd phase 3rd phase

Radiologist Parser Parser Radiologist Parser

Shape 8 11 16 8 14

Margin 15 12 26 15 20

Density 0 4 2 0 1

Calc. Morphology 5 4 6 4 6

Calc. Distribution 8 2 8 8 9

Special Cases 9 7 8 7 7

Associated Findings 21 4 21 21 22

Total 66 44 87 63 80

first phase. For the diagnostic reports, the parser extracts 129 features. From a total of

146 distinct extracted features, 107 are agreements (73%) while 37 are disagreements, a

significant improvement related to the first phase.

After phase 2, we performed a second round of parser fine-tuning. The radiologist too

revised her annotations, removing 3 features from the screening matrix and adding 5 to the

diagnostic matrix. Clearly the first manual extraction did not constitute ground truth. In

fact, correctly labeling a text corpus is complicated enough that even experts need several

passes to reduce labeling errors [41]. We can not assert what is ground truth, nor the actual

number of features truly present in the text. Hence, we assume that the cases that both

computational and manual methods agree upon are correctly classified, and we focus our

attention on analyzing and re-labeling the disputed cases.

In the last phase, considering the screening reports, the parser returns 80 features and

the radiologist 63. The two methods agreed on 59 extracted features, and differed on 25. Re-

labeling the latter cases, the parser correctly classifies 14, versus 11 for the manual method.
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Table 8.4: Number of attributes extracted from the diagnostic mammograms, grouped by

category

Concept 1st phase 2nd phase 3rd phase

Radiologist Parser Parser Radiologist Parser

Shape 3 1 4 3 3

Margin 22 18 24 22 24

Density 21 4 21 21 22

Calc. Morphology 9 9 13 10 14

Calc. Distribution 13 30 14 13 12

Special Cases 11 1 18 15 15

Associated Findings 43 8 35 43 36

Total 122 71 129 127 126

For the diagnostic reports, the parser and the radiologist respectively extract 126 and 127

features, forming 115 agreements and 23 disagreements. Our program correctly classified 11

of the disputed cases, while the radiologist got 12.

Combining both data subsets together, we can see that our method extracted 206 features,

174 of which are in accordance with manual extraction (84.5%). It extracted 32 features that

the expert did not, while the radiologist had 16 extra features. Out of these 48 disputed

cases, the parser edges the radiologist by correctly classifying 25 (52.1%). The parser is thus

able to discover features missed or misclassified by the radiologist, and exhibits a similar

performance. In fact, the parser returns 96.6% precision and 92.6% recall.

Figure 8.3 summarizes the improvements of the parser during the three phases of the

experiment, in terms of concordant and discordant extracted features. Each phase is repre-

sented by four bars. The first two bars correspond to the screening reports while the next

two correspond to the diagnostic reports. Taken in pairs, the left bar (Screening-C and

Diagnostic-C) reports the number of concordances between the parser and the radiologist,
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while the right bar (Screening-D and Diagnostic-D) reports the discordances, features that

were either extracted by the parser or by the radiologist but not by both. For the diagnostic

reports, we observe a drastic improvement between the first and second phases, and an ad-

ditional slight improvement by the third phase. For the screening reports, the improvement

is not so pronounced, because this type of reports is less thorough and detects less BI-RADS

features.

 0
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Figure 8.3: Number of concordant and discordant extracted features by the parser and the

manual methods, over the three phases and both data subsets

8.6 Breast Tissue Composition Extractor

Breast tissue composition is an important component of the radiological evaluation of the

breast for two reasons. First, dense fibroglandular tissue is a risk factor for breast cancer [14].

Second, this dense tissue decreases mammographic sensitivity in detecting breast cancer [21].

For these reasons, mammography reports typically contain a description of the overall tissue

composition of the breast.

Although we did not originally consider breast tissue composition as part of the BI-

RADS lexicon (Figure 8.1), the latter divides breast tissue density into four categories: 1



91

(predominantly fat), 2 (scattered fibroglandular densities), 3 (heterogeneously dense), and 4

(extremely dense) [5]. These standard categories help to minimize ambiguity in mammog-

raphy reporting and also facilitate large-scale clinical studies of breast cancer, which must

control for known risk factors like breast density. Reliable, standardized information on

breast tissue composition could play an important role in the development of classification

systems for the early detection of malignancy.

Unfortunately, breast composition information is typically not reported in coded form,

and there is no automated method for extracting it from free text. We therefore apply our

mammography information extraction approach to breast composition, resulting in the first

automated method for detecting and extracting the breast density assessments from free-text

mammography reports.

8.6.1 Breast Tissue Composition Extractor Methodology

For training our parser, we use the UCSF non-annotated training dataset described

previously, in addition to the 34, 489 reports Stanford RADTF (RADiology Teaching File)

database [37]. We test the resulting classifier on two independent test sets, 500 annotated

reports from the Stanford corpus (which were held out during the rule-construction phase),

and 100 annotated reports from the Marshfield Clinic.

We apply our BI-RADS features extraction approach to retrieve breast densities, and

augment it using the set of patterns observed on the Stanford data. Incorporating this

expert knowledge into the iterative concept finder, we generate multiple pattern matching

and regular expression rules, that automatically detect and extract BI-RADS breast density

classes. Figure 8.4 shows the resulting classification criteria for each BI-RADS breast tissue

composition class.

8.6.2 Breast Tissue Composition Extractor Results

We test our algorithm on the annotated Stanford and Marshfield testing sets. Two dif-

ferent radiologists reviewed the reports to establish a gold standard for comparison. We
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Figure 8.4: Rules used to assign reports to different BI-RADS tissue composition classes.

White rectangles represent sets of words that must be present at a given location to fulfill

the rule. Gray rectangles represent words that cannot be present at a location for the rule

to be fulfilled. Small gray boxes represent unspecified words. The asterisk (*) is used to

denote multiple possible word endings.

classify every mammography record as having a breast density category 1 − 4, or “no de-

scriptors”(Table 8.5).

Our algorithm correctly classified 499/500 (99.8%) reports from the Stanford dataset

and 99/100 (99%) reports from the Marshfield Clinic dataset. On the Stanford data, the
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Table 8.5: System performance results on the Stanford and Marshfield testing sets

Dataset Records with Records with Correctly classified Total

descriptors present no descriptors records

Stanford 497 3 499 500

Marshfield 73 27 99 100

only wrongly classified report contained the description “bilateral breasts re-demonstrate

dense glandular tissue”, which the radiologist classified as class 4 and the algorithm as “no

descriptors”. On the Marshfield side, the radiologist assigned category 2 to “the right breast

shows fibroglandular tissue which is finely nodular and strandlike”, while the algorithm

considered it as “no descriptors”. Including “fibroglandular tissue” in the rules for class 2

led to many false positives for that class, and therefore we did not change the rules to

accommodate this special case.

In conclusion, we have created an algorithm that automatically processes unstructured,

free-text mammography reports and reliably extracts BI-RADS features and breast compo-

sition. This method could facilitate research and policy analysis by enabling investigators to

efficiently mine large collections of mammography reports. Our approach can be applied to

extract different mammography features, has a robust cross-institution portability, and can

extend to other languages.
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Chapter 9

Conclusion

Building differential prediction classifiers is a new and open research field. Standard

classifiers may exhibit significant differences in performance over parts of the input space.

Modeling this differential prediction behavior and building classifiers that maximize differ-

ential prediction over specific data subsets is an interesting research problem with several

real-world applications.

9.1 Summary

This work constitutes the first attempt at learning differential predictive rules, and at

extending differential prediction to relational datasets.

We start with a motivation for the task of differential prediction, followed by a review

of prior differential work. Differential prediction originated in psychology to assess fairness

of cognitive and educational tests. Considered an indicator of test bias, it is detected using

logistic regression. The classification literature has extended the differential prediction con-

cept to differences in predicted performance when an instance is classified into one condition

rather than into another. Known as uplift modeling in marketing, it is modeled using various

classifiers. We also review the use of rules for differential prediction, and propose a novel

formulation of differential predictive rules.

Before introducing our attempts to address the multi-relational differential prediction

problem, we cover the necessary background. We present an overview of Inductive Logic

Programming (ILP) and the two ILP systems we use, Aleph and ProGolem. Our main
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application is to uncover age-specific breast cancer stage differential prediction rules. Our

secondary application is to infer differences between specific glucose and general hexose

binding. We also consider a synthetic Michalski-trains dataset. We explain the collection

and preprocessing steps pertaining to the datasets. We also review the methodologies to

compare differential prediction results. We use the area under the precision-recall curves

over the predicted rules if ground-truth rules are known. Otherwise, we use uplift curves

over the classified instances.

We explore several methods to learn differential rules in a two-class two-strata system.

The Model Filtering (MF) approach builds a rule-based model on the target stratum, and

then selects rules that exhibit a differential performance on the other stratum. The Differ-

ential Prediction Search (DPS) method alters the search space to consider both strata while

scoring rules according to their differential prediction score. Both methods are automated.

The basic Expert Driven (ED) approach constructs a model on each dataset, and lets an

expert compare them and infer differential rules. ED is non-automated and can be used with

non-rule-learners.

We apply and compare the MF and DPS methods over the synthetic Michalski-trains

dataset, and over the mammography dataset. Our results show that, for large and noisy data,

which is what most real world applications are, DPS is more appropriate. For small and non-

noisy data, MF outperforms DPS. Our methods, especially DPS, inferred rules and models

that experts judged plausible and interesting. We also augment a Bayes Net with differential

rules for risk prediction, forming a Logical Differential Prediction Bayes Net (LDP-BN), and

observe a significant performance increase. I thus confirm my thesis statement, establishing

that ILP-based differential relational classifiers can effectively propose rules that apply to a

given multi-relational data subset, maximize performance differences over a stratified dataset,

and offer significant insight into the underlying domain.

For illustration, we use the ED approach to infer differences between specific glucose and

general hexose binding. We apply this method to ILP and SVMs classifiers. In doing so,
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we devise the first glucose-binding classifier, empirically validate biochemical hexose-binding

knowledge, and infer new hexose-binding and breast-cancer dependencies.

So far we have been using Aleph, a top-down ILP system. ProGolem, a bottom-up ILP

algorithm is more suitable in the case of non-determinate and correlated predicates, which is

the case for the hexose dataset. We alter the ProGolem recall selection, and further improve

the quality of learned knowledge in the hexose-binding domain. We consider three recall

selection schemes: default ordering, randomized ordering, and domain-dependent ordering.

We establish that randomized-recall ProGolem should be used as default since it avoids

data idiosyncrasies; and that recall selection, as well as other ProGolem settings, is domain-

dependent.

Our breast cancer dataset is mostly in a free-text format. Since ILP and most other

machine learning classifiers operate on tabular data, an information extraction preprocessing

step is required. Our final contribution is to present an information extraction method for

free-text mammogram reports. It resulted in the first successful mammography information

extraction application, as well as the first breast tissue composition extractor. We also

confirm the application of this method on another dataset and in another language, namely

creating the first Portuguese mammography information extraction application.

9.2 Future Work

This work can be extended in several directions. We focused on addressing the two-class

two-strata differential rule prediction problem. A natural extension is to consider multi-

class and multi-strata problems. One may try reducing the K-strata problem to K 2-strata

subproblems. Repeating K times, we keep one stratum and collapse the others together,

creating a 2-strata one-versus-all subproblem. For each subproblem, we extract differential

predicting rules pertaining to the specified stratum.

A different approach would use a differential-prediction-sensitive scoring function that

applies to multiple strata. Finding a suitable function requires more thought and research.

A possible exploration direction is f -divergence functions.
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Second, we note that LDP-BN rules are learned for their differential predictive poten-

tial, separately from the Bayes Net. Integrating the differential rules identification and the

Bayesian Network construction into a global optimization framework may result in a better

performance [32].

One can argue that uplift modeling is a special case of differential prediction, where the

score to maximize is the uplift score. We can implement the uplift function within ILP,

creating a logical relational uplift model.

For our mammography information extraction system, we can use our rules to extend the

Knowtator general-purpose text annotation tool [95] to include mammography. Our parser

can also be refined by adding a syntactic parser and following the approach used by [132].
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Appendix A: Hexose Dataset

Table A.1: Inventory of the hexose-binding positive data set

Hexose PDB ID Ligand PDB ID Ligand PDB ID Ligand

Glucose 1BDG GLC-501 1ISY GLC-1471 1SZ2 BGC-1001

1EX1 GLC-617 1J0Y GLC-1601 1SZ2 BGC-2001

1GJW GLC-701 1JG9 GLC-2000 1U2S GLC-1

1GWW GLC-1371 1K1W GLC-653 1UA4 GLC-1457

1H5U GLC-998 1KME GLC-501 1V2B AGC-1203

1HIZ GLC-1381 1MMU GLC-1 1WOQ GLC-290

1HIZ GLC-1382 1NF5 GLC-125 1Z8D GLC-901

1HKC GLC-915 1NSZ GLC-1400 2BQP GLC-337

1HSJ GLC-671 1PWB GLC-405 2BVW GLC-602

1HSJ GLC-672 1Q33 GLC-400 2BVW GLC-603

1I8A GLC-189 1RYD GLC-601 2F2E AGC-401

1ISY GLC-1461 1S5M AGC-1001

Galactose 1AXZ GLA-401 1MUQ GAL-301 1R47 GAL-1101

1DIW GAL-1400 1NS0 GAL-1400 1S5D GAL-704

1DJR GAL-1104 1NS2 GAL-1400 1S5E GAL-751

1DZQ GAL-502 1NS8 GAL-1400 1S5F GAL-104

1EUU GAL-2 1NSM GAL-1400 1SO0 GAL-500

1ISZ GAL-461 1NSU GAL-1400 1TLG GAL-1

1ISZ GAL-471 1NSX GAL-1400 1UAS GAL-1501

1JZ7 GAL-2001 1OKO GLB-901 1UGW GAL-200

1KWK GAL-701 1OQL GAL-265 1XC6 GAL-9011

1L7K GAL-500 1OQL GAL-267 1ZHJ GAL-1

1LTI GAL-104 1PIE GAL-1 2GAL GAL-998

Mannose 1BQP MAN-402 1KZB MAN-1501 1OUR MAN-301

1KLF MAN-1500 1KZC MAN-1001 1QMO MAN-302

1KX1 MAN-20 1KZE MAN-1001 1U4J MAN-1008

1KZA MAN-1001 1OP3 MAN-503 1U4J MAN-1009
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Table A.2: Inventory of the non-hexose-binding negative data set

PDB ID Cavity Center Ligand PDB ID Cavity Center Ligand

Hexose-like ligands

1A8U 4320, 4323 BEZ-1 1AI7 6074, 6077 IPH-1

1AWB 4175, 4178 IPD-2 1DBN pyranose ring GAL-102

1EOB 3532, 3536 DHB-999 1F9G 5792, 5785, 5786 ASC-950

1G0H 4045, 4048 IPD-292 1JU4 4356, 4359 BEZ-1

1LBX 3941, 3944 IPD-295 1LBY 3944, 3939, 3941 F6P-295

1LIU 15441, 15436, 15438 FBP-580 1MOR pyranose ring G6P-609

1NCW 3406, 3409 BEZ-601 1P5D pyranose ring G1P-658

1T10 4366, 4361, 4363 F6P-1001 1U0F pyranose ring G6P-900

1UKB 2144, 2147 BEZ-1300 1X9I pyranose ring G6Q-600

1Y9G 4124, 4116, 4117 FRU-801 2B0C pyranose ring G1P-496

2B32 3941, 3944 IPH-401 4PBG pyranose ring BGP-469

Other ligands

11AS 5132 ASN-1 11GS 1672, 1675 MES-3

1A0J 6985 BEN-246 1A42 2054, 2055 BZO-555

1A50 4939, 4940 FIP-270 1A53 2016, 2017 IGP-300

1AA1 4472, 4474 3PG-477 1AJN 6074, 6079 AAN-1

1AJS 3276, 3281 PLA-415 1AL8 2652 FMN-360

1B8A 7224 ATP-500 1BO5 7811 GOL-601

1BOB 2566 ACO-400 1D09 7246 PAL-1311

1EQY 3831 ATP-380 1IOL 2674, 2675 EST-400

1JTV 2136, 2137 TES-500 1KF6 16674, 16675 OAA-702

1RTK 3787, 3784 GBS-300 1TJ4 1947 SUC-1

1TVO 2857 FRZ-1001 1UK6 2142 PPI-1300

1W8N 4573, 4585 DAN-1649 1ZYU 1284, 1286 SKM-401

2D7S 3787 GLU-1008 2GAM 11955 NGA-502

3PCB 3421, 3424 3HB-550
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Table A.3: Inventory of the non-binding surface groove negative data set

PDB ID Cavity Center PDB ID Cavity Center PDB ID Cavity Center

1A04 1424, 2671 1A0I 1689, 799 1A22 2927

1AA7 579 1AF7 631, 1492 1AM2 1277

1ARO 154, 1663 1ATG 1751 1C3G 630, 888

1C3P 1089, 1576 1DXJ 867, 1498 1EVT 2149, 2229

1FI2 1493 1KLM 4373, 4113 1KWP 1212

1QZ7 3592, 2509 1YQZ 4458, 4269 1YVB 1546, 1814

1ZT9 1056, 1188 2A1K 2758, 3345 2AUP 2246

2BG9 14076, 8076 2C9Q 777 2CL3 123, 948

2DN2 749, 1006 2F1K 316, 642 2G50 26265, 31672

2G69 248, 378 2GRK 369, 380 2GSE 337, 10618

2GSH 6260
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Appendix B: Logistic Regression Models

Table B.1: Older cohort multivariable model using stepwise regression with AIC criterion

Risk Factor Value Beta Odds Ratio 95% CI p-value

(Intercept) -1.16 0.31 0.18–0.55 0.000 ***

Palpable Lump 0.013 **

No Corresponding Palpable

Mass

0.00 1(referent)

Missing -0.30 0.74 0.05–10.55 0.824

Corresponding Palpable

Mass

0.80 2.22 1.12–4.41 0.022 **

Family History 0.043 **

None 0.00 1(referent)

Missing -0.89 0.41 0.13–1.32 0.135

Strong -0.32 0.73 0.33–1.59 0.422

Very Strong 1.66 5.24 0.84–32.78 0.076 *

Prior Surgery 0.132

Not Present 0.00 1(referent)

Missing -0.36 0.70 0.07–6.82 0.759

Present 0.57 1.78 0.99–3.17 0.053 *

Principal Abnormal Finding 0.000 ***

Calcifications or Single Di-

lated Duct

0.00 1(referent)

Architectural Distortion 20.56 Inf 0.00–Inf 0.993

Associated Calcifications 2.16 8.67 3.39–22.14 0.000 ***

Missing 2.10 8.14 3.88–17.09 0.000 ***

continued on the next page



114

Table B.1 – continued from previous page

Risk Factor Value Beta Odds Ratio 95% CI p-value

Asymmetry or Focal Asym-

metry

2.94 18.87 3.79–93.87 0.000 ***

Mass 3.04 20.93 9.20–47.65 0.000 ***

Developing Asymmetry 2.80 16.45 1.78–151.95 0.014 **

Calcification Distribution 0.008 **

Not Present 0.00 1(referent)

Linear or Segmental -3.11 0.04 0.00–0.49 0.011 **

Clustered -0.69 0.50 0.22–1.18 0.113

Regional or Scattered -1.94 0.14 0.01–2.83 0.202

Mass Margins 0.000 ***

None 0.00 1(referent)

Circumscribed -2.51 0.08 0.01–0.45 0.004 ***

Ill-Defined 0.19 1.21 0.46–3.20 0.703

Obscured 0.10 1.10 0.11–11.31 0.935

Spiculated 28.70 Inf 0.00–Inf 0.983

Mass Shape 0.033 **

None 0.00 1(referent)

Irregular 1.91 6.78 0.78–58.79 0.083 *

Lobular or Oval -0.13 0.87 0.24–3.16 0.838

Round -15.53 0.00 0.00–Inf 0.987

Focal Asymmetric Density 0.077 *

Not Present 0.00 1(referent)

Present 1.63 5.10 0.54–47.77 0.154

Levels of significance: *** p-value < 0.001; ** p-value < 0.05 and * p-value < 0.1
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Table B.2: Younger cohort multivariable model using stepwise regression with AIC criterion

Risk Factor Value Beta Odds Ratio 95% CI p-value

(Intercept) -0.64 0.53 0.35–0.80 0.002 ***

Palpable Lump 0.000 ***

No Corresponding Palpable

Mass

0.00 1(referent)

Missing -0.68 0.51 0.16–1.60 0.246

Corresponding Palpable

Mass

1.21 3.36 1.79–6.32 0.000 ***

Principal Abnormal Finding 0.000 ***

Calcifications or Single Di-

lated Duct

0.00 1(referent)

Architectural Distortion 1.95 7.05 0.75–65.98 0.087 *

Associated Calcifications 1.58 4.85 1.87–12.55 0.001 ***

Missing 1.02 2.76 1.34–5.70 0.006 ***

Asymmetry or Focal Asym-

metry

1.86 6.41 1.26–32.64 0.025 **

Mass 2.74 15.51 4.97–48.35 0.000 ***

Developing Asymmetry 16.50 Inf 0.00–Inf 0.997

Architectural Distortion 0.063

Not Present 0.00 1(referent)

Present 1.78 5.91 0.67–52.13 0.110

Mass Shape 0.090 *

None 0.00 1(referent)

Irregular 15.83 Inf 0.00–Inf 0.986

Lobular or Oval 0.09 1.10 0.23–5.21 0.787

continued on the next page
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Table B.2 – continued from previous page

Risk Factor Value Beta Odds Ratio 95% CI p-value

Round -19.53 0.00 0.00–Inf 0.996

Mass Size (mm) 0.047 *

None 0.00 1(referent)

10–20 -0.97 0.38 0.03–4.61 0.447

20–50 1.70 5.47 1.17–25.69 0.031 **

< 10 -0.58 0.56 0.19–1.63 0.287

>= 50 -0.58 0.56 0.14–2.25 0.413

Levels of significance: *** p-value < 0.001; ** p-value < 0.05 and * p-value < 0.1
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