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1 Introduction

Cluster randomization has become a commonly used approach to address interference issues
in A/B testing for various social network and two-sided marketplace settings [6, 3]. In this
paper, we propose a novel application of clustering to boost experimentation throughput, that
is, the ability to conduct more A/B tests at any given time while maintaining a certain level of
minimum detectable effect (MDE).

Major internet companies carry out a large number of online A/B tests each year and this
number has been consistently increasing. The trend puts significant strain on experimentation
platforms to deliver higher throughput. For a feed-based advertising businesses like Meta, the
main focus is on measuring the user treatment effect. However, the standard design of user-
randomized A/B tests has hit the throughput bottleneck, and it has become increasingly more
challenging to meet extra demand. While various forms of regression adjustment [1, 7, 4, 5]
have been proposed as a means of improving estimation efficiency which can be equivalently
translated to additional throughput, the benefits of these methods have saturated.

Under such contexts, we propose a novel structural experiment design: Ad Clustered User
Randomized Trial (ACURT). Unlike traditional user-randomized A/B testing, ACURT involves
differentiated user randomization on various ad clusters. This unique segmentation design
allows for more efficient utilization of user information, resulting in substantial throughput
benefits. In the ACURT framework, users are first randomized within each ad cluster and
the user-cluster pair level metric values are then aggregated onto each treatment condition
for treatment effect estimation. As illustrated in Figure 1, ads are grouped into two clusters
based on their auction participation graph, ensuring that the majority of auctions only contain
candidates of the same cluster. Based on real A/A test data at Meta, the ACURT design with
two ad clusters leads to 30% throughput increase for two-week experiments and around 40%
for three-week experiments, holding MDE unchanged.

Our contributions are twofold: first, we present the ACURT experiment design, which
significantly increases throughput. Second, we introduce a heterogeneous balanced partitioning
algorithm and a real-time ML approach designed to incrementally maintain cluster quality in
support of the new design.
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Figure 1: A comparison between ACURT and the traditional user-randomized A/B test. The
key difference between them is that in ACURT users are reshuffled between two clusters of ads.

2 Experiment Design

We begin by discussing the intuition of the ACURT design and its mechanism for reducing
variance. Imagine that we are given two predefined ad clusters. Let’s consider the difference-
in-means estimator for the average treatment effect in a standard user randomized A/B trial.
We only focus on one treatment group; the analysis for other treatment groups is analogous.
The average outcome can be written as

(Np)−1
N∑
i=1

1(Wi = 1)Yi = (Np)−1
N∑
i=1

1(Wi = 1)(Yi1 + Yi2), (1)

where N is the total number of users in the experiment, W indicates the treatment received, p
is the probability of being selected into the treatment group, and Yi1 and Yi2 are the outcome
values under user i for cluster 1 and 2, respectively. Under this two-cluster setup, the within-user
variance equals V ar(Yi1) + V ar(Yi2) + 2Cov(Yi1, Yi2), where the covariance term contributes
positively to the user-level variance and thus the variance of the group mean for a typical
business metric. Now, imagine that we could replace Yi2 with Yj2, where j is a different
user than i, then Cov(Yi1, Yj2) = 0, and the group mean estimator in cluster 2, computed by
averaging over either Yi2 or Yj2, can be shown unbiased under certain conditions. Motivated
by this observation, in the ACURT design we randomly reshuffle users in the second cluster, as
depicted in fig. 1 and use the following estimator to replace Eq. 1

(Np)−1

(
N∑
i=1

1(Wi1 = 1)Yi1 +

N∑
i=1

1(Wi2 = 1)Yi2

)
, (2)

where Wi1 and Wi2 are two independent Bernoulli draws in two clusters for the same user i.
Under the stable unit treatment value type assumption (SUTVA) that the potential outcome in
one cluster is not affected by the treatment received in the other, that is, following the standard
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Rubin’s potential outcome notation, Yi1(Wi1,Wi2) = Yi1(Wi1) and Yi2(Wi1,Wi2) = Yi2(Wi2)
for all i, the estimator in Eq. 2 is unbiased for E[Y (1)]. In marketplace environments, such as
online advertising, advertisers compete for user impression slots through bidding in auctions.
For the SUTVA to hold in such setup, a crucial requirement is that clusters must isolate auctions
instead of individual ad candidates, and that a user’s conversion behavior in one cluster does
not influence their behavior in the other cluster. While these are generally considered strong
assumptions in practice, they can be argued reasonable when testing certain (e.g., late-stage)
ranking models.

3 Role of Ads Clustering

Unlike regression adjustment methodologies, ACURT requires making an explicit trade-off be-
tween bias (from potential violation of the SUTVA assumption) and variance, hence, its per-
formance heavily hinges on the properties of the underlying ad clusters. In order to achieve
both low bias and low variance, we need the ad clusters to have both high auction purity
and high intra-user mixture. We say that the auction is pure if all (competitive) ads par-
ticipating in the auction belong to the same cluster. Hence, if the majority of auctions are
pure, the auction stage inference would be low, leading to close-to-negligible bias. In the pure
case, the auction outcome is only affected by a single treatment, not considering budget ef-
fect, throttling, or users changing their behaviors across auctions due to inconsistent treatment
assignment. Similarly, we say that the user is mixed if auctions under the same user belong
to different clusters. Intuitively, the more mixed users we have, the more within-user variance
will be removed, leading to smaller platform MDE. Thus, achieving the optimal bias-variance
trade-off boils down to trading off auction purity for intra-user mixture.

To this end, we propose a new clustering algorithm called Heterogeneous Balanced Partition-
ing (HBP) that naturally extends the Social Hash partitioning algorithm [2] by incorporating a
user mixture penalty to the composite probabilistic fanout (p-fanout) objective function. The
modified objective function explicitly models the trade-off between auction purity and intra-user
mixture through the penalty parameter.

To formalize the problem, suppose we have an undirected heterogeneous graph that connects
ad campaigns (A), users (U) and user requests/auctions (R). We can define this graph as a
collection of vertices (nodes) and edges, i.e., G = (V, E), where V is a set of graph vertices and
E is a set of edges. Since G is a heterogeneous graph, we have three types of disjoint sets of
vertices, V = A∪R∪U , and edges, E = EAR ∪EAU ∪ERU . Our goal is to partition ads into
2 buckets of approximately the same size such that we achieve high levels of auction purity and
intra-user mixture.1

For a given partitioning P = {A1, A2} of A and vertex v ∈ V , with V ∈ {R,U}, we
define the fanout of v as the number of distinct buckets having an ad node incident to v,
fanout(P, v) = |{Ai : ∃{v, a} ∈ EAiV , a ∈ Ai}| , where EAiV is a set of edges between V and Ai

vertices. To ensure the objective function is smooth, we follow [2] and measure the quality of
partitioning P using the average probabilistic fanout,

p-fanout(P, v) =

k=2∑
i=1

(
1− (1− p)ni(v)

)
,

where p ∈ (0, 1) is the probability2 that vertex a is connected to vertex v, and ni(v) = |{a : a ∈
1The approach trivially generalizes to an arbitrary number of buckets.
2This probability is a tuning parameter which affects the behavior of the objective function. In practice, we

set it to 0.5. We refer the reader to [2] for a more detailed discussion.
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Ai and {v, a} ∈ EAiV }| is the number of ad vertices in bucket Ai adjacent to vertex v.
Note that whenever fanout(P, r) = 1, request r is pure. Similarly, if fanout(P, u) = 2, user

u is mixed. Thus, fanout can be seen as a measure of impurity/mixture. This motivates the
following optimization problem where we minimize the composite p-fanout,

min
{A1,A2}


1

|R |
∑
r∈R

k=2∑
i=1

(
1− (1− p)ni(r)

)
︸ ︷︷ ︸

auction impurity

−β · 1

| U |
∑
u∈U

k=2∑
i=1

(
1− (1− p)ni(u)

)
︸ ︷︷ ︸

intra-user mixture

 , (3)

where β ≥ 0 is a tuning parameter that balances out auction purity and intra-user mixture.
Note that if we set β to 0, we will get the standard balanced partitioning fanout minimization
objective function in [2]. When β > 0, higher levels of intra-user mixture will lead to smaller
values of the composite objective function creating an incentive to trade off some auction purity
for intra-user mixture.

4 Maintaining Clustering Quality: Real-time ML Approach

When there is a high turnover rate of ads, it must be decided how to efficiently assign new
ads to clusters throughout the experiment. We achieve it by a real-time incremental clustering
algorithm based on a supervised machine-learning (ML) approach. By refraining from the direct
use of graph as training data in this process, we prevent the introduction of latency that comes
from waiting for the auction graph to materialize. We first generate a labeled dataset of ads and
cluster assignments using an incremental graph-based algorithm, similar to the one discussed in
Section 3. In parallel, we extract ad-targeting features (e.g., user demographics). The data is
randomly sub-sampled from both clusters to create a balanced dataset of feature-label pairs. A
small, sigmoid-output neural network is trained to predict cluster assignments from ad details
by minimizing the cross-entropy loss. Compared to graph-based clustering, training the ML
model is inexpensive. After training, the model is exported to serve cluster assignments until
the next iteration of graph-based clustering. Notably, no latency is introduced by this process
because the previous iteration’s model can continuously assign ads while the latest model is
being trained.

This ML approach is highly flexible, giving us the opportunity to adjust the feature rep-
resentation, model architecture, or optimization technique in order to improve performance as
needed. Furthermore, by continuously receiving fresh labels from the graph algorithm periodi-
cally, the model can remain relatively accurate and stable over time without requiring a strong
generalization ability.

5 Empirical evaluation

To evaluate the performance of ACURT, we run an A/A test, where the clustering achieves
70% of auctions having at least 80% of candidates from the same cluster and more than 20%
of users being non-trivially exposed to ads from the two clusters. Figure 2 shows that ACURT
achieves a throughput increase relative to the standard user-randomized A/B test higher than
30% for two-week experiments and 40% for three-week experiments, holding MDE the same.
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Figure 2: MDE and throughput gains for ACURT compared to the standard user-randomized
A/B test: 3 weeks of data (left panel) and 2 weeks of data (right panel).
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