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1 Introduction

Large scale online experimentation inherently runs many experiments. Unfortunately, this also
generates a multiple testing problem and results in overstated gains that cannot be reproduced [6].
For experimenters who see their treatment underperform expectations after launch, this can lead to
mistrust in the system. Furthermore, experimentation platforms themselves must make a number
of policy decisions that depend on their ability to predict the performance of a policy. For example,
they may wish to choose a lower significance level for hypothesis tests if the additional product
launches yield higher overall gains that exceed the cost of increased false positive rates or Type I
error.

While these issues can be addressed, for example by using Bayesian methods to adjust overstated
gains or by evaluating decision processes under a generative model, these methods require estimating
the distribution of true effect sizes from noisy estimated effect sizes. This paper’s main contribution
is a novel, non-parametric method to estimate this based on the ideas of SIMulation-EXtrapolation
(SIMEX) [3].

Existing work in online experimentation [2, 8] examines the False Discovery Rate of experiments.
This problem is also not restricted to online experimentation but is also encountered in the “repro-
ducibility crisis” in academia where efforts like [7, 1, 10] estimate additional properties of a corpus
of experiments, such as the power of tests for detecting true effect sizes or the probability that
experiments can be replicated.

This problem of estimating the unobserved distribution of true effects is related to the decon-
volution problem. In the deconvolution problem, there are independent draws from a density f
and additive measurement error from g, so that the observations are drawn from the convolution
h = f ∗ g. One wishes to estimate the deconvolved density f . Several methods have been developed
for this problem, particularly in a line of work using deconvolution kernel density estimators [9, 4],
empirical Bayes normal means models (EBNM) [5, 11], or simply normal mixture models. However,
estimating effect size distributions in ABTest differ from most deconvolution problems in two major
ways. First, it allows for homoskedastic errors. Second, the signal-to-noise ratio is extremely high.
The noise distribution is expected to have greater spread than the effect size distribution so that
kernel methods are inappropriate for the problem.

More formally, suppose that n experiments are run where the unobserved true average treatment
effect is denoted by Xi for experiment i. Further, suppose that the observed ATE estimate X̂i

is unbiased with known variance σ2
i . Let F0 denote the unobserved empirical distribution of the

true effects Xi and Fvecσ denote the empirical distribution of the estimated lifts X̂i. Our goal is to
estimate F0. We can also consider the generative process where Xi is drawn i.i.d. from a distribution
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F0. That is

Xi ∼ F0 (1)

X̂i|Xi ∼ Normal(Xi, σ
2
i ). (2)

Our goal then is to estimate the distribution F0.

2 Methodology

Our goal is to learn the CDF of the underlying empirical effect distribution F0. However, the
true measurements Xi of the effect size are never observed. Instead, we observe noisy effect size
measurements Xi+ ϵi ∼ Normal(Xi, σ

2
i ) and their biased empirical CDF F1. We then wish to undo

the effect of the noise process that takes F0 → F1.
We first describe the general idea behind bias correction using SIMEX. SIMEX estimates the

bias induced by the noise process by adding even more noise. Suppose we were given data X without
measurement error, with some estimator or function ϕ(X) of interest. We wish to obtain a good
estimator even when the observations X + E contain measurement error E . By adding even more

noise, we can compute a random function θ(c)
d
= ϕ(X + c · E) for any c ≥ 1. This constitutes the

SIMulation component.
It is easy to see that the desired estimate is θ(0) = ϕ(X ). Thus, our goal is to Extrapolate the

function θ(c) for c ≥ 1 to the desired estimate θ(0). By fitting a parametric regression function θ̂ on

the simulated values θ(c) for c > 1, we can extrapolate to get our final estimate θ̂(0). In summary,
the general SIMEX procedure is:

1. Simulate noise to compute θ(c) = ϕ(X + cE ′) for c ≥ 1.

2. Fit a smooth function to θ(c), c ≥ 1.

3. Extrapolate to θ̂(0).

For our application in effect size estimation, we choose the function of interest ϕq to be the qth

quantile. We estimate a grid of quantiles to obtain an estimate of the inverse CDF F−1 as opposed to
directly trying to estimate the CDF. We found, however, that the typical quadratic regression used
in SIMEX was poor at extrapolation. Furthermore, independently estimating each ϕq(X ) would
sometimes result in the inverse CDF being non-monotone.

This work introduces two improvements to address these drawbacks. First, our choice to estimate
quantiles rather than the CDF allows us to construct a basis that yields both: 1) consistent estimates
of the effect size distribution if it belongs to a given parametric family, and 2) good empirical
estimates even when it is not in the parametric family. Second, we extend the isotonic regression to
ensure all extrapolated estimates F̂−1

c are monotonic for all c.

3 Experiments

We provide an experiment to illustrate our method. We consider the simple case where the true
effect distribution F0 = N(0, 1), and measurement error is also N(0, 1). Figure 1 show in solid lines
the evolution of each quantile θ(c) as more noise c is added, while dotted lines show the estimated
quantiles as noise is removed through extrapolation. Figure 2 shows that we appropriately tighten
the observed distribution of estimated lifts and recover the true effect distribution. We also compare
it to EBNM [11] which applies a parametric model, and our non-parametric method is nearly as
good. While not shown here, our method also works for other effect size distributions. It also
demonstrates some robustness properties as the quantiles underlying the method inherently enjoy
some level of robustness.
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Figure 1: SIMEX curves for different per-
centiles

Figure 2: Estimated CDF for different meth-
ods
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