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1 Introduction

A “Winner’s Curse” arises in large-scale online experimentation platforms [1] when the same ex-
periments are used to both select treatments and evaluate their effects. In these settings, classical
difference-in-means estimators of treatment effects are upwardly biased and conventional confidence
intervals are rendered invalid [2]. The bias scales with the magnitude of sampling variability and the
selection threshold. It decreases inversely with the treatment’s true effect size [3].

Bayesian methods that leverage empirical priors have been proposed and demonstrated, in specific
settings, to yield superior inferential properties under selection [4, 5] when compared to the standard
“Face Value” estimators. However, Bayesian analysis is sensitive - and arguably especially susceptible
under selection [6] - to the choice of prior, and models that require computationally expensive numerical
integration techniques are ill-suited for at-scale deployment [7].

We propose a new Bayesian approach that incorporates experiment-specific “local shrinkage” fac-
tors that mitigate sensitivity to the choice of prior and improve robustness to assumption violations.
Crucially, we demonstrate how the associated posterior distribution can be estimated without numer-
ical integration techniques, making it a practical choice for at-scale deployment.

2 Modeling Selection in Bayesian Analyses

In a frequentist analysis, the Winner’s Curse is an artifact of the sampling distribution of a statistic
being altered by selection. This implies that an explicit correction for selection via a selection model
is always required [2].

The need for a selection model under the Bayesian paradigm, is less obvious. One longstanding
perspective is that selection is not required because posterior distributions are already conditioned
on the data [8]: If a different sample of data was observed under a hypothetical replication, this is
irrelevant with respect to the posterior at hand. This conditioning does not necessarily account for
the selection mechanism that led to those observations though.

The interaction of the selection mechanism with the parameter space determines whether such an
adjustment is needed in a Bayesian analysis [9]. If we consider parameters and data to be sampled from
a joint distribution, no explicit selection adjustment is required. On the other hand, if we consider a
parameter to be sampled from its marginal distribution and held fixed, with the data then sampled
repeatedly from the associated conditional distribution, an adjustment is required. This abstraction
is best illustrated by example [10]:

• Suppose we consider a set of experiments that test different changes to a product. In each
experiment, the data collected is used to make a launch decision according to some predetermined
criteria. For experiments that launched, we want to estimate the effect size. In this context a
Bayesian approach would not require adjustment for selection.

• Suppose we consider a single proposed change to a recommender system, that we decide to test
multiple times in different experiments. If we are interested in using the set of experiments that
pass some launch criteria to estimate the size of the proposed change, we would need to adjust
for selection.
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Different settings leading to different solutions arise from the likelihood principle: likelihoods that
differ only by a scalar multiplier are equivalent, and should lead to same inferences.

Theorem 2.1. With joint selection, the posterior distribution under selective inference is equivalent
to its unadjusted counterpart, eliminating the need for a separate selection model.

Proof. Under joint selection, let the joint distribution of {θ̂, θ} be given by πS(θ̂, θ) = π(θ) · f(θ̂|θ) ·
1(θ̂∈S)
π(S) , where the marginal selection probability is π(S) =

∫ ∫
S
π(θ̂|θ)π(θ)dθ̂dθ. The marginal density

of the data under selection is m(θ̂) =
∫
f(θ̂|θ)π(θ)dθ. Truncated to the selected sample S, this

marginal density is
∫
1(θ̂ ∈ S)π(θ) f(θ̂|θ)m(S) dθ = m(θ̂)

m(S) · 1(θ̂ ∈ S). Next consider the posterior under

selection πS(θ̂|θ) = πS(θ̂,θ)
mS

= π(θ)·f(θ̂|θ)
m(θ̂)

= π(θ|θ̂) which is identical to the unadjusted posterior.

Many applied settings can reasonably be described by the joint distribution paradigm, meaning
that a well-motivated prior is often sufficient to overcome the Winner’s curse. In this context, strategies
to validate the modeling choice and ensure a well-calibrated prior distribution are vital.

3 Formulation

3.1 A Bayesian Model for Inference Under Selection

Consider a collection of N experiments indexed by i = 1, . . . , N . Each experiment consists of m units,
indexed by j = 1, . . . ,m, which are assigned to treatment conditions denoted by Zji. Zji = 1 indicates
that unit j in experiment i receives the treatment, while Zji = 0 indicates control. The outcome of
interest for each unit is Yji. Our estimand for each experiment i is the ratio of the expected potential

outcomes under treatment and control, expressed as θi =
E[Y (1)]
E[Y (0)] .

The classical or “Face Value” estimator, θ̂FV
i , is computed as the ratio of sample averages of

observed outcomes in treated and control groups:

θ̂FV
i =

1∑m
j=1 Zji

m∑
j=1

YjiZji

1∑m
j=1(1− Zji)

m∑
j=1

Yji(1− Zji)

with standard error σ̂i. This estimator is known to be biased in the presence of selection effects.
To address this, we propose a new “Bayesian Hybrid Shrinkage” approach, which can be formulated

as a hierarchical post-hoc model:

θ̂i|θi, σ̂i
2 ∼ N(θi, σ̂2

i ),

θi|m0, λi, τ ∼ N(m0, λi · τ),

λi|a, b ∼ InverseGamma

(
a

2
,
b

2

)
.

True effect θi is assigned a normal prior with mean m0 and variance composed of a global scale
parameter τ modulated by local shrinkage factor λi, which allows the model to adaptively shrink
estimates differently across experiments. λi is an inverse-Gamma hyperprior parameterized by a and
b, which control the shrinkage distribution across experiments. The hierarchical structure balances
borrowing strength across experiments with flexibility to accommodate experiment-specific variability.
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3.2 Inference

Inference can be carried out either via posterior simulation—using iterative sampling over the target
and nuisance parameters—or analytically by fixing λi at its posterior mode. The posterior distribution
of the true effect θi, conditional on the observed estimator θ̂i, the local shrinkage factor λi, and the
global scale parameter τ , is given by:

θi | θ̂i, λi, τ ∼ N

(
σ̂2
i

σ̂2
i + λiτ

m0 +
λiτ

σ̂2
i + λiτ

θ̂i,

(
1

σ̂2
i

+
1

λiτ

)−1
)
. (1)

A special case of this posterior arises when the local shrinkage factor is fixed at λi = 1 for all experi-
ments, corresponding to a Bayesian estimator that imposes only global shrinkage [5]. We refer to this
as the “Bayesian Global Shrinkage” model.

3.3 Validation via Predictive Checking

Given the complexities of validation in experimental settings, we take inspiration from predictive
checking [11, 12]. This type of assessment uses predictive simulation of new data under a model of

interest M that we denote as θ̂rep, along with a related statistic T (·) to characterize discrepancies

against its observed counterpart g(T (θ̂rep), T (θ̂)). This discrepancy can be used to assess any aspect
of the model we want to validate (e.g., prior parameter choices or decision boundary) facilitated by

the construction of a reference distribution, p(g(T (θ̂rep), T (θ̂))|M, θ̂).
These flexible constructions enable assessment of quantities like coverage for uncertainty intervals or

goodness-of-fit of the posterior distribution. Specifically, to understand goodness-of-fit, one intuitive
quantity is the tail area probability g(T (θ̂rep), T (θ̂)) = T (θ̂rep) ≥ T (θ̂), an analogue to a p-value
that can be computed for a given model averaged over the posterior distribution of the parameter of
interest p(θi|M, θ̂). This concept can be augmented by data splitting strategies such as replication
studies or data fission [13]. We utilize this concept in the following section to assess performance first
in simulation and then empirically from real experiment data.

4 Results

4.1 Simulated Experiments

To evaluate the performance of the proposed Bayesian Hybrid Shrinkage approach, we conduct sim-
ulated experiments comparing it against the Face Value and Bayesian Global Shrinkage approaches.
These simulations are designed to reflect plausible real-world scenarios where the analysis prior is
misspecified in various ways:

1. Misspecified mean: The analysis prior meanm0 = 0 differs from the true effect size distribution
mean, where θi ∼ N(µ, ϵ).

2. Heavy-tailed distributions: The true effect sizes follow a t-distribution with ν degrees of
freedom, θi ∼ tν(µ, ϵ), which has heavier tails than the assumed normal analysis prior.

3. Hidden Selection: True effects are drawn as two-dimensional vectors from a bivariate normal
distribution, θi ∼ N2(µ,Σ), where the covariance matrix Σ has correlation ρ. Selection is
applied jointly on both dimensions, but the analysis considers only one target parameter, testing
robustness to unmodeled correlated selection.

The results of these simulations are summarized in Figure 1, which compares the three approaches
across the three simulation settings and three performance metrics: Mean Squared Error (MSE), Bias,
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Figure 1: MSE (left), bias (∆, center), and coverage probability (right) for the Face Value (blue),
Bayesian Global Shrinkage (orange), and Bayesian Hybrid Shrinkage (green) approaches, as a function
of prior mean (µ, top row), degrees of freedom (ν, middle row), and correlation (ρ, bottom row).

and Coverage Probability of 90% uncertainty intervals. As expected, the Bayesian Global Shrinkage
approach performs optimally when the prior is correctly specified. However, the Bayesian Hybrid
Shrinkage approach is shown to be more robust to misspecification and consistently outperforms the
Face Value approach in all settings considered.

4.2 Empirical Analysis

We further evaluate the three approaches in a real-world setting, analyzing 167 experiments with paired
replication studies. We compare the mean absolute error (MAE) and the coverage probability for 90%
confidence/credible intervals. The results, summarized in Table 1, demonstrate that the Bayesian
Hybrid Shrinkage approach outperforms both the Face Value and Bayesian Global Shrinkage methods
in terms of MAE, while maintaining strong coverage properties.

Model MAE Coverage

Face Value 1.280 0.92
Global Shrinkage 1.121 0.91
Hybrid Shrinkage 1.012 0.91

Table 1: Summary of Performance Metrics – Coverage and (MAE x 1000) – across a collection of
real-world experiments with paired replication studies.
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5 Conclusion

This paper introduce a two stage Bayesian Shrinkage estimator to tackle the Winner’s Curse with
a scalable strategy for posterior inference. Future research plans include: expanding to additional
validation strategies like prior elicitation to achieve specific operating characteristics; guidance for
practical implementation of these techniques; offline-evaluation priors [14]; deeper formalization of
theoretical properties for posterior inference. We anticipate that deeper exploration along these avenues
will enable a wider adoption of these methods in the online experimentation domain.
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