Evaluating Variance Estimates with Relative Efficiency
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1 Introduction

Experimentation platforms in industry must often deal with customer trust issues [8]. Platforms must
prove the validity of their claims as well as catch issues that arise. As a central quantity estimated by
experimentation platforms, the validity of confidence intervals is of particular concern [6].

To ensure confidence intervals are reliable, we must understand and diagnose when our variance estimates
are biased or noisy, or when the confidence intervals may be incorrect [9]. A common method for this is A /A
testing [4, 5], in which both the control and test arms receive the same treatment. One can then test if the
empirical false positive rate (FPR) deviates substantially from the target FPR over many tests. However,
this approach turns each A/A test into a simple binary random variable. It is an inefficient estimate of the
FPR as it throws away information about the magnitude of each experiment result. For instance, assuming
ii.d. Bernoulli draws for n hypothesis tests yields a standard error of 1/(0.1)(0.9)/n for the FPR, and requires
around 2500 A/A tests and 5000 test groups (two to compare for each A/A test) to estimate the FPR to
within 1% with 90% confidence.

We show how to empirically evaluate the effectiveness of statistics that monitor the variance estimates
that partly dictate a platform’s statistical reliability. We also show that statistics other than empirical FPR
or Type I error are more effective at detecting issues. In particular, we propose a t2-statistic that is more
sample efficient.

2 Measuring variance quality

We view FPR as a variance quality metric which can flag whether there are issues with our A/B test
confidence intervals. We will also introduce two other variance quality metrics, average t? and kurtosis,
commonly used for normality testing of distributions [1, 2, 3], which we will compare against FPR.

In each A/A test, we take a collection of samples z11,--- ,xg1 for the control group, and z12, - ,Zg2
for the test group, where S is the sample size for each group, and the control group and test group are
both sampled from the same distribution D. Conducting a difference of means hypothesis test, we obtain
an estimate u for difference of means, and an estimate o2 for the variance of the difference of means. The
t-statistic is defined as the ratio ﬁ Across all of the hypothesis tests, we obtain a collection of t-statistics
ty,--- ,t, and use these to determine the quality of our A/B tests.

For a 90 percent confidence interval, we detect a statistically significant effect for ¢; when

|t;] > ®~1(0.95),

where ® is the inverse normal CDF. That is, we detect a statistically significant effect when the ¢-statistic
lies outside of a 95 percent two-sided confidence interval. In A/A tests, the null hypothesis is always true,
so we define the false positive rate (FPR) as the frequency at which the ¢-statistic is above this threshold:

FPR:%H]‘Q{LZ,-n n} |t > 71(0.95)}]. (1)



With 90 percent confidence intervals, we should expect the FPR to be close to 0.1, since it is the rate of
false positives conditioned on the null hypothesis being true. To determine whether this is the case, we
conduct a hypothesis test to determine whether the population FPR is equal to 0.1. Our point estimate for
the population FPR is given by equation (1). Observe that FPR is an average of Bernoulli random variables
Z;, where Z; = 1 when |t;| > ®71(0.95) and Z; = 0 otherwise. Under the assumption that the Z, are i.i.d.,
we estimate the standard error of our FPR estimate as

StandardError(FPR) = \/(FPR)(l — FPR).
n

With this point estimate and standard error, we can conduct a standard z-test to accept or reject whether
the FPR is greater than 0.1, and use the result of this hypothesis test to determine if there are mistakes in
our A/B testing setup.

The false positive rate is not the only metric one can track from A/A testing. By the central limit theorem,
in the limit of a large number of samples, we should expect the t-statistics ¢1,--- ,t, to be approximately
distributed according to a standard Gaussian under the null hypothesis, so the average value of t? should be
close to 1. Therefore, we define the sample average t2 as

1 n
Average t* = - Zt?
j=1

Since this is an average of a collection of random variables, we again estimate its standard error as

O¢2

\/ﬁ’

where ;2 is the sample standard deviation. As with FPR, we conduct a hypothesis test to determine whether
the average t2 is equal to 1.

The third metric we consider is the kurtosis of the t-statistics. For a random variable X, its kurtosis
is defined as its fourth standardized moment E[(X — p)*/0?], where p and o are the mean and standard
deviation of X. A standard Gaussian random variable has zero kurtosis. So if the ¢-statistics ¢, --- , ¢, are
distributed according to a standard Gaussian, we should expect the kurtosis of their distribution to be close
to zero. The standard unbiased estimator of the kurtosis of the t-statistics is

(n—1)

M,
gzzm {(n—kl)ﬂé—i’)(n—l) .

StandardError(Average t?) ~

where My and M, are the second and fourth sample moments of the ¢-statistics about the mean respectively.
With a normal approximation, the standard deviation of this estimator is approximately

\/ 24n(n — 1)2
(n=3)(n—-2)(n+3)(n+5)

(see [2] for details). As with FPR and average t2, we can use this standard deviation estimate to conduct a
hypothesis test for kurtosis.

3 Comparing methods

Given these different variance quality metrics, we will consider their efficiency in the context of a particular
procedure. Suppose that the control and test samples are drawn from a probability distribution D. We
conduct A/A tests as mentioned above, producing a set of means and variances of the lifts {(u;,07)};.
Suppose that we instead observe noisy versions of the variances c??- = 032{]-, where the &; are sampled i.i.d.
from a noise distribution. We would like the variance quality metrics to detect that the variance estimates
are noisy. Hence, we define the power 1 — 8 of a variance quality metric as the probability that it rejects its

null hypothesis in the presence of this noise. We define the sample complexity N(«a, ) for a given variance



quality metric as the number of permutations necessary to attain a given power 1 — 3 while using significance
level « for its hypothesis tests. We define the relative efficiency of metric 1 with respect to metric 2 as the

ratio of their sample complexities:
N2 (O[, 5)

€12 = .
Nl (Oé, B)

This is a finite-sample version of Pitman efficiency [7]. We will determine the relative efficiency of the
three variance quality metrics in this noisy A/A test setting.

4 Experiments

We conduct experiments with the following setup. We take S = 1000 samples for each control and test group

drawn from a uniform distribution on the range [5, 6]. We take our noise distribution to be parameterized by
2
a value 6, and take the family of noise distributions to be lognormal distributions with parameters p = —%

and o = 0. This noise is multiplied to the true variance and is unbiased (has expectation 1). All of ojr
hypothesis tests use significance level a« = 0.1. To calculate the power 1 — 3, we compute the frequency that
each hypothesis test detected a statistically significant result over 500 trials. We run trials over a sweep of
values for the number of hypothesis tests n and the noise level . For n, we take 30 values between 102
and 10% uniformly spaced in log-space. For 6, we take the values {0.1,0.2,0.3,0.4}. Thus, the result of each
experiment can be expressed as a triple (6, n,1— ), where 6 is the noise level, n is the number of hypothesis
tests, and 1 — § is the resulting power. To judge the sample complexity, we plot the pairs (1 — 8, n) for each
value of 6 and record the results in Figure 1.
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Figure 1: Sample complexity of attaining a given level of power for different tests of variance quality.

In the first case of € = 0.2, each of the variance quality metrics requires several thousand hypothesis tests
to attain sufficient power. In the other three cases, each of the metrics is able to detect the noise within a
few thousand hypothesis tests. We see that average t? is consistently more sample-efficient than FPR, and
the same is generally true for kurtosis to a lesser extent (see Figure 1).

We further track this by linearly interpolating the sample complexity curves above, and then computing
the relative efficiency for each pair of metrics. We record the results for § € {0.2,0.3,0.4}. The sample
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Figure 2: Pairwise evaluations of relative efficiency over different parameter values of the noise distribution.

complexity plot reveals that average t? has a relative efficiency around 1.5 to 2 compared against FPR (Fig-
ure 2). The improvement is greater and more consistent for higher values of power. These two experiments
show that both average 2 and kurtosis outperform FPR in the presence of “unbiased” noise in the variance
estimate.

5 Conclusion

In this work, we proposed a framework for evaluating variance estimates for A/B test confidence intervals
using variance quality metrics which are functions of t-statistics from A/A tests. We compare the variance
quality metrics using a finite-sample notion of relative efficiency. Comparing average t? and kurtosis, we find
that both are 1.5 to 2 times more sample-efficient than FPR, with average t? achieving this improvement
more consistently.
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