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Background

• Experimentation platforms must demonstrate
statistical reliability to maintain product trust.

• A central component is confidence intervals for
experiment results.

• A common technique to diagnose issues with
confidence interval measurements is A/A testing
([1, 2]), in which both the control and treatment
groups are drawn from the same distribution.

• One approach: look at the false positive rate
(FPR) from A/A tests, but this is
sample-inefficient.

Our contributions

• Introduce average t2 and kurtosis as alternatives
to FPR for variance quality monitoring.

• Empirically measure the relative efficiency of
these variance quality metrics at detecting noise
in variance estimates, showing that average t2 and
kurtosis are more sample-efficient than FPR in
this setting.

A/A testing

• In each A/A test, take a collection of samples
x1,1, · · · , xS,1 for the control group, and
x1,2, · · · , xS,2 for the treatment group, with all
segments drawn from the same distribution D.

• For each A/A test j, compute the lift mean µj

and estimated variance σ̂2
j .

• Form the t-statistic tj = µj/(σ̂j

√
S) and feed the

sequence {tj} to variance quality metrics.

Variance quality metrics

False-positive rate (FPR). Count hypothesis tests with |tj| > z1−α/2 and estimate F̂PR =
1
n

∑
j I

{
|tj| > z1−α/2

}
. Under well-calibrated variances, E[F̂PR] = α with standard deviation

√
α(1 − α)/n.

Average t2. Compute
t2 = 1

n

n∑
j=1

t2
j.

When tj ∼ N (0, 1), E[t2] = 1 and SD(t2) =
√

2/n.
Sample kurtosis ([3, 4]). Use the adjusted estimator

g2 = (n − 1)
(n − 2)(n − 3)

(n + 1)M4

M 2
2

− 3(n − 1)
 , SD(g2) ≈

√√√√√ 24n(n − 1)2

(n − 3)(n − 2)(n + 3)(n + 5)
where M2 and M4 are centered second and fourth moments of {tj}. For normal tj, g2 ≈ 0.
Hypothesis testing. For each variance quality metric, conduct A/A tests, then run a hypothesis test to
determine if they attain their null value. Use this hypothesis test to flag for variance noise.

Relative efficiency framework

• Model noisy variance estimates as σ̂2
j = σ2

j ξj with multiplicative noise ξj.
• A variance quality metric has power 1 − β if it rejects its null in the presence of noise with probability

1 − β.
• Define the sample complexity N(α, β) as the smallest n needed to reach power 1 − β at significance

level α.
• The finite-sample relative efficiency compares metrics 1 and 2 via

e12 = N2(α, β)
N1(α, β)

.

Empirical results

Experiment details

• S = 1000 observations per arm drawn from
Unif([5, 6]).

• Multiplicative variance noise
ξj ∼ Lognormal(−θ2/2, θ2) for
θ ∈ {0.1, 0.2, 0.3, 0.4}.

• Significance level α = 0.1.
• 500 trials per (θ, n), with n (number of A/A

tests) log-spaced from 102 to 104.
• To judge sample complexity, we plot (1 − β, n)

for each value of θ. That is, we plot the sample
complexity of the metric as a function of the
desired level of power.

• Result: Average t2 and kurtosis are around 1.5x
more sample-efficient compared against
FPR, with average t2 achieving this improvement
more consistently.
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