

Evaluating Variance Estimates with Relative Efficiency

Kedar Karhadkar¹, Jack Klys², Daniel Ting², Artem Vorozhtsov², Houssam Nassif²

¹UCLA ²Meta

Background

- Experimentation platforms must demonstrate statistical reliability to maintain product trust.
- A central component is confidence intervals for experiment results.
- A common technique to diagnose issues with confidence interval measurements is A/A testing ([1, 2]), in which both the control and treatment groups are drawn from the same distribution.
- One approach: look at the false positive rate (FPR) from A/A tests, but this is sample-inefficient.

Our contributions

- Introduce average t^2 and kurtosis as alternatives to FPR for variance quality monitoring.
- Empirically measure the relative efficiency of these variance quality metrics at detecting noise in variance estimates, showing that average t^2 and kurtosis are more sample-efficient than FPR in this setting.

A/A testing

- In each A/A test, take a collection of samples $x_{1,1}, \dots, x_{S,1}$ for the control group, and $x_{1,2}, \dots, x_{S,2}$ for the treatment group, with all segments drawn from the same distribution \mathcal{D} .
- For each A/A test j, compute the lift mean μ_j and estimated variance $\hat{\sigma}_j^2$.
- Form the t-statistic $t_j = \mu_j/(\hat{\sigma}_j \sqrt{S})$ and feed the sequence $\{t_j\}$ to variance quality metrics.

Variance quality metrics

False-positive rate (FPR). Count hypothesis tests with $|t_j| > z_{1-\alpha/2}$ and estimate $\widehat{\text{FPR}} = \frac{1}{n} \sum_j \mathbb{I}\{|t_j| > z_{1-\alpha/2}\}$. Under well-calibrated variances, $\mathbb{E}[\widehat{\text{FPR}}] = \alpha$ with standard deviation $\sqrt{\alpha(1-\alpha)/n}$. Average t^2 . Compute

$$\overline{t^2} = \frac{1}{n} \sum_{j=1}^n t_j^2.$$

When $t_j \sim \mathcal{N}(0,1)$, $\mathbb{E}[\overline{t^2}] = 1$ and $SD(\overline{t^2}) = \sqrt{2/n}$. **Sample kurtosis** ([3, 4]). Use the adjusted estimator

$$g_2 = \frac{(n-1)}{(n-2)(n-3)} \left[(n+1) \frac{M_4}{M_2^2} - 3(n-1) \right], \quad \text{SD}(g_2) \approx \sqrt{\frac{24n(n-1)^2}{(n-3)(n-2)(n+3)(n+5)}}$$

where M_2 and M_4 are centered second and fourth moments of $\{t_i\}$. For normal t_i , $g_2 \approx 0$.

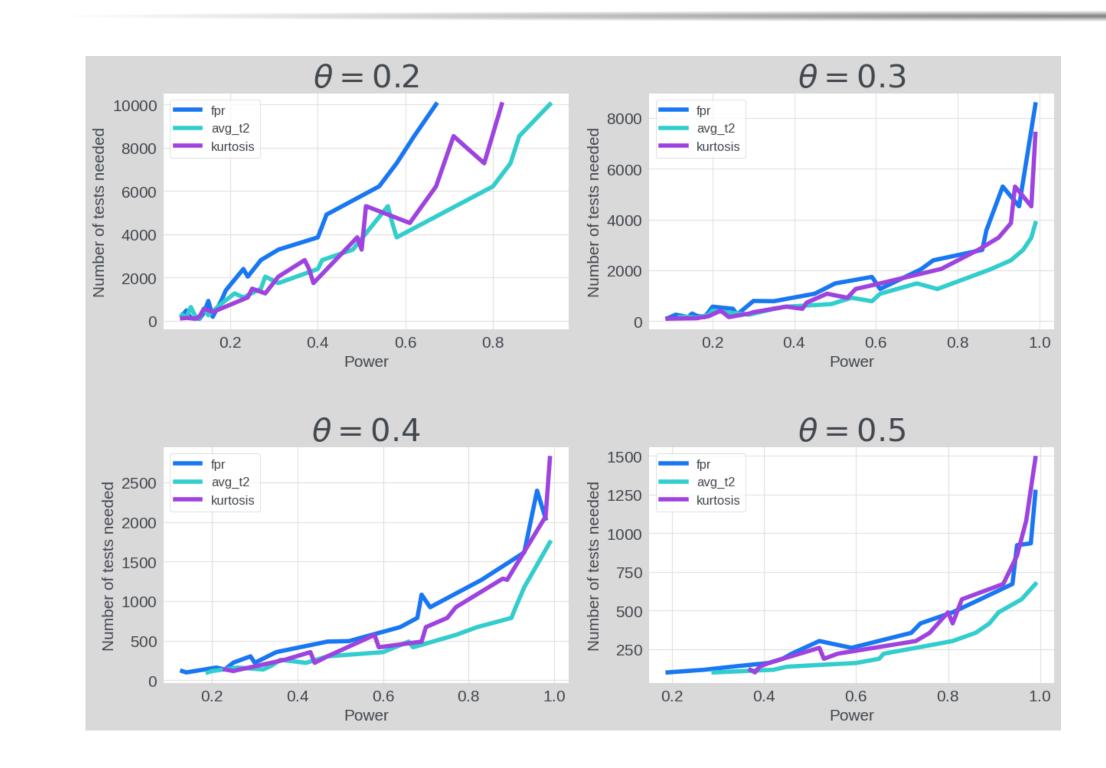
Hypothesis testing. For each variance quality metric, conduct A/A tests, then run a hypothesis test to determine if they attain their null value. Use this hypothesis test to flag for variance noise.

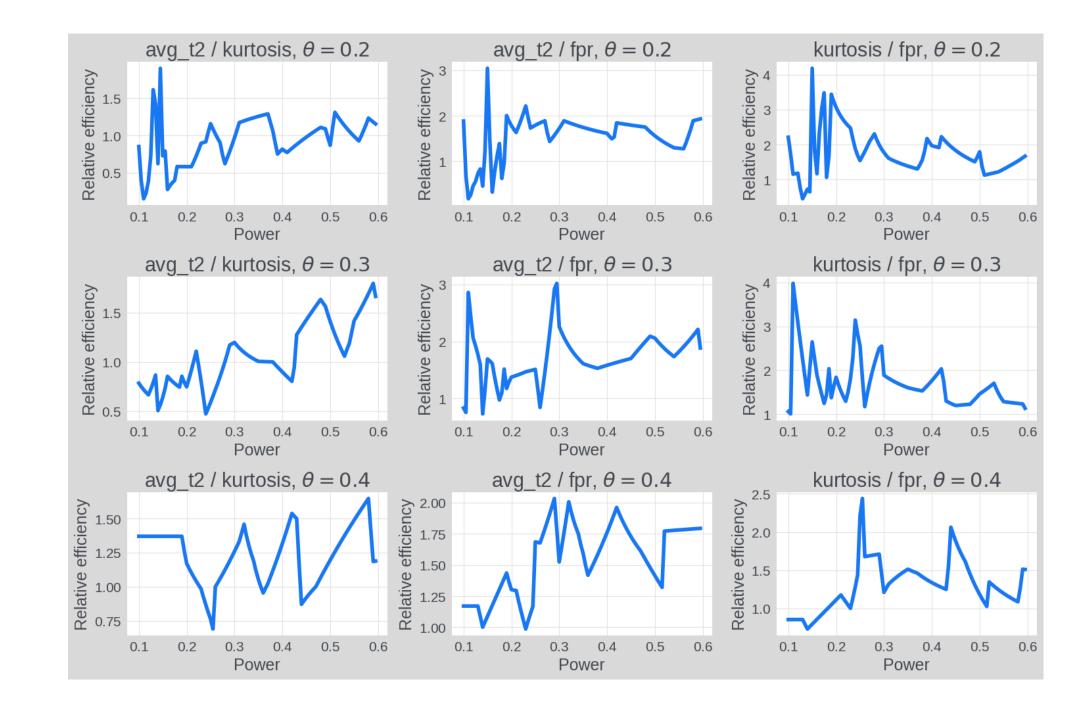
Relative efficiency framework

- Model noisy variance estimates as $\hat{\sigma}_i^2 = \sigma_i^2 \xi_j$ with multiplicative noise ξ_j .
- A variance quality metric has $power 1 \beta$ if it rejects its null in the presence of noise with probability 1β .
- Define the **sample complexity** $N(\alpha, \beta)$ as the smallest n needed to reach power 1β at significance level α .
- The finite-sample **relative efficiency** compares metrics 1 and 2 via

$$e_{12} = \frac{N_2(\alpha, \beta)}{N_1(\alpha, \beta)}.$$

Empirical results





Experiment details

- S = 1000 observations per arm drawn from Unif([5, 6]).
- Multiplicative variance noise $\xi_j \sim \text{Lognormal}(-\theta^2/2, \theta^2)$ for $\theta \in \{0.1, 0.2, 0.3, 0.4\}.$
- Significance level $\alpha = 0.1$.
- 500 trials per (θ, n) , with n (number of A/A tests) log-spaced from 10^2 to 10^4 .
- To judge sample complexity, we plot $(1 \beta, n)$ for each value of θ . That is, we plot the sample complexity of the metric as a function of the desired level of power.
- Result: Average t^2 and kurtosis are around 1.5x more sample-efficient compared against FPR, with average t^2 achieving this improvement more consistently.

References

- [1] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M Henne.
- Controlled experiments on the web: survey and practical guide.
- Data mining and knowledge discovery, 18(1):140–181, 2009.
- [2] Ron Kohavi, Diane Tang, and Ya Xu.
- Trustworthy online controlled experiments: A practical guide to a/b testing.
- Cambridge University Press, 2020.
- [3] Ralph D'agostino and Egon S Pearson. Tests for departure from normality, empirical results for the distributions of b^2 and $\sqrt{b^1}$. Biometrika, 60(3):613-622, 1973.
- [4] Ronald Aylmer Fisher.
- The moments of the distribution for normal samples of measures of departure from normality.
- Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 130(812):16–28, 1930.