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Contextual Bandit Setting
• At each time :

• Context  arrives,  

• Choose action 

• Receive reward ,  

t = 1,2,⋯
ct ∈ # ct ∼ ν ∈ Δ#

at ∈ &
rt '[rt |ct, at] = r(ct, at) ∈ ℝ

3

Return  satisfying,  with probability greater 
than  in a minimum number of samples.

(ϵ, δ) − PAC Guarantee

̂π V( ̂π) ≥ V(π*) − ε
1 − δ

• Policy class , each Π π ∈ Π, π : # → &
• Average reward: V(π) := 'c∼ν[r(c, π(c))]

• Optimal policy: π⋆ := arg max
π∈Π

V(π)
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RT =
T

∑
t=1

r(ct, π*(ct)) − r(ct, at)

Two Problems

a) Minimax Result! Does not adapt to hardness of instance.

b) Can construct an example, where any optimal regret algorithm won’t be instance optimal!

True for any policy class! Not 
capturing difficulty for learning π*



Challenges
• What is the statistical limits of learning, i.e. the instance-dependent lower bound?

• Can we design sampling procedure to achieve this?

• Computational efficiency - context space  and policy space  could be infinite!# Π
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Challenges
• What is the statistical limits of learning, i.e. the instance-dependent lower bound?

• Can we design sampling procedure to achieve this?

• Computational efficiency - context space  and policy space  could be infinite!# Π

5

Question: what is possible?

…
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Our Contribution

• Show the first instance-dependent lower bound for PAC contextual bandit

• Present a simple algorithm that achieves this lower bound

• Design a computational efficient algorithm that also achieves this lower bound
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Towards Lower Bound: Estimators
• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map:  such that  for 

• Given dataset  where , 

ϕ : # × & → ℝd r(c, a) = ⟨ϕ(c, a), θ*⟩ θ* ∈ Θ ⊂ ℝd

4 = {(ct, at, rt)}n
t=1 at ∼ pct

∈ △&

7

'[ϕ(ct, at)rt] = 'c,a[ϕ(c, a)ϕ(c, a)⊤θ*] = ∑
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• feature map:  such that  for 

• Given dataset  where , 
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'[ϕ(ct, at)rt] = 'c,a[ϕ(c, a)ϕ(c, a)⊤θ*] = ∑
c

νc ∑
a

pc,aϕ(c, a)ϕ(c, a)⊤θ*

A(p)

⇒ ̂θ = 1
n

A(p)−1
n

∑
t=1

ϕ(ct, at)rt

IPS estimate!
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Var(Δ̂(π)) = (ϕπ*
− ϕπ)⊤Var( ̂θ)(ϕπ*

− ϕπ) =
∥ϕπ*

− ϕπ∥2
A(p)−1

n
Theorem [Li et al. 2022] Let  be the stopping time of the algorithm. Any -

PAC algorithm satisfies  with high probability where  
τ (0,δ)

τ ≥ ρΠ,0 log(1/2.4δ)

ρΠ,0 = min
pc∈△&,∀c∈#

max
π∈Π∖π*

∥ϕπ*
− ϕπ∥2

A(p)−1

Δ(π)2 .
gap

variance
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Theorem [Li et al. 2022] The above algorithm returns an -PAC 
policy with at most  samples. 

(ϵ, δ)
O(ρΠ,ϵ log( |Π | /δ)log2(1/ϵ))
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Π

ε2 = 2−2

−Δ(π)

For -good policy, our criteria 
forces the estimation to be -good! 

ϵ
2ϵ

Returning the empirical best policy at the end  at least -good  ⇒ 2ϵ
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min
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max
π∈Π

− Δ(π, π*) +
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A(p)−1 log(1/δ)
n

max
λ∈△Π

min
γπ≥0

min
pc∈△&,∀c∈# ∑

π∈Π
λπ (−Δ(π, π*) + γπ∥ϕπ − ϕπ*

∥2
A(p)−1 + log(1/δ)

2γπn ) .Dual

Primal

• Consider the dual formulation: 
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Frank-Wolfe

• Gives us a sparse yet good enough solution  

• Plug in solution  in the closed-form gives us 

λ

λ pc ∈ △&

17

Image from [Jaggi]



Thanks!



Towards an efficient algorithm
• argmax oracle: given , 

returns 

• Can be computed using cost-sensitive classification

(c1, s1), ⋯, (cn, sn) ∈ < × ℝ|=|

arg max
π∈Π

n

∑
t=1

st(π(ct))

19



A Lower Bound

20

• Choose action distribution  such that: 

 

p

max
π∈Π∖π*

∥ϕπ*
− ϕπ∥2

A(p)−1

(Δ(π) ∨ ϵ)2 ≤ n
2 log(1/δ)



Agnostic Setting Reduces to Linear
• What if we do not assume linear structure of reward function?

21

We can reduce it to the previous setting by constructing !ϕ

• Let  where θ* ∈ ℝ|#|×|&| [θ*]c,a = r(c, a)

c(     )
a

r(c, a)
vectorize

θ*
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a ), θ*⟩

ϕ(c, a)

∥ϕπ*
− ϕπ∥2

A(p)−1 = ∑
c

νc ∑
a

1
pc,a

(1{π(c) = a} − 1{π*(c) = a})2 = 'c∼ν ( 1
pc,π(c)

+ 1
pc,π*(c) ) 1{π*(c) ≠ π(c)} .



Agnostic Setting Reduces to Linear

ρΠ,ϵ := min
pc∈△&, ∀c∈#

max
π∈Π∖π*

'c∼ν [( 1
pc,π(c)

+ 1
pc,π*(c) ) 1{π*(c) ≠ π(c)}]

('c∼ν[ r(c, π*(c)) − r(c, π(c)) ] ∨ ϵ)2 .

Variance

Gap

22
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