
Instance-Optimal PAC
Contextual Bandits

Zhaoqi Li*, Lillian Ratliff*, Houssam Nassif , Kevin Jamieson*, Lalit Jain*

*University of Washington

Amazon

†

†

Motivation

2

Nov - Dec

Motivation

2

Nov - Dec

Motivation

2

Nov - Dec

Motivation

2

Nov - Dec

Motivation

2

Question: What is the best way to give
personalized recommendations?

Nov - Dec

Motivation

2

Question: What is the best way to give
personalized recommendations?

c a

π

context action

policy

Nov - Dec

Contextual Bandit Setting
• At each time :

• Context arrives,

• Choose action

• Receive reward ,

t = 1,2,⋯
ct ∈ # ct ∼ ν ∈ Δ#

at ∈ &
rt '[rt |ct, at] = r(ct, at) ∈ ℝ

3

Return satisfying, with probability greater
than in a minimum number of samples.

(ϵ, δ) − PAC Guarantee

̂π V(̂π) ≥ V(π*) − ε
1 − δ

• Policy class , each Π π ∈ Π, π : # → &
• Average reward: V(π) := 'c∼ν[r(c, π(c))]

• Optimal policy: π⋆ := arg max
π∈Π

V(π)

Regret Minimization vs. Policy Identification

4

Regret Minimization vs. Policy Identification
• Regret heavily studied: 
 

4

RT =
T

∑
t=1

r(ct, π*(ct)) − r(ct, at)

Regret Minimization vs. Policy Identification
• Regret heavily studied: 
 

• ILOVETOCONBANDITS [Agarwal et al. 2014] achieves ,
computationally efficient

RT = O(|& |T log(Π))

4

RT =
T

∑
t=1

r(ct, π*(ct)) − r(ct, at)

Regret Minimization vs. Policy Identification
• Regret heavily studied: 
 

• ILOVETOCONBANDITS [Agarwal et al. 2014] achieves ,
computationally efficient

RT = O(|& |T log(Π))

• Modification gives - PAC algorithm w/ sample complexity ,
also see [Zanette et al. 2021]

(ϵ, δ) O(|& | log(Π/δ)/ϵ2)

4

RT =
T

∑
t=1

r(ct, π*(ct)) − r(ct, at)

Regret Minimization vs. Policy Identification
• Regret heavily studied: 
 

• ILOVETOCONBANDITS [Agarwal et al. 2014] achieves ,
computationally efficient

RT = O(|& |T log(Π))

• Modification gives - PAC algorithm w/ sample complexity ,
also see [Zanette et al. 2021]

(ϵ, δ) O(|& | log(Π/δ)/ϵ2)

4

RT =
T

∑
t=1

r(ct, π*(ct)) − r(ct, at)

Two Problems

a) Minimax Result! Does not adapt to hardness of instance.

Regret Minimization vs. Policy Identification
• Regret heavily studied: 
 

• ILOVETOCONBANDITS [Agarwal et al. 2014] achieves ,
computationally efficient

RT = O(|& |T log(Π))

• Modification gives - PAC algorithm w/ sample complexity ,
also see [Zanette et al. 2021]

(ϵ, δ) O(|& | log(Π/δ)/ϵ2)

4

RT =
T

∑
t=1

r(ct, π*(ct)) − r(ct, at)

Two Problems

a) Minimax Result! Does not adapt to hardness of instance.

True for any policy class! Not
capturing difficulty for learning π*

Regret Minimization vs. Policy Identification
• Regret heavily studied: 
 

• ILOVETOCONBANDITS [Agarwal et al. 2014] achieves ,
computationally efficient

RT = O(|& |T log(Π))

• Modification gives - PAC algorithm w/ sample complexity ,
also see [Zanette et al. 2021]

(ϵ, δ) O(|& | log(Π/δ)/ϵ2)

4

RT =
T

∑
t=1

r(ct, π*(ct)) − r(ct, at)

Two Problems

a) Minimax Result! Does not adapt to hardness of instance.

b) Can construct an example, where any optimal regret algorithm won’t be instance optimal!

True for any policy class! Not
capturing difficulty for learning π*

Challenges
• What is the statistical limits of learning, i.e. the instance-dependent lower bound?

• Can we design sampling procedure to achieve this?

• Computational efficiency - context space and policy space could be infinite!# Π

5

Challenges
• What is the statistical limits of learning, i.e. the instance-dependent lower bound?

• Can we design sampling procedure to achieve this?

• Computational efficiency - context space and policy space could be infinite!# Π

5

…
Nov - Dec

Challenges
• What is the statistical limits of learning, i.e. the instance-dependent lower bound?

• Can we design sampling procedure to achieve this?

• Computational efficiency - context space and policy space could be infinite!# Π

5

Question: what is possible?

…
Nov - Dec

Our Contribution

• Show the first instance-dependent lower bound for PAC contextual bandit

• Present a simple algorithm that achieves this lower bound

• Design a computational efficient algorithm that also achieves this lower bound

6

Towards Lower Bound: Estimators
• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map: such that for

• Given dataset where ,

ϕ : # × & → ℝd r(c, a) = ⟨ϕ(c, a), θ*⟩ θ* ∈ Θ ⊂ ℝd

4 = {(ct, at, rt)}n
t=1 at ∼ pct

∈ △&

7

'[ϕ(ct, at)rt] = 'c,a[ϕ(c, a)ϕ(c, a)⊤θ*] = ∑
c

νc ∑
a

pc,aϕ(c, a)ϕ(c, a)⊤θ*

Towards Lower Bound: Estimators
• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map: such that for

• Given dataset where ,

ϕ : # × & → ℝd r(c, a) = ⟨ϕ(c, a), θ*⟩ θ* ∈ Θ ⊂ ℝd

4 = {(ct, at, rt)}n
t=1 at ∼ pct

∈ △&

7

'[ϕ(ct, at)rt] = 'c,a[ϕ(c, a)ϕ(c, a)⊤θ*] = ∑
c

νc ∑
a

pc,aϕ(c, a)ϕ(c, a)⊤θ*

A(p)

Towards Lower Bound: Estimators
• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map: such that for

• Given dataset where ,

ϕ : # × & → ℝd r(c, a) = ⟨ϕ(c, a), θ*⟩ θ* ∈ Θ ⊂ ℝd

4 = {(ct, at, rt)}n
t=1 at ∼ pct

∈ △&

7

'[ϕ(ct, at)rt] = 'c,a[ϕ(c, a)ϕ(c, a)⊤θ*] = ∑
c

νc ∑
a

pc,aϕ(c, a)ϕ(c, a)⊤θ*

A(p)

⇒ ̂θ = 1
n

A(p)−1
n

∑
t=1

ϕ(ct, at)rt

Towards Lower Bound: Estimators
• Linear contextual bandit setting (agnostic setting could be reduced to linear setting):

• feature map: such that for

• Given dataset where ,

ϕ : # × & → ℝd r(c, a) = ⟨ϕ(c, a), θ*⟩ θ* ∈ Θ ⊂ ℝd

4 = {(ct, at, rt)}n
t=1 at ∼ pct

∈ △&

7

'[ϕ(ct, at)rt] = 'c,a[ϕ(c, a)ϕ(c, a)⊤θ*] = ∑
c

νc ∑
a

pc,aϕ(c, a)ϕ(c, a)⊤θ*

A(p)

⇒ ̂θ = 1
n

A(p)−1
n

∑
t=1

ϕ(ct, at)rt

IPS estimate!

A Lower Bound

8

A Lower Bound
• For each define the gap π ∈ Π, Δ(π) := V(π*) − V(π)

8

A Lower Bound
• For each define the gap π ∈ Π, Δ(π) := V(π*) − V(π)

• Let , an estimate ϕπ := 'c∼ν[ϕ(c, π(c))] Δ̂(π) = ̂V(π*) − ̂V(π) = ⟨ϕπ*
− ϕπ, ̂θ⟩

8

Var(Δ̂(π)) = (ϕπ*
− ϕπ)⊤Var(̂θ)(ϕπ*

− ϕπ) =
∥ϕπ*

− ϕπ∥2
A(p)−1

n

A Lower Bound
• For each define the gap π ∈ Π, Δ(π) := V(π*) − V(π)

• Let , an estimate ϕπ := 'c∼ν[ϕ(c, π(c))] Δ̂(π) = ̂V(π*) − ̂V(π) = ⟨ϕπ*
− ϕπ, ̂θ⟩

8

Var(Δ̂(π)) = (ϕπ*
− ϕπ)⊤Var(̂θ)(ϕπ*

− ϕπ) =
∥ϕπ*

− ϕπ∥2
A(p)−1

n
Theorem [Li et al. 2022] Let be the stopping time of the algorithm. Any -

PAC algorithm satisfies with high probability where
τ (0,δ)

τ ≥ ρΠ,0 log(1/2.4δ)

ρΠ,0 = min
pc∈△&,∀c∈#

max
π∈Π∖π*

∥ϕπ*
− ϕπ∥2

A(p)−1

Δ(π)2 .
gap

variance

Our algorithm

9

Our algorithm

9

Our algorithm

9

Input: Π

Our algorithm

9

Input: Π
Initialize Π1 = Π

Our algorithm

9

Input: Π
Initialize Π1 = Π
for l = 1,2,⋯

Our algorithm

9

Input: Π
Initialize Π1 = Π
for l = 1,2,⋯

 1. Choose and such thatp(l)
c ∈ △& , ∀c ∈ # nl

Our algorithm

9

Input: Π
Initialize Π1 = Π
for l = 1,2,⋯

 1. Choose and such thatp(l)
c ∈ △& , ∀c ∈ # nl

 min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

Our algorithm

9

Input: Π
Initialize Π1 = Π
for l = 1,2,⋯

 1. Choose and such thatp(l)
c ∈ △& , ∀c ∈ # nl

 min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

Our algorithm

9

Input: Π
Initialize Π1 = Π
for l = 1,2,⋯

 1. Choose and such thatp(l)
c ∈ △& , ∀c ∈ # nl

 min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

2. For , for each context , sampling and compute IPS estimate

 for each

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂(π, ̂πl−1) π ∈ Π

Our algorithm

9

Input: Π
Initialize Π1 = Π
for l = 1,2,⋯

 1. Choose and such thatp(l)
c ∈ △& , ∀c ∈ # nl

 min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

2. For , for each context , sampling and compute IPS estimate

 for each

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂(π, ̂πl−1) π ∈ Π
3. Update

Our algorithm

9

Input: Π
Initialize Π1 = Π
for l = 1,2,⋯

 1. Choose and such thatp(l)
c ∈ △& , ∀c ∈ # nl

 min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

2. For , for each context , sampling and compute IPS estimate

 for each

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂(π, ̂πl−1) π ∈ Π
3. Update

 ̂πl = arg min
π∈Π

Δ̂(π, ̂πl−1)

Our algorithm

9

Input: Π
Initialize Π1 = Π
for l = 1,2,⋯

 1. Choose and such thatp(l)
c ∈ △& , ∀c ∈ # nl

 min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

2. For , for each context , sampling and compute IPS estimate

 for each

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂(π, ̂πl−1) π ∈ Π
3. Update

 ̂πl = arg min
π∈Π

Δ̂(π, ̂πl−1)

Theorem [Li et al. 2022] The above algorithm returns an -PAC
policy with at most samples.

(ϵ, δ)
O(ρΠ,ϵ log(|Π | /δ)log2(1/ϵ))

Our algorithm

10

Π

−Δ(π)

π*

Δ(π)

Our algorithm

11

Π
π*

−Δ(π)

Our algorithm

12

Π

ε1 = 2−1

−Δ(π)

Our algorithm

13

Π

ε2 = 2−2

−Δ(π)

Our algorithm

13

Π

ε2 = 2−2

−Δ(π)

For -good policy, our criteria
forces the estimation to be -good!

ϵ
2ϵ

Our algorithm

13

Π

ε2 = 2−2

−Δ(π)

For -good policy, our criteria
forces the estimation to be -good!

ϵ
2ϵ

Returning the empirical best policy at the end at least -good ⇒ 2ϵ

Towards an efficient algorithm

14

Input:
Initialize
for

 1. Choose and such that

2. For , for each context , sampling and compute IPS estimate

 for each
3. Update

Π
Π1 = Π

l = 1,2,⋯
p(l)

c nl

min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂l(π, ̂πl−1) π ∈ Π

̂πl = arg min
π∈Π

Δ̂l(π, ̂πl−1)

Input:
Initialize
for

 1. Choose and such that

2. For , for each context , sampling and compute IPS estimate

 for each
3. Update

Π
Π1 = Π

l = 1,2,⋯
p(l)

c nl

min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂(π, ̂πl−1) π ∈ Π

̂πl = arg min
π∈Π

Δ̂(π, ̂πl−1)

Towards an efficient algorithm

14

Input:
Initialize
for

 1. Choose and such that

2. For , for each context , sampling and compute IPS estimate

 for each
3. Update

Π
Π1 = Π

l = 1,2,⋯
p(l)

c nl

min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂l(π, ̂πl−1) π ∈ Π

̂πl = arg min
π∈Π

Δ̂l(π, ̂πl−1)

Input:
Initialize
for

 1. Choose and such that

2. For , for each context , sampling and compute IPS estimate

 for each
3. Update

Π
Π1 = Π

l = 1,2,⋯
p(l)

c nl

min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂(π, ̂πl−1) π ∈ Π

̂πl = arg min
π∈Π

Δ̂(π, ̂πl−1)

Towards an efficient algorithm

14

Input:
Initialize
for

 1. Choose and such that

2. For , for each context , sampling and compute IPS estimate

 for each
3. Update

Π
Π1 = Π

l = 1,2,⋯
p(l)

c nl

min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂l(π, ̂πl−1) π ∈ Π

̂πl = arg min
π∈Π

Δ̂l(π, ̂πl−1)

Input:
Initialize
for

 1. Choose and such that

2. For , for each context , sampling and compute IPS estimate

 for each
3. Update

Π
Π1 = Π

l = 1,2,⋯
p(l)

c nl

min
pc∈△&,∀c∈#

max
π∈Π

−Δ(π) +
∥ϕπ − ϕ ̂πl−1

∥2
A(p)−1 log(1/δ)
nl

≤ 2−l

t ∈ [nl] ct at ∼ p(l)
ct

Δ̂(π, ̂πl−1) π ∈ Π

̂πl = arg min
π∈Π

Δ̂(π, ̂πl−1)

not efficient since cannot hold on to for all !pc c

Dual Problem

15

min
pc∈△&,∀c∈#

max
π∈Π

− Δ(π, π*) +
∥ϕπ − ϕπ*

∥2
A(p)−1 log(1/δ)
nPrimal

• Consider the dual formulation:

Dual Problem

15

min
pc∈△&,∀c∈#

max
π∈Π

− Δ(π, π*) +
∥ϕπ − ϕπ*

∥2
A(p)−1 log(1/δ)
n

max
λ∈△Π

min
γπ≥0

min
pc∈△&,∀c∈# ∑

π∈Π
λπ (−Δ(π, π*) + γπ∥ϕπ − ϕπ*

∥2
A(p)−1 + log(1/δ)

2γπn) .Dual

Primal

• Consider the dual formulation:

Compute Action Distribution
• If we solve for for all , we have an analytical solution:pc c

16

min
pc∈△&,∀c∈# ∑

π∈Π
λπγπ∥ϕπ − ϕπ*

∥2
A(p)−1 = 'c∼ν ∑

a∈&
∑
π∈Π

λπγπ(1{π(c) = a} + 1{π*(c) = a} − 21{π(c) = π*(c)})

2

=: 'c∼ν[(∑
a∈&

(λ ⊙ γ)⊤t(c)
a)

2
]

Compute Action Distribution
• If we solve for for all , we have an analytical solution:pc c

16

min
pc∈△&,∀c∈# ∑

π∈Π
λπγπ∥ϕπ − ϕπ*

∥2
A(p)−1 = 'c∼ν ∑

a∈&
∑
π∈Π

λπγπ(1{π(c) = a} + 1{π*(c) = a} − 21{π(c) = π*(c)})

2

=: 'c∼ν[(∑
a∈&

(λ ⊙ γ)⊤t(c)
a)

2
]

Implicitly maintain for all simultaneously!pc c ∈ #

Compute Action Distribution
• If we solve for for all , we have an analytical solution:pc c

16

min
pc∈△&,∀c∈# ∑

π∈Π
λπγπ∥ϕπ − ϕπ*

∥2
A(p)−1 = 'c∼ν ∑

a∈&
∑
π∈Π

λπγπ(1{π(c) = a} + 1{π*(c) = a} − 21{π(c) = π*(c)})

2

=: 'c∼ν[(∑
a∈&

(λ ⊙ γ)⊤t(c)
a)

2
]

• Dual becomes

max
λ∈ΔΠ

min
γ ∑

π∈Π
λπ (−Δ(π, π*) + log(1/δ)

γπn) + 'c∼ν[(∑
a∈&

(λ ⊙ γ)⊤t(c)
a)

2
]

Implicitly maintain for all simultaneously!pc c ∈ #

Compute Action Distribution
• If we solve for for all , we have an analytical solution:pc c

16

min
pc∈△&,∀c∈# ∑

π∈Π
λπγπ∥ϕπ − ϕπ*

∥2
A(p)−1 = 'c∼ν ∑

a∈&
∑
π∈Π

λπγπ(1{π(c) = a} + 1{π*(c) = a} − 21{π(c) = π*(c)})

2

concave in and locally strongly convex in !λ γ

=: 'c∼ν[(∑
a∈&

(λ ⊙ γ)⊤t(c)
a)

2
]

• Dual becomes

max
λ∈ΔΠ

min
γ ∑

π∈Π
λπ (−Δ(π, π*) + log(1/δ)

γπn) + 'c∼ν[(∑
a∈&

(λ ⊙ γ)⊤t(c)
a)

2
]

Implicitly maintain for all simultaneously!pc c ∈ #

Frank-Wolfe

• Gives us a sparse yet good enough solution

• Plug in solution in the closed-form gives us

λ

λ pc ∈ △&

17

Image from [Jaggi]

Thanks!

Towards an efficient algorithm
• argmax oracle: given ,

returns

• Can be computed using cost-sensitive classification

(c1, s1), ⋯, (cn, sn) ∈ < × ℝ|=|

arg max
π∈Π

n

∑
t=1

st(π(ct))

19

A Lower Bound

20

• Choose action distribution such that:

p

max
π∈Π∖π*

∥ϕπ*
− ϕπ∥2

A(p)−1

(Δ(π) ∨ ϵ)2 ≤ n
2 log(1/δ)

Agnostic Setting Reduces to Linear
• What if we do not assume linear structure of reward function?

21

We can reduce it to the previous setting by constructing !ϕ

• Let where θ* ∈ ℝ|#|×|&| [θ*]c,a = r(c, a)

c()
a

r(c, a)
vectorize

θ*

Agnostic Setting Reduces to Linear

22

r(c, a) = ⟨vec(ece⊤
a), θ*⟩

ϕ(c, a)

∥ϕπ*
− ϕπ∥2

A(p)−1 = ∑
c

νc ∑
a

1
pc,a

(1{π(c) = a} − 1{π*(c) = a})2 = 'c∼ν (1
pc,π(c)

+ 1
pc,π*(c)) 1{π*(c) ≠ π(c)} .

Agnostic Setting Reduces to Linear

ρΠ,ϵ := min
pc∈△&, ∀c∈#

max
π∈Π∖π*

'c∼ν [(1
pc,π(c)

+ 1
pc,π*(c)) 1{π*(c) ≠ π(c)}]

('c∼ν[r(c, π*(c)) − r(c, π(c))] ∨ ϵ)2 .

Variance

Gap

22

r(c, a) = ⟨vec(ece⊤
a), θ*⟩

ϕ(c, a)

∥ϕπ*
− ϕπ∥2

A(p)−1 = ∑
c

νc ∑
a

1
pc,a

(1{π(c) = a} − 1{π*(c) = a})2 = 'c∼ν (1
pc,π(c)

+ 1
pc,π*(c)) 1{π*(c) ≠ π(c)} .

