
Introduction

Methods

v Construction of Tree-Structured PGMs for all-sigmoid DNNs

Step 1: When any node (e.g., H1 or H2) has multiple common children (H3, H4), 
give each child its own copy of that node (e.g., H1 and H1’) and ancestors.

Step 2: Working from input to output, replace each edge A->B with L copies of the 
edge, of A and A’s entire ancestor structure.  Where A->B has weight w, all its 
copies have weight w/L.

Theorem 1 (Matching Probabilities): In the PGM construction, for an arbitrary 
latent node h in the DNN that has observed parents 𝑔!, … , 𝑔" and latent parents 
ℎ!, … , ℎ# that are true with probabilities 𝑝!, … , 𝑝#, 
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Conclusion

Ø We have established a new connection between DNNs and PGMs by 
constructing an infinite tree-structured PGM corresponding to any given DNN, 
then showing that inference in this PGM corresponds exactly to forward 
propagation in the DNN. 

Ø We anticipate it will inspire new algorithms that merge strengths of PGMs and 
DNNs. We have explored one such algorithm, a novel HMC-based algorithm 
for DNN training motivated by our PGM construction and illustrated how it can 
be used to improve to improve DNN calibration.

Ø IGVF needs reasoning with merged DNN and probabilistic graphical model 
(PGM) components in a unified regulatory model such as that shown below.
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where 𝑤&s’ and 𝜃(s’ are the weights on edges between these nodes and h. As L goes to 
infinity, for every node h anywhere in the network, P(h|X) is identical for NN, Bayesian 
network (BN), and Markov network (MN). The theorem shows that forward 
propagation in an all-sigmoid DNN can be viewed as the approximation of the 
inference in a tree-structured PGM. 

Theorem 2 (Matching Gradients): In the PGM construction, as 𝐿 → ∞, the derivative 
of the marginal log-likelihood, where all hidden nodes have been summed out, with 
respect to a given weight exactly matches the derivative of the cross-entropy loss in the 
neural network with respect to the equivalent weight in its structure.

v Theoretical Result Suggests HMC Algorithm that can reason over 
combined DNN and PGM components

The PGM-view suggests alternative training algorithms such as contrastive divergence 
with MCMC sampling (e.g., Gibbs)2. However, Gibbs sampling on NNs suffers from its 
high cost of computational resources. Here we use HMC in DNN as a fast 
approximation to Gibbs in this infinite tree-width-1 PGM. 
Based on the PGM construction, as L goes to infinity, the average of sampled L copies 
for each hidden node follows normal distribution asymptotically by the central limit 
theorem. When L is finite in practice, the following normal distribution is a reasonable 
approximation to the probability distribution of hidden nodes (ℎ) is the vector of the ith 
layer, and ℎ* = 𝑋):
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This is used to sample the state of latent variables. We can then calculate the 
𝑝 𝑌,𝐻 𝑋, 𝜃 :

𝑝 𝑌,𝐻 𝑋, 𝜃 = 𝑝 𝑌 ℎ, , 𝜃, ⋅A
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And the loss function for weight updating is: 

𝐿 𝜃 = − log 𝑝 𝑌,𝐻 𝑋, 𝜃

MN View

Synthetic datasets are generated by simple BNs and MNs with their weights in different 
ranges, which are used to define the conditional probabilistic distributions for BNs and 
potentials for MNs. Each dataset contains 1000 data points which are binary. The true 
distribution of the corresponding BN/MN is calculated by sampling or the variable 
elimination algorithm. For different methods, we compare their mean absolute error and 
apply T-tests to check the statistical significance.
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Deep neural networks (DNNs) lack the precise semantics and definitive probabilistic 
interpretation of probabilistic graphical models (PGMs). We propose an innovative 
solution by constructing infinite tree-structured PGMs that correspond exactly to neural 
networks. Our research reveals that DNNs, during forward propagation, indeed perform 
approximations of PGM inference that are precise in this alternative PGM structure.
Not only does our research complement existing studies that describe neural networks 
as kernel machines or infinite-sized Gaussian processes, but it also elucidates a more 
direct approximation that DNNs make to exact inference in PGMs. Potential benefits 
include improved pedagogy and interpretation of DNNs, and algorithms that can merge 
the strengths of PGMs and DNNs.
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The Bayesian network view of a DNN is 
equivalent to the Markov network view, 
where directionality is removed and the 
relationships between nodes are defined 
using the potential shown here.
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