In many problems, there is a set of items, \(Z \), with underlying structure, and the goal is to find which items are best using a set of noisy probes, \(X \). It is natural that some of these probes are noisier than others.

Drug Discovery: \(Z \subset X \subset \mathbb{R}^d \)

FDA-approved drugs Experimental drugs

How do we adaptively select probes to measure?

Problem Setup

Given: items \(Z \subset \mathbb{R}^d \), probes \(X \subset \mathbb{R}^d \)

Measure: At each time \(t \), observe \(y_t = x_t^T \theta^* + \eta_t \) where

\[\eta_t \sim N(0, \sigma^2_d) \] and \(\sigma^2_d = x_t^T \Sigma x_t \), and \(\theta^* \in \mathbb{R}^d \) and \(\Sigma \in \mathbb{R}^{d \times d} \) are unknown.

Find: \(z^* = \arg\max_{z \in Z} z^T \theta^* \) or \(Z_a = \{ z \in Z : z^T \theta^* > a \} \) with \(1 - \delta \) probability.

Problem Intuition

Consider a learner that selects a fixed design \(\{x_1, \ldots, x_T\} \), observes outcomes \(\{y_t\}_{t=1}^T \), and constructs the weighted least squares estimator with known heteroskedastic variances, \(\hat{\theta} \):

\[\hat{\theta} - \theta^* \sim \mathcal{N}(0, \Gamma^{-1}) \]

Goal: Reduce variance of \(\hat{\theta} \) in the directions most advantageous for identifying \(z^* \) or \(Z_a \).

Benchmark Example: Ignoring heteroskedasticity suffers a multiplicative dependency on \(\kappa = \frac{\max \{\sigma^2_d, \min \{\sigma^2_d\} \}}{\min \{\sigma^2_d\}} \).

Learning Heteroskedastic Variances

Goal: Estimate heteroskedastic variances with error bounds that scale favorably in the problem dimension.

Intuition: After \(\Gamma \) samples, we estimate \(\Sigma \) with \(\hat{\Sigma} \) using an M-estimation approach and decompose the error as

\[\sigma^2_d - \sigma^2_d = |x^T (\hat{\Sigma} - \Sigma) x| < A + B + C. \]

Controlled by...

\begin{algorithm}[H]
\caption{HEAD (Heteroskedastic Estimation by Adaptive Design)}
\begin{algorithmic}[1]
\State Find \(\hat{\Sigma}_t \)
\State Input: Arms \(X \in \mathbb{R}^d, \Gamma \in \mathbb{N} \)
\State \(1 \) /Stage 1: Take half the samples to estimate \(\theta^* \)
\State \(2 \) /Stage 2: Take half the samples to estimate \(\Sigma \) given \(\theta^*_0 \)
\State \(3 \) Determine \(\lambda^* = \arg\min_{\lambda \geq 0} \mathbb{E}[\text{Var}(x^T \lambda \alpha)] \)
\State \(4 \) Pull arm \(x \in X \) \(\lceil \Gamma/2 \rceil \) times and collect observations \(\{x_t, y_t\}_{t=1}^{\lceil \Gamma/2 \rceil} \)
\State \(5 \) Define \(A^b = \sum_{t=1}^{\lceil \Gamma/2 \rceil} x_t^b \) and \(b^* = \sum_{t=1}^{\lceil \Gamma/2 \rceil} y_t \) and estimate \(\theta^b = A^{-b} b^* \)
\State \(6 \) \(\Sigma = \sum_{x \in X} x x^T \)/Stage 2: Take half the samples to estimate \(\Sigma \) given \(\theta^b_0 \)
\State \(7 \) Determine \(\lambda^* = \arg\min_{\lambda \geq 0} \mathbb{E}[\text{Var}(x^T \lambda \alpha)] \)
\State \(8 \) Pull arm \(x \in X \) \(\lceil \Gamma/2 \rceil \) times and collect observations \(\{x_t, y_t\}_{t=1}^{\lceil \Gamma/2 \rceil} \)
\State \(9 \) Let \(A^b = \sum_{t=1}^{\lceil \Gamma/2 \rceil} x_t^b \) and \(b^* = \sum_{t=1}^{\lceil \Gamma/2 \rceil} y_t \)
\State \(10 \) Output: \(\text{scale}(\Sigma) = \hat{\Sigma}^{-1} b^* \)
\end{algorithmic}
\end{algorithm}

Theorem 3.1. Assume \(\Gamma = \Omega \left[\max \left\{ \sigma^2_d \log \left(\frac{1}{\delta} \right), d^2 \right\} \right] \). For any \(x \in X \) and \(\delta \in (0, 1) \), Alg. 1 (HEAD) guarantees the following.

\[P \left[\sigma^2_d - \sigma^2_d \leq C_{r, \delta} \right] = 1 - \delta/2 \] and \(C_{r, \delta} = \Theta \left(\frac{(\log(1/\delta))^{1/2} \max \{\sigma^2_d, \min \{\sigma^2_d\} \}}{\delta} \right). \]

Empirical Results

Theorem 4.2. Consider objective, OBJ, of best-arm identification (BAI) or level-set identification (LS). The set returned from Alg. 2 (H-RAGE) achieves OBJ with probability 1 - \(\delta \) at time \(t = \Theta \left(\psi_{\text{UBJ}} \log(D^{-1}) \log \left(\frac{d^2}{\delta} \right) \right) \), where \(\psi_{\text{UBJ}} \) is such that \(\mathbb{E} \left[\psi_{\text{UBJ}} \right] \geq 2 \log(1/2 \Delta^2) \psi_{\text{UBJ}} \), and \(\Delta \) is the minimum gap for the objective.

Multivariate Testing Simulation Example

We divide an advertisement into natural locations or features, each of which has different content options.